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Abstract: Machine learning models (Support Vector Regression) were applied for predictions of
several targets for 18-electron half-Heusler phases: a lattice parameter, a bulk modulus, a band
gap, and a lattice thermal conductivity. The training subset, which consisted of 47 stable phases,
was studied with the use of Density Functional Theory calculations with two Exchange-Correlation
Functionals employed (GGA, MBJGGA). The predictors for machine learning models were defined
among the basic properties of the elements. The most optimal combinations of predictors for each
target were proposed and discussed. Root Mean Squared Errors obtained for the best combinations
of predictors for the particular targets are as follows: 0.1 Å (lattice parameters), 11–12 GPa (bulk
modulus), 0.22 eV (band gaps, GGA and MBJGGA), and 9–9.5 W/mK (lattice thermal conductivity).
The final results of the predictions for a large set of 74 semiconducting half-Heusler compounds
were disclosed and compared to the available literature and experimental data. The findings pre-
sented in this work encourage further studies with the use of combined machine learning and ab
initio calculations.
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1. Introduction

Half-Heusler (hH) phases continue to draw unwavering interest due to various pos-
sible applications, e.g., in optoelectronics [1,2], thermoelectric devices [1,3,4], and ferro-
magnets [5]. The stable hH compounds are limited to the 18 valence electron systems, i.e.,
ternary phases with stoichiometry of 1:1:1, XYZ (space group no F43m), where Z is a main
group element, while X and Y are transition metals. Electronegativity determines the order
of elements (Z is an anion) and their distribution in a unit cell, with Wyckoff positions
X(1/4, 1/4, 1/4), Y(0, 0, 0), and Z(1/2, 1/2, 1/2).

Machine learning (ML) methods are nowadays widely used for cost-effective predic-
tions of various parameters for half-Heusler (hH) phases, e.g., stability [6], atomic site
preferences [7], band structures [8], lattice parameters [9], band gaps [10], lattice thermal
conductivity [11–13], and spin polarization [14]. Furthermore, the lattice thermal con-
ductivity was investigated for the double hH alloys [15], which exhibit relatively larger
and more complex unit cells than those in hH materials. Such findings highly encourage
further investigations of the possible ML support for ab initio methods and assure that
the elemental properties can be successfully used for the predictions of structural and elec-
tronic properties of various intermetallics. Moreover, the ML approach is highly efficient
when compared to the high-throughput DFT calculations. The ab initio studies may be
very resource-consuming, due to the use of advanced Exchange-Correlation Functionals
(XCF) such as hybrid functionals with an exact-exchange term. Expanding the database of
potentially valuable hH systems may be accelerated thanks to a reasonable set of previously
studied materials (training subset); further investigations may be optimized and supported
via ML methods. It was already revealed that elemental features of ions may be sufficient
input for predictions of various properties of hH alloys. Predictors proposed by Miyazaki
et al. [12] were atomic mass and radius, density of a solid, molar volume, and Debye
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temperature. Additionally, Zhang et al. [9] considered electronegativity as a key predictor
for modeling of lattice parameters.

In this work, several targets for a large set of stable hH alloys are investigated: lattice
parameter a, bulk modulus B, band gap EXCF (where XCF = GGA, MBJ), and lattice ther-
mal conductivity κL. These properties for the training subset are also explicitly calculated
by employing the Density Functional Theory (DFT), and the results of the ML predictions
and DFT calculations are compared. The ML approach used is Support Vector Regression
(SVR) with Gaussian Radial Basis Function. Numerous sets of feature spaces are consid-
ered with the Valence Electron Count (VEC) and the first, second, and third ionization
energies included. The selection of predictors is carefully studied and discussed. A satis-
factory accordance between the predicted and available theoretical and experimental data
for various hH phases is found. Furthermore, numerous novel materials are considered
and characterized.

2. Computational Details

Compounds investigated in this paper were limited by the valence electron count of
18, which is crucial for stability of hH alloys [16]. DFT calculations were performed with
the use of VASP [17–20] with spin–orbit coupling included. The cut-off energy of the plane–
wave basis was set to 500 eV, and the XCF parameterizations employed were Generalized
Gradient Approximation (GGA) [21] and modified Becke–Johnson GGA (MBJGGA) [22].
Lattice thermal conductivity κL was calculated following Slack’s equation [23–25].

The general idea behind ML is to solve the regression issue and, therefore, to find a
function that provides mapping from an input to a training sample target. Methods of
solving the regression problem are numerous, based on the different mathematical models,
e.g., Random Forest Regression [11], Multiple Linear Regression, and Boosted Decision Tree
Regression [12]. SVR models perform the hyperplane analysis in the feature space, which
maximizes the number of points that are inside the decision boundary line [26]. Different
types of kernel functions enable the best model fit, depending on the data provided [27].
SVR was already shown to be successful in similar applications [28]. The methodology
used in this work is depicted in Figure 1.

SVR flow chart

X

Y
Z

47 half-Heusler phases

Ab initio calculations:
lattice parameter, a
bulk modulus, B
band gap, E (GGA and MBJGGA)
lattice thermal conductivity, K

L

targets for SVR

SVR model
Five targets
74 half-Heusler phases
Radial Basis Function Kernel
Standard Scaler
Leave One Out
RMSE analysis
Over 2000 combinations tested

atomic mass, u
atomic radius, r
molar volume, V
density of solid, g
electronegativity, n
Debye Temperature, T
thermal conductivity, k
I-III ionisation energies, i
valence electron count, VEC

Elemental Predictors:

SVR predictions

Figure 1. A flow chart of the ML investigation methodology, including the elemental features
regarded and the SVR parameters summed up.

The elemental features for predictor sets were taken from the WebElements periodic
table (University of Sheffield [29]). SVR methods implemented in sklearn library [30] with
Gaussian Radial Basis Function [31] were used. SVR parameters, i.e., C and γ (responsible
for the trade-off between regularization and fitting the training data and for the flexibility
of the model), were determined as one and 1/(n ∗ XVAR), where n is the number of features
and XVAR is a variation in the predictors subset. The feature scaling (Standard Scaler) was
applied. The cross-validation of models tested was the Leave One Out (LOO) approach [32].
The quantitative accuracy of SVR models was determined by Root Mean Squared Error

(RMSE) defined as
√

1
n ∑n

i=1(acalc
i − apred

i )2, where a is a studied quantity.
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3. Results

The training subset of 47 18-valence electron hH phases considered in this work
consists of 32 stable compounds (according to the Open Quantum Materials Database,
OQMD [33]), as reported in the literature [34], and 15 systems with hull distance less or
equal to 0.1 eV, which in many cases indicates stable phases (Aykol et al. [35]). The 32 stable
compounds were already comprehensively investigated as candidates for thermoelectric
materials [4]. The structural and electronic properties of 15 additional phases are gathered
in Table 1. It is crucial to note that the further training of ML models is based on systems
that are expected to be stable and feasible to be synthesized.

Table 1. The 18-valence electron hH systems with hull distance: 0 eV < EHD ≤ 0.1 eV [33,35].
Structural and electronic parameters: lattice parameter a (Å), bulk modulus B (GPa), band gap with
GGA parameterization EGGA (eV), band gap with MBJGGA parameterization EMBJ (eV), lattice
thermal conductivity κL (W/mK).

Comp. a B EGGA EMBJ κL

TiPdPb 6.328 103.88 0.352 0.324 55.57
TiPdGe 5.964 131.38 0.619 0.584 45.00
VRhGe 5.796 172.54 0.433 0.748 38.73
ZrCoAs 5.831 147.58 1.203 1.228 68.47
ZrRhAs 6.110 143.97 1.117 1.292 59.94
HfPdGe 6.142 133.71 0.552 0.506 66.63
HfRhAs 6.063 160.02 0.282 0.816 58.39
TaRhGe 5.973 185.13 1.044 1.026 64.25
VRuSb 6.044 165.64 0.189 0.631 42.96
ZrNiGe 5.893 141.57 0.679 0.654 74.56
ScPdAs 6.098 111.31 0.432 0.451 42.58
NbRuAs 5.961 183.13 0.337 0.506 53.07
TiNiPb 6.038 115.66 0.341 0.292 66.00
NbRuBi 6.307 151.77 0.383 0.557 57.56
LuNiAs 5.989 106.94 0.408 0.475 65.65

Some properties of the systems presented in Table 1 were already investigated in
the literature, e.g., the cubic lattice parameters (a) of 5.964 and 6.327 Å were theoretically
calculated for TiPdGe and TiPdPd, respectively [36]. The reported values of the bulk
modulus (B) were 132.41 and 104.14 GPa, while band gaps (Eg) were 0.66 and 0.386 eV (PBE-
GGA), for the Ge- and Pb-bearing systems. The results presented in this work for TiPdGe
and TiPdPb are very similar to the literature data. Furthermore, the GGA predictions were
also reported for VRhGe [37], indicating a of 5.73 Å, B of 186.1 GPa, and Eg of 0.34 eV.
While the lattice parameter calculated here is almost the same, the bulk modulus and band
gap are slightly different from the literature data. The discrepancy may be caused by the
different XCF and DFT implementations used. Bendahma et al. [38] predicted a for HfPdGe
of 11.62 Bohr, B of 137.33 GPa, and Eg of 0.55 eV, which are very close to the results obtained
here. Interestingly, TaRhGe was experimentally synthesized in the TiNiSi-type hexagonal
structure [39]. Theoretical studies of lattice parameters, bulk modulus, GGA, and MBJGGA
band gaps for VRuSb led to the following values: 5.940 Å, 190.35 GPa, 0.22 eV, and 0.64 eV,
respectively [40,41]. The arsenide ScPdAs was predicted as a phase with a of 6.14 Å, B
of 106.90 GPa, and Eg of 0.44 eV [42]. The value of κL (35 W/mK at 300 K) calculated
according to the modified Debye–Callaway model is very close to the results obtained for
this system via Slack’s formula. Nearly the same κL was also obtained for LuNiAs, which
is clearly lower than the one presented in this work, although other properties obtained for
this system are in good accordance. Calculations for TiNiPb presented by Hong et al. [43]
revealed an a value which differs by 0.1 Å. The value of κL for ZrCoAs was estimated
by Carrete et al. [11] to be 24.0 W/mK, whereas, for NiPbTi, it was 109 W/mK. Similar
values of κL were obtained for BBeGa and BMgGa by Sun et al. with the Slack-derived
methodology [24].
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The number of hH materials gathered in Table 1 is limited by the assumption about the
acceptable hull distance for stable phases [35]. One should also perceive the training subset
as versatile enough to prepare the feature space related to compounds with different values
of the targets desired, as pointed out by Tranås et al. [13]. For the training subset, the lattice
parameters range from 5.496 (VFeAs) to 6.525 Å (ScPdBi), the bulk moduli range from
85.35 (ScPdBi) to 203.24 GPa (VIrGe), the GGA band gaps range from 0.071 (ScPdBi)
to 1.300 eV (TiCoAs), the MBJGGA band gaps range from 0.121 (ScPdBi) to 1.361 eV
(HfCoAs), and the lattice thermal conductivities range from 38.73 (VRhGe) to 113.52 W/mK
(HfNiSn). Such wide ranges of structural and electronic properties indicate that multiple
diverse ternary systems with various parameters were used for the model training. Finally,
the various ions present in the training subset enable wide and reliable predictions for
numerous ternary systems.

The feature space (Figure 1) used for the description of the hH systems consisted of
the following elemental properties [29]:

• Atomic mass, u;
• Atomic radius, r;
• Molar volume, V;
• Density of solid, g;
• Electronegativity, n;
• Debye temperature, T;
• Thermal conductivity, k;
• I–III ionization energies, i(I), i(II), i(III);
• Valence Electron Count, VEC.

The parameters listed above were regarded for all ions with all atomic sites, i.e., de-
noting that parameter α was included in the feature space means that αX , αY, and αZ were
included. This approach, well described by Miyazaki et al. [12], provides comprehen-
sive insight about the distribution of the particular property in the whole set of ternary
systems investigated.

The convergence of the SVR models as a function of the size of the training subset
was determined based on RMSE, as presented in Figure 2 (learning curves with targets
split into subplots (a) and (b) due to the order of magnitude). For lattice parameters and
band gaps with both XCF regarded, one can note a clear decrease in RMSE and all 3 curves
reach a plateau at the point of 40 records in the training set. Therefore, there may be no
need to acquire more input data calculations for the training since the performance of the
model may not significantly improve. RMSE for a, EGGA, and EMBJ improved from 0.235
to 0.105 Å, from 0.350 to 0.235 eV, and from 0.314 to 0.225 eV, respectively.
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Figure 2. Learning curves of RMSE as a function of the size of the training subset: (a) lattice
parameter (Å), bulk modulus (GPa), GGA band gap (eV), and (b) MBJGGA band gap (eV), lattice
thermal conductivity κL (W/mK).

As depicted in Figure 2b, no clear plateau is observed in learning curves for B and κL.
However, the value of RMSE obtained for B is already relatively low. Although a further
extension of the training set is expected to decrease RMSE of κL, one may also consider
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that an arbitrary selection of the predictor set for this quantity is less favorable than in the
cases of simple structural properties such as a or B. The decreases in RMSE between the
minimal and 47 compound training sets are about 15 GPa for bulk modulus and 11 W/mK
for lattice thermal conductivity. The final values of RMSE for B and κL are about 13 GPa
and 20 W/mK, respectively, which seems to be a good accuracy, according to the order of
magnitude of these parameters. The training set of 47 hH alloys is, therefore, large enough
to derive reliable and repeatable results for further predictions.

Contrary to the five-fold cross-validation used by Miyazaki et al. [12], the Leave One
Out (LOO) cross-validation approach was used in this work. This choice was motivated by
the LOO efficiency within the Support Vector Machine family [44,45]. In this method, only
one record among the whole feature space set is determined as the value to be predicted
and compared with the actual result. Iteration of such a method over all the records in the
feature space enables achieving a constant RMSE among the models for a particular set of
predictors. Depending on the combinations of predictors used, RMSE may further vary. In
general, one may expect that a lower RMSE would characterize a better model. However,
in fact, low RMSE does not unequivocally determine the best combination of predictors.
The particular subset of parameters in each combination of the elemental features may
yield better predictions for some phases and worse results for others. The fact that RMSE is
an average is worth considering in many cases.

Numerous ML band gap predictions for organic [46] and inorganic solids [28,47],
MXenes [48], perovskites [49], and other systems [50–52] were carefully discussed in the
literature. However, there are still few reports on band gap predictions for hH phases [10].
Olsthoorn et al. [46] obtained the lowest RMSE of 0.519 eV, whereas the results of Lee
et al. [28] exhibited RMSE of 0.24 eV. Finally, Choudhary et al. [10] disclosed RMSE of
0.286 eV, which is also larger than the RMSE obtained in our research (about 0.22 eV).

For each target, over 2000 combinations of the elemental predictors were tested,
from 1-element feature spaces (e.g., atomic radii of XYZ ions: rX, rY, rZ) to the most
complex feature space consisting of 11 predictors for each ion in the particular phase. The
summaries of RMSE as a function of the number of elemental predictors are depicted in
Figure 3. As one may expect, the discrepancy between the ML- and DFT-derived results is
maximal for one predictor feature spaces due to oversimplification. While the extension
of the predictor set generally improves the model performance, the best sets are based on
3–4 elemental features, which are characteristic of particular targets. This effect is related
to the fact that bigger predictor sets include many features that may be unsuitable for SVR
in each case.
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Figure 3. Histograms for all the possible combinations of eleven elemental predictors with their RMSE
for (a) lattice parameter (Å), (b) bulk modulus (GPa), (c) GGA-derived band gap (eV), (d) MBJGGA-
derived band gap (eV), and (e) lattice thermal conductivity κL (W/mK).

The scatter plots (ML-predicted vs. DFT-calculated) for three favorable combinations
of predictors are depicted for all targets in Figure 4. The Debye temperature and thermal
conductivity occurred most often in the best RMSE combinations for the target of lattice
parameter. An analysis of three combinations of predictors with the lowest and comparable
RMSE of 0.1 Å provides different distributions of the predictions among the 47 systems,
as presented in Figure 3a. The RMSE values among the predictor sets selected here are
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very close to each other. The four-predictor set [V, i(II), u, T] seems to be the best
approach for the majority of compounds in the training set. However, in some cases,
e.g., for VIrGe (acalc = 5.818 Å), this set leads to a worse prediction when compared to
those of [i(II), i(III), T] and [i(II), u, T]. The selection of the best predictor set
is, therefore, a challenging task, which requires a careful analysis of the data presented in
scatter plots.
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Figure 4. The comparisons of the predicted and calculated values for 47 systems creating the
training subset for (a) lattice parameter (Å), (b) bulk modulus (GPa), (c) GGA-derived band gap (eV),
(d) MBJGGA-derived band gap (eV), and (e) lattice thermal conductivity κL (W/mK).

The best models for bulk modulus are strongly connected with the third ionization
energy. The predictor set with the lowest RMSE for bulk modulus (Figure 4b) is [i(II),
i(III), T]. Merging the additional predictors to this feature space resulted in a slight in-
crease in RMSE (0.32 GPa for additional [g, k] and 0.42 GPa for additional [u]). Enriched
feature spaces neither provide better single predictions for the boundary cases nor yield
lower RMSE.

For EGGA (Figure 4c) and EMBJ (Figure 4d), the second and third ionization ener-
gies of the constituent elements are present in sets with the lowest RMSE. The model
based on [i(II), i(III), VEC, T] seems to perform slightly better than the other ones.
Reasonable results for EGGA require VEC, which illustrates the importance of optimum
distribution of the valence electrons in the hH alloys for insights into electronic structure
of such systems. Similar findings are revealed for the best combinations of predictors for
EMBJ (Figure 4d). In addition to the ionization energies, VEC, thermal conductivity, and
ionic radius are favorable as the third predictor.

In the case of the lattice thermal conductivity (Figure 4e), the volume and atomic mass
were regarded as the best predictors for SVR models. Combining or replacing them with
the atomic radius or Debye temperature leads to higher RMSE. Models for this quantity do
not require any of [i(II), i(III)], a fact which is related to Slack’s formula.

After analyses of the best predictor sets, the favorable ones for particular targets are as
follows:

• a: [V, i(II), u, T];
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• B: [i(II), i(III), T];
• EGGA: [i(II), i(III), VEC, T];
• EMBJ : [r, k, i(II), i(III), VEC];
• κL: [V, u].

One shall notice that the most common parameters are the ionization energies. The
significance of the second and third ionization energies for various targets may be useful
for further ML modeling for similar intermetallics.

The overall performance of SVR models is limited not only by the size of the training
set and variation of elements, but also by the characteristic features of materials that exhibit
extremal values of targets. As depicted in Figure 4b, the error in predictions for relatively
low values of bulk modulus reaches 40 GPa, which is high when compared with RMSE
of 12 GPa. The electronic structures of hH systems with narrow or relatively wide band
gaps are also difficult to predict with ML methods. Namely, band structures of bisimides
and antimonides are unique, and many hH systems are on the edge of a transition between
the very narrow Eg and topological insulator. The training set of semiconducting materials
could be extended with phases with zero or negative band gaps. This finding may be an
interesting direction for further ML-based studies on Eg in intermetallics. A similar issue is
found for predictions of κL, i.e., the most interesting values of κL for thermoelectrics are low.
The materials with low κL are rare and difficult to predict even based on relatively large
training sets because the SVR models are dominated by average properties of materials.

The final SVR predictions for 74 hH phases, which were not studied here with the
DFT-based calculations, are gathered in Table 2. The structural and electronic properties of
some alloys among this set were already investigated in the literature. Adetunji et al. [53]
reported some properties of the cubic HfNiGe phase, i.e., a of 5.861 Å, B of 143.1 GPa,
and Eg of 0.61 eV. These three values are very close to our predictions and are consistent
with the RMSE of the related SVR models. Interestingly, the value of Eg obtained here for
NbRhGe is strongly underestimated when compared to the literature data [54], in spite of
the fact that several novel germanides were included in the training set.

Table 2. Predicted values of the lattice parameter a (Å), bulk modulus B (GPa), band gap with GGA
parametrization EGGA (eV), band gap with MBJGGA parametrization EMBJ (eV), and lattice thermal
conductivity κL (W/mK).

Comp. a B EGGA EMBJ KL Comp. a B EGGA EMBJ KL

HfNiGe 5.893 151.53 0.74 0.70 79.52 TiNiSn 5.918 124.13 0.43 0.49 62.46
HfRhBi 6.331 128.63 0.64 0.76 86.65 TiPdSn 6.20 114.38 0.43 0.46 57.02
HfNiPb 6.175 129.51 0.46 0.48 94.83 TiPtPb 6.342 128.13 0.57 0.60 72.91
HfRhSb 6.284 138.78 0.65 0.78 104.5 TiCoSb 5.843 135.62 0.92 0.92 61.96
HfPdPb 6.353 124.08 0.39 0.39 92.69 TiRhSb 6.110 135.24 0.66 0.83 59.22
HfPtSn 6.348 143.19 0.69 0.82 95.28 TiIrAs 5.952 171.78 0.72 0.94 51.43
HfPtPb 6.369 138.14 0.62 0.70 92.82 TiIrBi 6.258 144.95 0.63 0.82 67.39
HfCoSb 6.028 134.71 0.97 0.96 101.62 VCoSn 5.813 150.09 0.57 0.82 50.27
LuNiSb 6.142 118.59 0.45 0.53 86.67 VRhSn 6.018 152.80 0.41 0.68 42.65
LuPdSb 6.300 118.32 0.39 0.42 90.92 VIrSn 6.052 171.75 0.38 0.65 55.34
LuNiBi 6.185 117.78 0.47 0.57 83.54 VRuAs 5.844 176.39 0.24 0.73 37.81
NbRhGe 5.942 176.72 0.78 0.88 53.10 VOsSb 6.051 163.10 0.32 0.60 59.10
NbOsAs 5.992 173.71 0.42 0.59 57.95 VRuBi 6.183 154.00 0.27 0.63 46.24
NbOsBi 6.319 153.33 0.46 0.53 73.17 VOsAs 5.854 173.33 0.32 0.65 44.98
NbRhSn 6.195 152.96 0.62 0.78 70.38 VOsBi 6.200 155.11 0.36 0.60 60.37
NbRhPb 6.317 142.94 0.58 0.67 67.46 VCoPb 6.004 142.22 0.53 0.62 56.36
NbIrPb 6.317 162.40 0.58 0.64 79.63 VRhPb 6.175 143.60 0.40 0.59 47.93
NbCoSn 5.940 150.13 0.81 0.92 74.59 VIrPb 6.192 161.41 0.41 0.61 62.40
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Table 2. Cont.

Comp. a B EGGA EMBJ KL Comp. a B EGGA EMBJ KL

NbCoPb 6.104 141.06 0.73 0.73 73.26 VFeBi 6.052 150.48 0.41 0.64 51.61
NbOsSb 6.228 162.70 0.43 0.52 83.18 YNiAs 6.058 124.92 0.53 0.54 58.54
NbFeSb 5.932 160.15 0.62 0.74 74.12 YNiSb 6.157 121.03 0.49 0.55 66.32
NbFeBi 6.144 145.50 0.62 0.70 66.30 YNiBi 6.209 120.66 0.48 0.57 67.77
ScNiAs 6.048 126.16 0.71 0.69 58.06 YPdAs 6.111 121.33 0.42 0.49 49.56
ScNiSb 6.172 111.29 0.60 0.59 66.83 YPdSb 6.290 118.01 0.35 0.45 65.94
ScNiBi 6.239 106.29 0.56 0.58 68.60 YPtSb 6.276 128.57 0.51 0.59 69.09
ScPdSb 6.348 100.79 0.34 0.34 66.58 ZrNiSn 6.072 123.54 0.48 0.52 85.14
ScPtSb 6.333 120.26 0.58 0.64 69.62 ZrNiPb 6.177 119.30 0.42 0.46 82.71
TaRhSn 6.131 162.94 0.82 0.89 87.23 ZrPdGe 6.149 130.13 0.63 0.55 62.95
TaRhPb 6.206 155.14 0.75 0.76 84.45 ZrPdPb 6.455 110.42 0.39 0.38 82.90
TaIrGe 6.015 189.33 0.80 0.85 69.30 ZrPtSn 6.389 130.93 0.71 0.84 89.55
TaIrSn 6.159 172.9 0.75 0.79 89.15 ZrCoSb 6.014 127.17 1.00 0.93 87.32
TaIrPb 6.212 164.16 0.71 0.70 86.42 ZrCoBi 6.155 119.47 0.91 0.84 78.01
TaRuSb 6.108 173.42 0.46 0.64 93.97 ZrRhSb 6.307 126.79 0.76 0.82 92.14
TaRuBi 6.195 161.39 0.49 0.61 79.00 ZrRhBi 6.384 118.40 0.71 0.77 74.73
TaOsSb 6.165 164.87 0.51 0.59 94.12 ZrIrAs 6.110 160.96 0.85 0.94 66.41
TaCoPb 6.086 153.94 0.89 0.82 88.35 ZrIrSb 6.304 147.57 0.76 0.82 96.04
TaFeBi 6.110 156.66 0.76 0.78 84.33 ZrIrBi 6.360 138.67 0.72 0.77 83.56

The electronic structure of ScNiAs was investigated by Jaishi et al. [55], revealing a of
5.84 Å and Eg values of 0.48 (GGA) and 0.52 eV (MBJGGA). The lattice parameter predicted
here is larger by 0.2 Å than the DFT result, whereas the Eg values are close to the literature
data. One may connect this fact with the presence of numerous arsenides present in our
training set.

Previous theoretical investigations for HfRhBi revealed a, B, and Eg of 6.41 Å,
127.62 GPa, and 0.17 eV, respectively [56]. The thermal conductivity of HfRhBi was re-
ported as up to 40 W/mK at 300 K (significantly smaller than our predictions). Kangsabanik
et al. [56] also reported similar results for ZrIrBi and ZrRhBi, disclosing κL (W/mK) of up to
55 and 30 W/mK, respectively. The discrepancy between our predictions and the literature
data for κL is caused mainly by the methodology used for calculations (Slack’s formula vs.
phonon spectra, etc.). There is also a significant discrepancy between the band gaps, i.e.,
predicted 0.71 eV versus calculated 0.26 eV and predicted 0.77 eV versus calculated 1.02 eV
for ZrIrBi and ZrRhBi, respectively. One may explain this issue by considering that the
band structures of these materials, the fact that the number of bisimides in our training set
is limited, and the performance of our SVR approach is poor for narrow band gap materials.
The reported a for TiIrBi ranged from 6.309 to 6.358 Å, depending on the alloy model [57],
which is in good accordance with the value predicted here. The range of reported B was
from 104.4 up to 123.7 GPa, which is slightly lower than our result. However, the GGA- and
MBJGGA-derived band gaps (0.56 and 0.87 eV, respectively) are in very good accordance
with the predictions presented here.

The analysis for ScMSb (M = Ni, Pd, and Pt) indicates very good accordance between
the DFT-derived a and B and the SVR [58]. However, the SVR-predicted values of a for
LuPdSb, YNiSb, and YPdSb differ from the calculated ones by 0.2–0.3 Å, which are clearly
higher values than the RMSE of the model. Furthermore, the predicted band gaps for
antimonides, ScMSb and (Lu;Y)(Ni;Pd)Sb, are strongly overestimated when compared with
the calculated ones. This effect is connected with the characteristic features of electronic
structures of hH antimonides and bisimides [58–62]. Bands at Valence Band Maximum
(VBM) in these systems exhibit very small effective mass, which is not present in systems
in our training set. Amont the hH antimonides, NbFeSb is the most studied material. The
experimental lattice parameter value (5.949 Å [63]) and the calculated value (5.968 Å [64])
are in very good accordance with our predictions. The Eg of 0.51 eV is also close to
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the predicted value of 0.62 eV, whereas the reported values of κL are lower than that
predicted here.

The SVR predictions for NbCoSn are in good agreement with the reported data [65].
The lattice thermal conductivity of CoSbZr was calculated by Carrete et al. [11] to be
25 W/mK, while κL of 109 W/mK was calculated for FeNbP and NiPbTi. Furthermore, the
calculated κL for RuAsV (23.5 W/mK) with the declared standard deviation of 13% is in
good accordance with our predicted value for VRuAs (37.81 W/mK).

4. Conclusions

In summary, all SVR models considered in this work lead to very good predictions
for lattice parameters and bulk modulus. The ML-derived values of band gaps and lattice
thermal conductivity may be strongly affected by specific electronic structures among the
phases regarded, e.g., the direct–indirect type of the band gap and the spectrum of carrier
concentration. The significance of the second and third ionization energies of the elements
in the process of predicting different targets of complex alloys, i.e., lattice parameter, bulk
modulus, and band gap (GGA and MBJGGA), is an important insight into the selection of
feature spaces for ML support of the ab initio calculations. The predictions obtained here
for 74 hH alloys are in good accordance with the available literature data, especially for the
well-known NbFeSb compound, which indicates good predictive power of SVR models.
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