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Abstract: One electron oxidation of the monometallic alkenylacetylide complexes [Ru{C≡CC(R)=CH2}
(dppe)Cp*] (1) and [Ru{C≡CC(R)=CH2}Cl(dppe)2] (2) (R = Ph (a); R = 4-MeS-C6H4 (b)) generates in
each case a dinuclear bis(allenylidene) complex [{Ru}2{µ-C=C=C(R)–CH2–H2C–(R)C=C=C}][PF6]2

({Ru} = Ru(dppe)Cp* ([3a,b][PF6]2); {Ru} = RuCl(dppe)2 ([4a,b][PF6]2), containing an unsaturated
ethane bridge between both allenylidene moieties. Deprotonation of this ethane bridge results
in the formation of the previously reported octa-3,5-diene-1,7-diyndiyl-bridged bimetallic species
[{Ru}2{µ-C≡CC(R)=CH–HC=(R)CC≡C}] ({Ru} = Ru(dppe)Cp* (5a,b); {Ru} = RuCl(dppe)2 (6a,b).
The isolation of these complexes illustrates a general synthetic route to these conjugated bimetallic
species from monomeric alkenylacetylide precursors. Electrochemical and spectroelectrochemical
investigations evince the ready formation of the representative redox series [5a]n+, and TD-DFT
calculations performed on optimised structures featuring the simplified {Ru(dmpe)Cp} coordination
sphere [{Ru(dmpe)Cp}2{µ-C≡CC(Ph)=HC–CH(Ph)CC≡C}]n+ ([5a†]n+) (n = 0, 1, 2) reveal significant
delocalisation of the unpaired charge in the formally mixed-valent species (n = 1), consistent with
Class III assignment within the Robin–Day classification scheme.

Keywords: organometallic complexes; cumulene; oxidative coupling; carbon-rich ligand;
mixed-valence; Robin–Day classification

1. Introduction

Mixed-valent hetero- and homo-bimetallic complexes containing π-conjugated all-
carbon and carbon-rich bridging ligands of the general form [{LxM}(µ–Bridge){MLx}] have
drawn sustained interest as model systems with which to explore intramolecular electron
and charge-transfer phenomena [1–3]. The orbital overlaps along the metal–bridge–metal
assemblies are critical to the intramolecular electron transfer properties of the complex [4,5];
consequently, the chemical composition and structure of both the metal-ancillary ligand
end-capping fragments, {MLx}, and the bridging ligand afford a significant degree of control
over these metal–bridge coupling interactions [6–8]. This electronic control by chemical
design permits facile manipulation of the degree of (de)localisation along the molecular
scaffold, facilitating the application of mixed-valent species as sensors, electrochromes or
components for molecular electronics [9–13]. However, the relative orientation of the metal
end-caps with respect to each other and features of low axial symmetry incorporated in
the bridge can induce dynamic aspects in unconstrained systems that necessitate careful
interpretation of data collected from measurements of the entire population with respect to
any single conformation or structure [14–18].

Against this background, polyyndiyl complexes of general form [{LxM}{µ-(C≡C)n}
{MLx}] can be identified as useful ‘all-carbon’ bridged systems and precursors through
which to further explore chemical structure: electronic-property relationships and electron-
transfer phenomena [19–24]. Within the metal capping fragments, {MLx}, the energy
and symmetry of the frontier metal d-orbitals can be manipulated through choice of the
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metal [23,25–29] and ancillary ligands [30,31], which in turn mediates the extent of d-orbital
overlap with the π-conjugated frontier orbitals of the polyyndiyl bridge. Electrochemi-
cal measurements of polyyndiyl complexes [{LxM}{µ-(C≡C)n}{MLx}] typically reveal a
decreasing separation of the first and second oxidation processes with increasing n, a
phenomenon best attributed to the increasing spin delocalisation onto the carbon chain in
the case of complexes of the heavier 4d and 5d metals [24,32,33], and increasingly localised
metal-based redox processes for the lighter metal examples with more contracted and
higher energy 3d fragment orbitals [8,20,27].

As a consequence of the increasing carbon character in the frontier orbitals of the
heavier metal complexes, spectroscopic studies of the redox products derived from these
all-carbon-bridged species [{LxM}{µ-(C≡C)n}{MLx}] are generally limited to the n = 1, 2
and 3 examples, the latter being only possible in the case of complexes bearing sterically
demanding ancillary ligands [8]. This recalls the use of large end-groups to stabilise very
long polyynes employed by, for example, Walton [34,35] and Tykwinski [36]. For smaller
ancillary ligand sets, dimerisation of the radicals derived from the hexatriyndiyl-bridged
complexes has been reported from spectroelectrochemical (SEC) and preparative scale
chemical oxidation of these complexes, hindering further experimental measurements [37].

Metal polyendiyl complexes [{LxM}{µ-(CH=CH)n}{MLx}] are also known [38,39], and
although spectroscopic studies of the redox products derived from these complexes are
rare [40], a number of electrochemical studies have hinted at the efficacy of charge transport
through the polyene chain [41–43]. The bridging structures themselves are intriguing as the
functionalisation these sp2 centres, a feature not possible with polyyndiyl ligands composed
of sp carbon centres, which would allow introduction of electron-donating or -withdrawing
groups to stabilise charges along the carbon-rich backbone [44].

In seeking to develop longer bridging ligands with increased chemical stability in
the mixed-valent state, attention has been largely drawn to ‘carbon-rich’ derivatives of
these metal-alkynyl structures. As a result, there are numerous examples of bimetallic
complexes and mixed-valence systems derived from bridging ligands featuring metal-
alkynyl and -vinyl fragments and a host of interpolated arylene fragments [1,20,45,46].
The studies of such compounds, augmented by advances in (TD-)DFT methods, have
been critical to unravelling further details of the electronic structure and nature of mixed-
valence compounds and complexes [5,47–51] and also the fundamentals of the electron
transfer reaction in both the ground and excited states [52–54]. However, whilst these
compounds have allowed significant advances to be made in both the synthesis and
subsequent analysis of these mixed-valent derivatives bridged by all-carbon or carbon-rich
ligands, the inclusion of aromatic spacing groups introduces a degree of conformational
uncertainty and significantly alters the underlying electronic structures [15–17,55,56].

Resting between these structure types are less well-explored families of complexes featur-
ing hybrid bridging ligands containing both alkynyl/ethynyl and vinyl/eneyl motifs [57–62].
We have recently reported the synthesis of a range of bimetallic ruthenium complexes
containing an octa-3,5-diene-1,7-diyl bridging ligand [{Ru(dppe)Cp*}2{µ-C≡CC(R)=CH–
HC=(R)C≡CC}] (5), formed via in situ oxidation of [Ru{C≡CC(R)=CH2}(dppe)Cp*] [63]
and sequential dimerisation and deprotonation [64]. Containing a highly conjugated
carbon-rich bridging ligand, readily modified by aryl side groups, R, complexes 5 present
as a structural motif, complementary to the polyyndiyl, polyendiyl, diethynylarylene or
divinylarylene complexes discussed above, through which to study electronic structure
and electron-transfer processes in mixed-valence complexes (Figure 1).
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Here, we report further investigation of the electronic properties of these coupled 
products, alongside a modified stoichiometric oxidative coupling procedure that provides 
a more rational synthesis of these compounds (Scheme 1). For the series 
[{Ru(dppe)Cp*}2{µ-C≡CC(R)=HC–CH(R)CC≡C}], UV-Vis-NIR measurements supported 
by TD-DFT calculations performed on the model complexes [{Ru(dmpe)Cp}2(µ-
C≡CC(Ph)=HC–CH(Ph)CC≡C}]n+ ([5a†]n+, n = 0, 1, 2), with analysis of the natural transition 
orbitals (NTOs) of the associated transitions, allow formal assignment of [5]+ as a strongly 
delocalised, Robin and Day Class III, mixed-valent species. 

 
Scheme 1. Formation of ethane-bridged dinuclear bis(allenylidene) complexes [3,4]2+ and subse-
quent octa-3,5-diene-1,7-diyndiyl-bridged bimetallic species 5,6. a Previously reported [64]. b Gener-
ated as a component of a crude product mixture that could not be purified. 

2. Results and Discussion 
2.1. Synthesis 

Solutions of alkenylacetylide complexes [Ru{C≡CC(R)=CH2}(dppe)Cp*] are known to 
readily dimerise following aerial oxidation, resulting in the initial formation of ethane-
bridged bis(allenylidene) complexes [Ru(dppe)Cp*}2{=C=C=C(R)-CH2-H2C-

Figure 1. Compounds discussed in this study.

Here, we report further investigation of the electronic properties of these coupled prod-
ucts, alongside a modified stoichiometric oxidative coupling procedure that provides a
more rational synthesis of these compounds (Scheme 1). For the series [{Ru(dppe)Cp*}2{µ-
C≡CC(R)=HC–CH(R)CC≡C}], UV-Vis-NIR measurements supported by TD-DFT calculations
performed on the model complexes [{Ru(dmpe)Cp}2(µ-C≡CC(Ph)=HC–CH(Ph)CC≡C}]n+

([5a†]n+, n = 0, 1, 2), with analysis of the natural transition orbitals (NTOs) of the associated
transitions, allow formal assignment of [5]+ as a strongly delocalised, Robin and Day Class
III, mixed-valent species.
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Scheme 1. Formation of ethane-bridged dinuclear bis(allenylidene) complexes [3,4]2+ and subsequent
octa-3,5-diene-1,7-diyndiyl-bridged bimetallic species 5,6. a Previously reported [64]. b Generated as
a component of a crude product mixture that could not be purified.

2. Results and Discussion
2.1. Synthesis

Solutions of alkenylacetylide complexes [Ru{C≡CC(R)=CH2}(dppe)Cp*] are known to
readily dimerise following aerial oxidation, resulting in the initial formation of ethane-bridged
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bis(allenylidene) complexes [Ru(dppe)Cp*}2{=C=C=C(R)-CH2-H2C-(R)C=C=C=}][PF6]2[3][PF6]2.
In turn, complexes [3][PF6]2 readily deprotonate to give bimetallic complexes [{Ru(dppe)
Cp*}2{C≡CC(R)=HC-CH=(R)CC≡C}] (5) containing octa-3,5-diene-1,7-diyl bridging lig-
ands (Scheme 1) [64]. In an effort to expand the scope of this reaction, the alkeny-
lacetylide complexes [Ru{C≡CC(R)=CH2}(dppe)Cp*] (1a, R = Ph; 1b, R = C6H4SMe-4)
and [Ru{C≡CC(R)=CH2}Cl(dppe)2] (2a, R = Ph; 2b, R = C6H4SMe-4) were each treated
with one equivalent of [FeCp]2PF6 to promote 1-electron oxidation (noting the relatively
low first oxidation potential of 1a (−0.14 V vs. ferrocene/ferrocenium)) [64] and allowed
to stir in solution for 2 h to promote dimerisation. Work-up afforded the ethane-bridged
bis(allenylidene) complexes [3a,b][PF6]2 and [4a,b][PF6]2 (Scheme 1), characterised by
the intense ν(C=C=C) bands near 1920 cm−1, as well as resonances in the 1H NMR spec-
trum near δ 1.9 ppm arising from the protons of the ethane bridge. Deprotonation of
[3a,b][PF6]2 and [4a,b][PF6]2 by treatment with t-BuOK in THF gave the bis(acetylide)
complexes 5a,b and 6a,b (Scheme 1) characterised by ν(C≡C) bands near 2030 cm−1, with
other spectroscopic characteristics in agreement with those previously reported for similar
compounds [64]. Related chemistry from ethane-bridged bis(carbyne) complexes leading to
bis(vinylidene) and ultimately butadiyndiyl complexes on rhenium scaffolds is also noted
as providing precedence for such transformations of carbon-rich scaffolds [65].

The bimetallic complexes [4][PF6]2 and 6 featuring the {RuCl(dppe)2} coordination
sphere were poorly soluble in most common solvents, limiting the extent to which they
could be characterised, especially via 13C{1H} NMR spectroscopy. This limited solubility
also hampered efforts at obtaining pure samples, and as such [4a][PF6]2 could only be
obtained as part of a crude mixture. Furthermore, attempts to deprotonate this complex
within this mixture gave a solid from which spectroscopic evidence supported the formation
of 6a, but which could not be satisfactorily purified. However, oxidation of 2a with two or
three equivalents [FeCp]2PF6, followed by treatment of the reactions solution with t-BuOK,
permitted isolation of the more soluble and hence more readily purified monocationic
and dicationic complexes [6a]PF6 (30% isolated yield) and [6a][PF6]2 (19% isolated yield),
respectively (Scheme 2). In this modified one-pot, two-step procedure, any amount of [4a]2+

formed from the initial oxidation of 2a is deprotonated in situ upon the addition of a base
to give 6a (as part of a complex mixture), which is then further oxidised with the remaining
equivalent(s) of ferrocenium.

Single crystals of [6a]PF6 were grown from the slow diffusion of MeOH into a CH2Cl2
solution of the complex and these were characterised by X-ray diffraction (Figure 2, Table 1).
An inversion centre in the mid-point of the central C4–C4A bond renders each half of the
cation identical, necessitating caution in any discussion of mixed-valence characteristics
based on the structural data. Nevertheless, the Ru1–C1 [1.958(4) Å], C1–C2 [1.217(6) Å],
C2–C3 [1.400(6) Å] and C3–C4 [1.401(6) Å] bond lengths show modestly reduced bond
length alternation comparted with the bridging ligands in complexes 5 [64], consistent with
involvement of the bridging ligand in the redox process [66]. These observations are also
consistent with the conclusions drawn from electrochemical and spectroelectrochemical
studies of 5a, and related species, which undergo two sequential one-electron oxidations to
give the delocalised ‘mixed-valent’ complex [5a]PF6 and the crystallographically charac-
terised bis(allenylidene) [5a][PF6]2 [64].
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Table 1. Selected bond lengths (Å) and angles (◦) from the crystallographically determined structure
of [6a]PF6.

[6a]PF6

Ru1-P1 2.3729 (11)
Ru1-P2 2.3946 (11)
Ru1-P3 2.3803 (11)
Ru1-P4 2.3934 (11)
Ru1-Cl1 2.4591 (11)
Ru1-C1 1.958 (4)
C1-C2 1.217 (6)
C2-C3 1.400 (6)
C3-C4 1.401 (6)

C4-C4A 1.403 (9)
C3-C5 1.490 (6)

Ru1-C1-C2 175.1 (4)
C1-C2-C3 175.4 (4)
C2-C3-C4 121.1 (4)

C3-C4-C4A 124.3 (5)
C4-C3-C5 119.4 (4)

Beyond these solution-based chemical oxidation reactions, aerial oxidation of the
alkene unit occurred over the course of several weeks when solid samples of 2a and 2b
were stored under ambient conditions, resulting in the formation of the alkynylketone
complexes 2aox and 2box in a manner similar to that observed previously for related samples
(Scheme 3) [63,67]. Both 2aox and 2box were structurally characterised by single crystal
X-ray diffraction (Figure 3, Table 2) in addition to the conventional spectroscopic methods.
These carbonyl species were differentiated from their alkenylacetylide precursors by a
characteristically low-energy shift of the ν(C≡C) band at ca. 2000 cm−1, reflecting the
conjugation of the alkynyl and carbonyl moieties, the absence of geminal proton signals in
the 1H NMR spectra, as well as observation of the appropriate cationic ion envelope by
ESI(+)-MS. The formation of these complexes necessitated the storage of solid samples of 1
and 2 under an inert atmosphere.
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shown at the 50% level.

Table 2. Selected bond lengths (Å) and angles (◦) from the crystallographically determined structures
of 2aox and 2box.

2aox 2box

Ru1-P1 2.3884(5) 2.3944(15)
Ru1-P2 2.3979(5) 2.3529(14)
Ru1-P3 2.3407(5) 2.3860(15)
Ru1-P4 2.3612(5) 2.3856(15)
Ru1-Cl1 2.5067(5) 2.5053(15)
Ru1-C1 1.986(2) 1.972(6)
C1-C2 1.196(3) 1.218(9)
C2-C3 1.428(3) 1.424(9)
C3-C4 1.495(3) 1.497(9)
O1-C3 1.245(3) 1.240(8)

Ru1-C1-C2 175.58(17) 178.2(5)
C1-C2-C3 167.6(2) 166.0(7)
C2-C3-C4 119.45(18) 119.3(6)

2.2. Electronic Structure Calculations and Spectroscopy

To better rationalise the course of the reactions leading from complexes 1 and 2 to 5 and
6, and the sequence of redox reactions that characterise the bimetallic compounds, (TD-)DFT
calculations (BLYP35/COSMO(CH2Cl2)//Ru(LANL2DZ)/all other atoms 6-31G**) were
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performed on the representative model structures [Ru{C≡CC(Ph)=CH2}(dmpe)Cp] (1a†)
and [{Ru(dmpe)Cp}2(µ-C≡CC(Ph)=HC–CH(Ph)CC≡C}] (5a†), featuring the simplified
{Ru(dmpe)Cp} coordination sphere (Figure 4), and their oxidation products [1a†]+ and
[5a†]n+ (n = 1, 2) (dmpe = bis(dimethylphosphino)ethane). As has been demonstrated by
Kaupp and others elsewhere [49,68], the BLYP35 global hybrid functional, used in concert
with a COSMO solvent model, provides a balance between accuracy and computational
efficiency in accurately describing localised vs. delocalised mixed-valence complexes. The
optimised geometries determined in this manner, and which were verified as true minima
through the absence of imaginary frequencies, are in good agreement with the formal
valence bond descriptions of these species.
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Figure 4. The computational model compounds 1a† and 5a†, and the associated atom labelling
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The use of simplified ancillary ligand sets in model calculations of this type has been
shown to provide results in good agreement with larger models and experiment [69].
Here, the close agreement of the calculated ν(C≡C) frequencies (after application of a
scaling factor 0.93) [70] for 1a† (2043 cm−1) and 5a† (2024 cm−1) with those observed for
1a (2057 cm−1) [63] and 5a (2036 cm−1) [64] gives further confidence in the validity of
these models.

The HOMO of 1a† has appreciable contribution from the buta-3-ene-ynyl ligand
(46%), which includes significant CδH2 character (15%). This observations helps rationalise
the heightened nucleophilicity and propensity for this site to enter into reactions with
electrophiles (Figure 5a) [63]. The removal of one electron from 1a† affords the radical
cation [1a†]+, with analysis of the frontier orbital composition revealing that both the α-
and β-HOSO have significant character at CδH2 (25 and 14% respectively), providing
a rationale for the selective Cδ–Cδ coupling observed following oxidation of 1, and, by
analogy, 2 (Figure 5a).
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Figure 5. Plots (contours at ± 0.02 (e/bohr3)1/2) of the frontier molecular (spin) orbitals of [1a†]n+

((a) n = 0; (b) n = 1), and spin density plot of [1a†]+ (c).

Turning to the bimetallic model 5a†, the bond lengths and angles in the DFT-optimised
geometry (Table 3) and the nodal pattern of the HOMO (Figure 6) are consistent with the
description of the carbon-rich bridging ligand as an octa-3,5-diene-1,7-diyndiyl fragment
(Scheme 1). The 10-atom RuC8Ru (Ru–C≡C–C(Ph)=CH–CH=C(Ph)–C≡C–Ru) chain fea-
tures heavily in the frontier orbitals with a significant contribution from the carbon atoms of
the diene-diyndiyl bridge (HOMO, Ru/C10/Ru 10/63/10%; LUMO, Ru/C10/Ru 2/58/2%),
which is reminiscent of the frontier orbital composition of polyyndiyl [{Cp*(dppe)Ru}{µ-
(C≡C)n}{Ru(dppe)Cp*}] complexes [14,27,71–73].
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Table 3. Selected bond lengths (Å) and angles (◦) from the optimised structures of [1a†]n+ (n = 0, 1)
and [5a†]n+ (n = 1, 2) (labelling as per Figure 4).

1a† [1a†]+ 5a† [5a†]+ [5a†]2+

Ru1-P1 2.3137 2.3572 2.3226/2.3136 2.3260/2.3253 2.3446/2.3434
Ru1-P2 2.3084 2.3393 2.3071/2.3075 2.3166/2.3176 2.3292/2.3287
Ru1-C1 2.0293 1.9633 2.0278/2.0286 1.9661/1.9687 1.9114/1.9117
C1-C2 1.2283 1.2372 1.2301/2.0286 1.2437/1.2433 1.2591/1.2587
C2-C3 1.4307 1.4195 1.4250/1.4251 1.3884/1.3891 1.3565/1.3571
C3-C4 1.3481 1.3546 1.3699/1.3702 1.4069/1.4065 1.4539/1.4538
C4-C4′ 1.4289 1.3895 1.3532

Ru1-C1-C2 176.18 175.04 176.71/175.84 175.64/176.61 175.77/175.31
C1-C2-C3 178.99 179.17 178.77/178.59 177.33/178.87 178.22/177.15
C2-C3-C4 121.91 119.23 122.46/122.20 121.74/121.81 120.65/120.55
C3-C4-C4′ 125.01/122.20 124.83/124.90 124.41/124.23

Inorganics 2024, 12, x FOR PEER REVIEW 10 of 27 
 

 

C4–C4′   1.4289 1.3895 1.3532 
Ru1–C1–C2 176.18 175.04 176.71/175.84 175.64/176.61 175.77/175.31 
C1–C2–C3 178.99 179.17 178.77/178.59 177.33/178.87 178.22/177.15 
C2–C3–C4 121.91 119.23 122.46/122.20 121.74/121.81 120.65/120.55 
C3–C4–C4′   125.01/122.20 124.83/124.90 124.41/124.23  

 
Figure 6. Plots (contours at ± 0.02 (e/bohr3)1/2) of the frontier molecular (spin) orbitals of [5a†]n+ ((a) n 
= 0; (b) n = 1; (c) n = 2), and spin density plot of [5a†]+ (d). 

Cyclic voltammetry measurements have revealed that complex 5a undergoes two se-
quential one-electron oxidation processes (𝐸  = −0.62 V; 𝐸  = −0.37 V vs. ferrocene/fer-
rocenium), generating [5a]+ and [5a]2+ (crystallographically characterised as the bis-PF6 
salt) [64]. These results, together with isolation of [6a]n+ (n = 0, 1, 2) described here, point 
to the utility of the octa-3,5-diene-1,7-diyndiyl ligand as a bridging structure in bimetallic 
complexes, complementary in structure to octa-1,3,5,7-tetrayn-1,7-diyl but better able to 
support stable oxidation products. The DFT-optimised geometries of [5a†]+ and [5a†]2+ (Ta-
ble 3) reveal a progressive evolution of the valence bond description of the bridging ligand 
towards more cumulated structures for the higher oxidation states. Thus, for [5a†]n+, the 
Ru(1)–C(1), C(2)–C(3) and C(4)–C(4′) bond lengths progressively decrease with increasing 
n, whilst the C(1)≡C(2) and C(3)=C(4) bond lengths increase. This structural progression 
is associated with a decrease in the calculated ν(C≡C) wavenumbers (ν(C≡C)/cm−1: 5a† 

2024; [5a†]+ 1904; [5a†]2+ 1899), which is in agreement with experimental data from 
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((a) n = 0; (b) n = 1; (c) n = 2), and spin density plot of [5a†]+ (d).

Cyclic voltammetry measurements have revealed that complex 5a undergoes two
sequential one-electron oxidation processes (E1

1/2
= −0.62 V; E2

1/2
= −0.37 V vs. ferrocene/

ferrocenium), generating [5a]+ and [5a]2+ (crystallographically characterised as the bis-PF6
salt) [64]. These results, together with isolation of [6a]n+ (n = 0, 1, 2) described here, point to
the utility of the octa-3,5-diene-1,7-diyndiyl ligand as a bridging structure in bimetallic com-
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plexes, complementary in structure to octa-1,3,5,7-tetrayn-1,7-diyl but better able to support
stable oxidation products. The DFT-optimised geometries of [5a†]+ and [5a†]2+ (Table 3) re-
veal a progressive evolution of the valence bond description of the bridging ligand towards
more cumulated structures for the higher oxidation states. Thus, for [5a†]n+, the Ru(1)–C(1),
C(2)–C(3) and C(4)–C(4′) bond lengths progressively decrease with increasing n, whilst the
C(1)≡C(2) and C(3)=C(4) bond lengths increase. This structural progression is associated
with a decrease in the calculated ν(C≡C) wavenumbers (ν(C≡C)/cm−1: 5a† 2024; [5a†]+

1904; [5a†]2+ 1899), which is in agreement with experimental data from spectroelectrochem-
ically generated samples (ν(C≡C)/cm−1: 5a 2034; [5a]+ 1939; [5a]2+ 1920) [64]. Overall, the
tendency for these octa-1,3,5,7-tetrayn-1,7-diyl-bridged bimetallic ruthenium complexes
to evolve towards more structures featuring more cumulated bridging ligand structures
on oxidation is a consequence of the substantial ligand character of the oxidation process,
which in turn parallels the behaviour of polyyndiyl complexes of the 4d [27,37,72,74] and
5d [75–77] metals.

The UV-Vis-NIR spectrum of the deep red complex 5a contains an intense absorption
at ca. 19,417 cm−1, with several further high energy absorptions forming a large shoulder
arising past 30,000 cm−1 (Figure 7). Similar visible absorption bands are also observed
for other complexes of general form [{Ru(dppe)Cp*}2{C≡CC(R)=HC–CH=(R)CC≡C}] (R
= C6H4-SMe (5b), C5H4N (5c), C6H4-NO2 (5d)), with the energy being sensitive to the
electronic nature of the R group [64]. This observation clearly indicates that the conjugated
bridging ligand plays a role in these transitions, and these optical features can therefore in
turn provide an experimental reporter on changes to the electronic structure on a change in
the redox state. As with the IR data, UV-Vis-NIR spectra of [5a]n+ (n = 0, 1, 2) were collected
via spectroelectrochemical methods), and data analysed with the aid of TD-DFT calculations
carried out on [5a†]n+ (n = 0, 1, 2) (Figures 7–12). In each case, analysis of the transitions
revealed contributions from numerous molecular orbitals. To simplify the description of
these spectra, interpretations were made on the basis of natural transition orbital (NTO)
plots, generated for each associated ground (particle) to excited (hole) state transition.

Inorganics 2024, 12, x FOR PEER REVIEW 11 of 27 
 

 

spectroelectrochemically generated samples (ν(C≡C)/cm−1: 5a 2034; [5a]+ 1939; [5a]2+ 1920) 
[64]. Overall, the tendency for these octa-1,3,5,7-tetrayn-1,7-diyl-bridged bimetallic ruthe-
nium complexes to evolve towards more structures featuring more cumulated bridging 
ligand structures on oxidation is a consequence of the substantial ligand character of the 
oxidation process, which in turn parallels the behaviour of polyyndiyl complexes of the 
4d [27,37,72,74] and 5d [75–77] metals. 

The UV-Vis-NIR spectrum of the deep red complex 5a contains an intense absorption 
at ca. 19,417 cm−1, with several further high energy absorptions forming a large shoulder 
arising past 30,000 cm−1 (Figure 7). Similar visible absorption bands are also observed for 
other complexes of general form [{Ru(dppe)Cp*}2{C≡CC(R)=HC–CH=(R)CC≡C}] (R = 
C6H4-SMe (5b), C5H4N (5c), C6H4-NO2 (5d)), with the energy being sensitive to the elec-
tronic nature of the R group [64]. This observation clearly indicates that the conjugated 
bridging ligand plays a role in these transitions, and these optical features can therefore 
in turn provide an experimental reporter on changes to the electronic structure on a 
change in the redox state. As with the IR data, UV-Vis-NIR spectra of [5a]n+ (n = 0, 1, 2) 
were collected via spectroelectrochemical methods), and data analysed with the aid of TD-
DFT calculations carried out on [5a†]n+ (n = 0, 1, 2) (Figures 7–12). In each case, analysis of 
the transitions revealed contributions from numerous molecular orbitals. To simplify the 
description of these spectra, interpretations were made on the basis of natural transition 
orbital (NTO) plots, generated for each associated ground (particle) to excited (hole) state 
transition. 

 
Figure 7. TD-DFT calculated UV-Vis-NIR spectrum of 5a and associated transitions, with authentic 
SEC-UV-Vis-NIR generated spectrum overlay (CH2Cl2/0.1 M NBu4PF6). 

  

Figure 7. TD-DFT calculated UV-Vis-NIR spectrum of 5a and associated transitions, with authentic
SEC-UV-Vis-NIR generated spectrum overlay (CH2Cl2/0.1 M NBu4PF6).



Inorganics 2024, 12, 20 12 of 26Inorganics 2024, 12, x FOR PEER REVIEW 12 of 27 
 

 

State Transition/cm−1 Particle NTO Hole NTO 

1 
Calc: 20,952 
Obs: 19,417 

0.9687 

  

2 
Calc: 25,407 

0.0082 

  
 

3 Calc: 25,488 
0.0453 

  

4 
Calc: 33,576 

0.308 

  

Figure 8. Mapped isosurfaces showing particle and hole wavefunctions for NTO pairs for selected 
excited states of 5a† (oscillator strength given in italic font). Figure 8. Mapped isosurfaces showing particle and hole wavefunctions for NTO pairs for selected

excited states of 5a† (oscillator strength given in italic font).

For 5a, the intense absorption observed at ca. 19,417 cm−1 (515 nm) in CH2Cl2/0.1 M
NBu4PF6 corresponds to a calculated transition in 5a† at 20,952 cm−1 (f = 0.9687) (Figure 7),
and for which the NTO analysis (Figure 8) reveals significant transfer of electron density
from the metals to ligand, allowing assignment as a metal-to-ligand charge-transfer (MLCT)
band. This assignment is consistent with both the substantial solvatochromic behaviour of
this transition in 5a, and the significant shift to lower energy that tracks with the increasing
electron-withdrawing character of the bridging ligand alkenyl substituents in complexes of
general form [{Ru(dppe)Cp*}2{C≡CC(R)=HC–CH=(R)CC≡C}] (R = Ph, 5a; C6H4-SMe, 5b;
C5H4N, 5c; C6H4NO2, 5d) (Table 4).
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Table 4. Absorption maxima (λ) for 5a–d and [5a]n+ (n = 1, 2)/nm.

n-Hexane Cyclohexane THF CH2Cl2 PhCN

5a 476 496 511 513 520
5b 490 489 521 533 533
5c 516 525 555 562 549
5d 630 620 685 707 720

Less intense transitions are calculated for 5a† at ca. 25,407 cm−1 (f = 0.0082) and
25,488 cm−1 (f = 0.0453) with the associated particle and hole states illustrating significant
ligand-to-metal charge-transfer (LMCT) character. A transition of moderate intensity at ca.
33,576 cm−1 (f = 0.3080) has substantial intra-ligand π–π* character, accompanied by some
charge transfer back to the metal centres.

The spectroelectrochemically generated UV-Vis-NIR spectrum of [5a]+ contains three
primary absorption band envelopes, although TD-DFT calculations indicate several mixed-
transitions are responsible for the observed features (Figure 9). The consideration of
all particle and hole wavefunctions shows the accumulation of spin density along the
bridging ligand, supporting a strongly delocalised structure for the cationic species [5a]+

(Figure 10). The relatively intense, low-energy band envelope observed at 6242 cm−1 in [5a]+

corresponds to a calculated transition in [5a†]+ at 8646 cm−1 (Figure 9). This transition takes
place between β-spin orbitals that are extensively delocalised over the 10-atom RuC8Ru
(Ru–C≡C–C(Ph)=CH–CH=C(Ph)–C≡C–Ru) chain and has significant π–π* character. This
band may therefore be considered the ‘intervalence charge transfer’ (IVCT) band associated
with the strongly delocalised (Class III) mixed-valent radical cation [5a]+ that is perhaps
better described as a charge resonance transition [78–80]. The intense absorption band
envelopes between 12,000 and 14,000 cm−1 in [5a]+ correspond to a calculated transition in
[5a†]+ at 14,056 cm−1 and arise from transitions in the α-spin manifold with a greater degree
of metal-to-ligand charge-transfer (MLCT) character. Less intense transitions calculated
at ca. 23,973 cm−1 and 25,265 cm−1 with mixed metal-to-ligand and intra-ligand charge-
transfer character fit well to the heavily overlapped transitions that form the unresolved
features through the visible region of the experimental spectrum (Figures 9 and 10).
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The UV-Vis-NIR spectrum of the spectroelectrochemically generated dication [5a][PF6]2
contains a single intense absorption at 14,245 cm−1, with many overlapped, poorly resolved
absorption bands at higher energy (Figure 11). The TD-DFT calculated spectrum reveals an
additional band with a low-energy shoulder at ca. 30,000 cm−1. The intense absorption at
14,245 cm−1 observed for [5a]2+ correlates well with the transition at 14,876 cm−1 calculated
via TD-DFT methods for [5a†]2+ (Figure 11). The NTO analysis supports the description
of this transition as an MLCT band. A less intense transition calculated at 26,675 cm−1

shows intra-ligand charge-transfer character from the pendant phenyl substituents to the
octa-diene-diyldiyl fragment, whilst a second MLCT-like transition at 29,844 cm−1 also
contributes to absorption in the visible region (Figure 12).
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primary absorption band envelopes, although TD-DFT calculations indicate several 
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(Figure 10). The relatively intense, low-energy band envelope observed at 6242 cm−1 in 
[5a]+ corresponds to a calculated transition in [5a†]+ at 8646 cm−1 (Figure 9). This transition 
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acter. This band may therefore be considered the ‘intervalence charge transfer’ (IVCT) 
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Figure 12. Mapped isosurfaces showing particle and hole wavefunctions for NTO pairs for selected
excited states of [5a][PF6]2 (oscillator strength given in italic font).

Overall, the primary feature of the UV-Vis-NIR spectra of [5a]n+ (n = 0, 1, 2) appears
to be intense MLCT bands at 19,417 (5a), 12,000–14,000 ([5a]+) and 14,245 ([5a]2+), whilst
[5a]+ contains an additional IVCT or charge resonance band at ca. 6200 cm−1. Additional
transitions show significant accumulation of spin density to the bridging ligand and phenyl
substituents in particular, supporting a strongly delocalised electronic structure.

3. Experimental Details

All reactions were performed under an atmosphere of nitrogen employing standard
Schlenk techniques. Unless stated otherwise, no particular care was taken to exclude air
upon work-up of reaction products. Solvents were dried by literature methods or by an
Innovative Technologies Solvent Purification System and sparged with nitrogen before
use. For chromatography, silica gel was used as received and alumina (basic) was oven
dried (100 ◦C) overnight before use. The compounds [Ru{C≡CC(R)=CH2}(dppe)Cp*] (R =
Ph (1a), 4-MeS-C6H4 (1b)) [63], [Ru{C≡CC(R)=CH2}Cl(dppe)2] (R = Ph (2a), 4-MeS-C6H4
(2b)) [63], [{Ru(dppe)Cp*}2{µ-C=C=C(Ph)–H2C–CH2–C(Ph)=C=C}][PF6]2 ([3a][PF6]2) [64]
and [FeCp2]PF6 [81] were all prepared either in accordance with, or with slight refinements
to, existing literature procedures. All other chemicals were purchased and used as received.

The various 1H, 13C{1H} and 31P{1H} spectra were recorded on Bruker 400 MHz (1H:
399.86 MHz, 13C: 100.6 MHz, 31P: 161.9 MHz), Bruker 500 MHz (1H: 500.10 MHz, 13C:
125.8 MHz, 31P: 202.4) and Bruker 600 MHz (1H: 600.10 MHz, 13C: 150.9 MHz, 31P: 242.9)
spectrometers at room temperature. Chemical shifts are all reported relative to the residual
solvent peaks. Unless stated otherwise 31P{1H}, chemical shifts are reported relative to the
NMR spectrometer lock signal. For all NMR spectra, multiplets are reported according to
their closest first order approximation. For all NMR assignments, Ho, Hm and Hp refer
to the ortho, meta and para protons of the phenyl rings of the ancillary phosphine ligands
respectively, whilst Ci, Co, Cm and Cp, similarly refer to the ipso, ortho, meta and para
carbons of these same phenyl rings. IR spectra were recorded on an Agilent Cary 630 FTIR
Spectrometer using ATR or in transmission mode from solutions between CaF2 plates. Mass
spectra were obtained from a Waters Liquid Chromatograph Premier Mass Spectrometer
using positive-mode electrospray ionisation (ESI(+)) or atmospheric pressure chemical
ionisation (APCI(+)). Samples were prepared in MeCN, EtOAc or MeOH and inserted by
direct injection via the on-board injector.
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Single crystals of 2aox, 2box and [6a]PF6 were used as supplied and mounted on a
XtaLAB Synergy, Single source at home/near, HyPix diffractometer. All crystals were kept
at a steady T = 100.0 K during data collection. Data were collected using Cu Kα radiation
(λ = 1.54184 Å). The structures were solved, and the space group determined by the
ShelXT 2018/2 structure solution program using dual methods and refined by full matrix
least-squares minimisation on F2 using version 2018/3 of XL [82,83], while using Olex2
1.5 [84,85] or WinGX 2018.3 [86] as graphical interfaces. For all structures, all non-hydrogen
atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically
and refined using the riding model. Disordered phenyl groups in 2box were refined as
rigid fragments, with thermal similarity constraints, while the PF6 group in [6a]PF6 was
refined with 1,2 similarity restraints on the P-F bonds due to disorder of the F-atoms in the
equatorial plane. Crystallographic data for the structures reported in this paper have been
deposited at the Cambridge Crystallographic Data Centre (2307001-2307003).

DFT calculations were carried out using the Gaussian09 suite of programs (revision
A.02) [87], and the results analysed with the aid of GaussView5.0 and GassSum3.0 [88]. All
calculations were carried out with the BLYP35 functional [5], with the LANL2DZ basis set
for Ru [89–91] and 6-31G** for all other atoms [92,93], and a COOSMO(CH2Cl2) solvent
model [94,95]. All optimised structures were confirmed as true minima through the absence
of imaginary frequencies. Reported values of vibrational frequencies have been scaled by a
factor of 0.93) [70], with descriptions of the optical spectra performed within the framework
of natural transition orbital analyses [96].

Cyclic voltammetry measurements were performed in CH2Cl2 solutions containing
0.1 M NBu4PF6-supporting electrolyte using a platinum working electrode and a PalmSens
Emstat2+ or Emstat3+ potentiostat. Potential measurements were referenced against an
internal ferrocene/ferrocenium (FeCp2/[FeCp2]+) couple reference.

Spectroelectrochemistry was conducted in an OTTLE cell of Hartl design [97] using
CH2Cl2 solutions containing 0.1 M NBu4PF6-supporting electrolyte. Spectra were recorded
on an Agilent Technologies Cary 660 FTIR. Electrolysis in the cell was performed using a
PalmSens Emstat3+ potentiostat at a scan rate of 0.0025 V s−1.

3.1. Synthesis of [{Ru(dppe)Cp*}2{µ-C=C=C(MeS-4-C6H4)–H2C–CH2–C(MeS-4-C6H4)
=C=C}][PF6]2 ([3b][PF6]2)
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volume was reduced and the concentrated solution filtered into stirred hexanes, giving 
the title product as a dark purple powder (0.095 g, 0.043 mmol, 97%). Extremely poor 
solubility prevented informative 13C{1H} measurements from being performed. 

1H NMR (CD2Cl2 500 MHz) δ/ppm: 7.32–6.99 (m, 40H, dppe); 6.71 (m, 2H, H6/7); 6.49 
(m, 2H, H6/7); 3.16 (m, 4H, dppe); 2.78 (m, 4H, dppe); 2.50 (s, 3H, SMe); 1.92 (s, 2H, H4). 
31P{1H} NMR (CD2Cl2 161.9 MHz) δ/ppm: 40.41 (s, dppe); −144.81 (sept, PF6). IR ATR 
ν/cm−1: 1915 ν(C=C=C); 835 ν(PF6−). ESI(+)-MS m/z: Calculated for [M]2+ 
([C126H114Cl2P8S2Ru2]2+) = 1106.1858. Observed: 1106.1789 [M]2+. 

3.3. Synthesis of [{Ru(dppe)Cp*}2{µ-C≡CC(R)=HC–CH=C(R)C≡C}] (R = Ph (5a), MeS-4-C6H4 
(5b) 

A solution of 1b (0.16 g, 0.20 mmol) in CH2Cl2 (5 mL) was cooled to −78 ◦C after
which it was treated with [FeCp2]PF6 (0.061 g, 0.18 mmol) and stirred for 2 h. The solvent
volume was reduced, and the concentrated solution filtered into stirred hexanes, giving the
title product as a purple powder (0.160 g, 0.099 mmol, 98%).

1H NMR (CDCl3 400 MHz) δ/ppm: 7.51–7.50 (m, 2H, H6/7); 7.47–7.45 (m, 4H, Ho,
dppe); 7.36–7.28 (m, 8H, Ho + Hp, dppe); 7.17–7.12 (m, 4H, Hm, dppe); 2.82 (m, 2H, dppe);
2.62 (m, 2H, dppe); 2.50 (s, 3H, SMe); 1.93 (s, 2H, H4); 1.59 (s, 15H, Me of Cp*). 13C{1H}
NMR (CDCl3 100.6 MHz) δ/ppm: 287.8–287.5 (m, C1); 198.4 (s, C2); 156.0 (s, C3); 146.9 (s,
C8); 139.1 (s, C5); 134.7–134.2 (m, 2 × Ci, dppe); 132.7–132.6 (app t., Co, dppe); 132.5–132.4
(app t., Co, dppe); 131.4 (s, Cp, dppe); 131.3 (s, Cp, dppe); 128.9–128.8 (app t., Cm, dppe);
128.7–128.6 (app t., Cm, dppe); 127.5 (s, C6/7); 125.7 (s, C6/7); 102.3 (s, Cp*); 40.2 (s, C4); 30.5–
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30.0 (m, dppe); 14.7 (s, SMe); 10.2 (s, Cp*). 31P{1H} NMR (CDCl3 161.9 MHz) δ/ppm: 78.76
(s, dppe); −144.81 (sept, PF6). IR ATR ν/cm−1: 1917 ν(C=C=C); 834 ν(PF6

−). ESI(+)-MS
m/z: Calculated for [M]2+ ([C94H96P4S2Ru2]2+) = 807.1912. Observed: 807.1918 [M]2+.

3.2. Synthesis of [{RuCl(dppe)2}2{µ-C=C=C(MeS-4-C6H4)–H2C–CH2–C(MeS-4-C6H4)
=C=C}][PF6]2 ([4b][PF6]2)
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(0.011 g, 0.098 mmol) and stirred for 2 h. Removal of solvent under reduced pressure, 
followed by passage through a basic alumina plug and trituration of the solid obtained 
from the eluted fraction with hexanes gave the title product as a red-brown powder (0.044 
g, 0.020 mmol, 51%). 

1H NMR (CDCl3 400 MHz) δ/ppm: 7.71 (m, 8H, Ho, dppe); 7.19–7.11 (m, 8H, Ho, 
dppe); 7.10–7.00 (m, 8H, Hp, dppe); 6.97–6.90 (m, 21H, H6 + H7 + H4 + Hm, dppe); 2.76 (m, 
4H, dppe); 2.58 (m, 4H, dppe); 2.44 (s, 3H, SMe). 13C{1H} NMR (CDCl3 100.6 MHz) δ/ppm: 
136.7–136.0 (m, 4 × Ci); 135.0–134.9 (m, Co, dppe); 134.6 (); 134.3–134.2 (m, Co, dppe); 133.9 
(); 129.3 (s, Cp, dppe); 128.6 (s, Cp, dppe); 127.5–127.4 (m, Cm, dppe); 127.2 (s, C6/7); 127.0–
126.9 (m, Cm, dppe); 126.3 (s, C6/7); 30.8–30.6 (m, dppe); 22.8 (s, SMe). Poor solubility pre-
vented assignment of several 13C{1H} NMR resonances. 31P{1H} NMR (CDCl3 161.9 MHz) 
δ/ppm: 49.74 (s, dppe). IR ATR ν/cm−1: 2035 ν(C≡C). ESI(+)-MS m/z: Calculated for [M–Cl− 
+ MeCN]+ ([C128H115ClNP8S2Ru2]+) = 2216.4147. Observed: 2216.4173 [M − Cl− + MeCN]+. 

3.5. Synthesis of [{RuCl(dppe)2}2{µ-C≡CC(Ph)=HC–CH=C(Ph)C≡C}]PF6 ([6a]PF6) 

A solution of [3a][PF6]2 or [3b][PF6]2 (ca. 0.06 mmol) in THF (5 mL) was treated with
t-BuOK (2.5 equiv., ca. 0.17 mmol) and stirred for 2 h. Removal of solvent under reduced
pressure was followed by passage of a CH2Cl2 extract through a basic alumina plug. The
solid obtained after taking the eluted fraction to dryness was triturated with hexanes gave
the title products as red-orange powders in near-quantitative yield.

5a: data were in accord with previous reports of an authentic sample [64].
5b: 1H NMR (CDCl3 400 MHz) δ/ppm: 7.71–7.70 (m, 4H, Ho, dppe); 7.34–7.15 (m,

16H, Ho + Hp + Hm, dppe); 6.94 (s, 1H, H4); 6.77 (app d., JHH = 8.0 Hz, 2H, H6/7); 6.64 (app
d., JHH = 8.0 Hz, 2H, H6/7); 2.76 (m, 2H, dppe); 2.39 (s, 3H, SMe); 2.09 (m, 2H, dppe); 1.57
(s, 15H, Me of Cp*). 13C{1H} NMR (CDCl3, 100.6 MHz) δ/ppm: 133.6–133.5 (m, Co, dppe);
133.3–133.2 (m, Co, dppe); 129.1 (s, Cp, dppe); 129.0 (s, Cp, dppe); 127.6 –127.4 (m, 2 ×
Cm, dppe); 93.0 (s, Cp*); 30.5 (m, dppe); 10.4 (s, Me of Cp*).* Limited solubility prevented
observation of C1, C2, C3 and C4

13C{1H} resonances. 31P{1H} NMR (CDCl3 161.9 MHz)
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δ/ppm: 81.95 (s, dppe). IR ATR ν/cm−1: 2027 ν(C≡C). ESI(+)-MS m/z: Calculated for [M]+

([C94H94P4S2Ru2]+) = 1614.3834. Observed: 1614.3862 [M]+.

3.4. Synthesis of [{RuCl(dppe)2}2{µ-C≡CC(MeS-4-C6H4)=HC–CH=C(MeS-4-C6H4)C≡C}] (6b)
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as a yellow solid. Single crystals suitable for X-ray diffraction were grown by layering a
CH2Cl2 solution of 2box with MeOH.

1H NMR (CDCl3 400 MHz) δ/ppm: 7.41–7.39 (m, 8H, Ho, dppe); 7.24–7.20 (m, 8H, Ho,
dppe); 7.09 (app d., JHH = 8.5 Hz, 2H, H5/6); 7.05–7.02 (m, 16H, Hp + Hm, dppe); 6.88 (app
t, JHH = 7.6 Hz, 8H, Hm, dppe); 6.76 (app d, JHH = 8.5 Hz, 2H, H5/6); 2.92 (m, 4H, dppe);
2.79 (m, 4H, dppe); 2.45 (s, 3H, SMe). 13C{1H} NMR (CDCl3 100.6 MHz) δ/ppm: 195.2 (s,
C3); 142.1 (s, C4); 136.0–135.4 (m, 2 × Ci, dppe); 134.6 (m, Co, dppe); 133.9 (m, Co, dppe);
129.7 (s, C5/6); 129.3 (s, Cp, dppe); 129.2 (s, Cp, dppe); 127.6 (m, Cm, dppe); 127.3 (m, Cm,
dppe); 126.6 (s, C2); 124.3 (s, C5/6); 29.9 (m, dppe); 15.3 (s, SMe). 31P{1H} NMR (CDCl3 161.9
MHz) δ/ppm: 46.92 (s, dppe). IR ATR ν/cm−1: 1998 ν(C≡C); 1704 ν(C=O). ESI(+)-MS m/z:
Calculated for [M–Cl− + MeCN]+ ([C64H58NOP4SRu]+) = 1114.2233. Observed: 1114.2227
[M–Cl− + MeCN]+.

4. Conclusions

The dinuclear octa-3,5-diene-1,7-diyndiyl-bridged complexes [{Ru}2{µ-C≡CC(R)=CH–
HC=(R)CC≡C}] ({Ru} = Ru(dppe)Cp* (5a,b); {Ru} = RuCl(dppe)2 (6a,b)) have been prepared
via the one-electron oxidation of alkenylacetylide complexes [Ru{C≡CC(R)=CH2}(dppe)Cp*]
(1) and [Ru{C≡CC(R)=CH2}Cl(dppe)2] (2) (R = Ph (a); R = 4-MeS-C6H4 (b)) and depro-
tonation of the resultant ethane-bridged dinuclear bis(allenylidene) complexes [{Ru}2{µ-
C=C=C(R)–CH2–H2C–(R)C=C=C}][PF6]2 ({Ru} = Ru(dppe)Cp* ([3a,b][PF6]2); {Ru} = RuCl
(dppe)2 ([4a,b][PF6]2), formed by Cδ–Cδ’ homo-dimerisation of [1]+ or [2]+, respectively.
The chemical reactivity profiles and redox/electrochemical response of 1 (and by in-
ference 2) and 5 (and by inference 6), coupled with spectroscopic and (TD-)DFT cal-
culations, support a number of important conclusions, which were explored with the
more soluble {Ru(dppe)Cp*}-based complexes 1 and 5 and the computational model
systems [Ru{C≡CC(Ph)=CH2}(dmpe)Cp] (1a†) and [{Ru(dmpe)Cp}2(µ-C≡CC(Ph)=HC–
CH(Ph)CC≡C}] (5a†). Oxidation of the alkenylacetylide complex 1 and 2 results in the
accumulation of significant radical character at Cδ, rationalising the formation of the new
C-C bond in [3][PF6]2 and [4][PF6]2. After deprotonation, the resulting octa-3,5-diene-1,7-
diyndiyl are found to undergo a sequence of two, facile one-electron oxidation steps to give
the redox series [5]n+ and [6]n+ (n = 0, 1, 2). The greater stability of the one- and two-electron
oxidation products permit a range of more detailed investigations than are possible with
similar octa-1,3,5,7-tetrayndiyl complexes. A combination of crystallographic characterisa-
tion, spectroelectrochemical study and (TD-)DFT calculations indicate a significant degree
of charge delocalisation and ligand redox non-innocence for the dinuclear complexes [5]n+

(and hence [6]n+). The formally mixed-valence one-electron oxidised species are assigned
as Robin–Day Class III or fully delocalised species.
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