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Abstract: Two series of the bismuth tantalate pyrochlore samples, codoped with Mg,Mn and Zn,Mn,
were synthesized via solid-phase reaction. It was established that the Bi2Mg(Zn)xMn1−xTa2O9.5−∆

(x = 0.3; 0.5; 0.7) samples contain the main phase of cubic pyrochlore (sp. gr. Fd-3m) and an admixture
of triclinic BiTaO4 (sp. gr. P-1). In both sets, the amount of BiTaO4 is proportional to the amount
of manganese doping, however, zinc-containing samples have a higher level of impurities than
magnesium-containing ones. The unit cell parameter of the Zn,Mn codoped bismuth tantalate
phase increases with an increasing content of zinc ions in the samples from 10.4895(5) (x = 0.3) to
10.5325(5) Å (x = 0.7). The unit cell parameter of Mg,Mn codoped bismuth tantalate pyrochlores
increases uniformly with an increasing index x(Mg) from 10.4970(8) at x = 0.3 to 10.5248(8) Å at
x = 0.7, according to the Vegard rule. The NEXAFS and XPS data showed that the ions were found
to have oxidation states of Bi(+3), Ta(+5), Zn(+2) and Mg(+2). In the Ta 4f XPS spectrum of both
series of samples, a low energy shift of the absorption band characteristic of tantalum ions with an
effective charge of (+5-δ) was observed. The XPS spectra of Bi4f7/2 and Bi4f5/2 also show a shift
of bands towards lower energies which is attributed to the presence of some low-charge ions of
transition elements in the bismuth position. The NEXAFS spectroscopy data showed that manganese
ions in both series of samples have predominantly 2+ and 3+ oxidation states. XPS data indicate
that in zinc-containing preparations the proportion of oxidized manganese ions is higher than in
magnesium-containing ones.

Keywords: pyrochlore; Zn; Mg; Mn doping; BiTaO4; XPS and NEXAFS spectroscopy

1. Introduction

In 2026, it will be 200 years since the first information was obtained about natural
minerals of the niobium group (Na,Ca)2Nb2O6(OH,F), which were called pyrochlore from
the Greek words “fire” and “green” due to their green color when heated [1]. Pyrochlores
are an important class of materials in various technological applications due to a wide range
of practically useful properties, including metallic and ionic conductivity, superconducting
and ferroelectric properties [2,3]. They exhibit ferro- and antiferromagnetism, magnetore-
sistance and a spin glass state [4–6]. Materials based on pyrochlores are used in solid-state
devices as thin-film resistors, thermistors, communication elements and photocatalysts,
and are used as components of ceramic molds for radioactive waste. Due to their excellent
dielectric properties, their ability to regulate dielectric properties using an electric field,
their low sintering temperature and chemical compatibility with low-melting Ag and Cu
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conductors, oxide pyrochlores are promising as dielectrics for multilayer ceramic capac-
itors, tunable microwave dielectric components, resonators, and devices for microwave
applications [7–9].

The general formula of oxide pyrochlores A2B2O7 describes a large family of com-
pounds isostructural with the mineral pyrochlore. In the crystal structure of pyrochlore,
two cationic sublattices with the anticristobalite structure A2O’ and the octahedral B2O6
are distinguished. The positions of cations A with octaoxygen coordination are occupied
by large ions (Ca2+, Bi3+). The three-dimensional framework of B2O6 is formed by [BO6]
octahedra connected at the vertices, in the positions of which cations with a smaller ionic
radius (Ti4+, Ta5+) are located [10,11]. There are known cases of mixed pyrochlores with
three or more types of cations located at two nonequivalent cation positions A and B. These
include pyrochlores based on bismuth tantalate, doped with ions of 3 elements [12–14].
Taking into account the polarization properties of these ions and the proximity of their
radii to the ionic radius of Ta(V), it is logical to assume their distribution in the octahedral
positions of tantalum ions. However, as studies by many scientists have shown [15,16],
depending on the chemical nature, a small fraction of transition element ions replaces the
Bi(III) positions. Apparently, the reason for this is the tension of the octahedral framework
due to the introduction of incommensurate and heterovalent dopant ions (Zn2+, Mn2+,
Co2+, Cu+) in relation to Ta(V) ions, as well as the preference of some of them for tetrahedral
coordination. Such doping options lead to the formation of a pyrochlore structure deficient
in A cations, as is observed for bismuth-containing pyrochlores and is the reason for the
relaxation properties of oxide ceramics [12,17]. Currently, almost all pyrochlores based on
bismuth tantalate containing 3 ions (Cr,Fe,Co,Ni,Cu,Zn) are known and studied [18–27].
Due to their excellent dielectric properties, such pyrochlores are promising as multilayer
ceramic capacitors, resistors, resonators, sensors and microwave filters. It has been es-
tablished that moderate values of dielectric constant ∼78–92 and dielectric loss ~10−1 at
30 ◦C and 1 MHz are exhibited by iron-containing pyrochlores Bi3.36Fe2.08+xTa2.56−xO14.56−x
(−0.32 ≤ x ≤ 0.48) [27]. Magnesium-containing pyrochlores Bi3+5/2xMg2−xTa3−3/2xO14−x
(0.12 ≤ x ≤ 0.22) are characterized by comparable values of ε ~70–85 and low dielectric loss
tangent δ ~10–3 at 1 MHz and 30 ◦C [28,29]. For zinc-containing pyrochlores Bi1.5ZnTa1.5O7,
the dielectric constant under standard conditions does not exceed 60 [25,26]. We have not
found any information on manganese-containing pyrochlores based on bismuth tantalate.
There is one known work [15] devoted to the study of analog pyrochlores in the Bi2O3-
Mn2O3-Nb2O5 system. The authors of the article established that a significant concentration
region of bismuth-deficient manganese-containing pyrochlores is formed in the system,
in which 14–30% of the A-positions are occupied by Mn2+ ions. As the authors of [15]
showed, X-ray powder diffraction data confirmed that all Bi–Mn–Nb–O pyrochlores form
with structural displacements, as found for the analogous pyrochlores with Mn replaced by
Zn, Fe, or Co. According to [15], the displacive disorder is crystallographically analogous
to that reported for Bi1.5Zn0.92Nb1.5O6.92, which has a similar concentration of small B-type
ions on the A-sites. EELS spectra of manganese-containing pyrochlores showed the pres-
ence of Mn2+ and Mn3+ ions. As is known, manganese in high-temperature ceramics can
have a complex ionic composition (the oxidation state of manganese varies from 2+ to 4+),
which affects the physicochemical properties of the ceramics. The ionic state of manganese
is influenced by many variable factors, among which is the symmetry and strength of the
crystal field, and the nature of the ligands; distortions and the size of the coordination
polyhedron are particularly prominent. Studies have shown that the combined use of X-ray
spectroscopy methods (XPS, NEXAFS) make it possible to most accurately determine the
ionic composition of complex oxides [30]. As part of our work, we studied the electronic
state of manganese ions in Mg(Zn), Mn codoped bismuth tantalate pyrochlores using
NEXAFS and XPS spectroscopy. The influence of zinc and magnesium and the degree of
substitution of Ta(V) ions on the proportion of oxidized manganese ions in pyrochlores has
been established.
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2. Experimental Part

Bi2Zn(Mg)xMn1−xTa2O9.5−∆ (x = 0.3, 0.5, 0.7) samples were synthesized using the
solid-phase reaction method from the oxides ZnO, MgO, Bi2O3, Mn2O3, Ta2O5. A finely
ground and homogeneous mixture of oxides in stoichiometric quantities was pressed
into disk-shaped compacts (diameter 10 mm, thickness 3–4 m) using a hand press. High-
temperature treatment of the samples was carried out in stages, at temperatures of 650, 850,
950, 1050 ◦C for 15 h at each calcination stage. The phase composition was determined
by X-ray phase analysis using a Shimadzu 6000 X-ray diffractometer (CuKα radiation).
The microstructure and local elemental composition of the samples were studied using
scanning electron microscopy and energy-dispersive X-ray spectroscopy (electron scanning
microscope Tescan VEGA 3LMN, Japan, energy dispersion spectrometer INCA Energy
450, Japan). XPS studies were carried out using the equipment of the resource center of
the Science Park of St. Petersburg State University “Physical methods of surface research.”
XPS analysis was performed on a Thermo Scientific ESCALAB 250Xi X-ray spectrometer,
Great Britain. An X-ray tube with AlKα radiation (1486.6 eV) was used as a source of
ionizing radiation. To neutralize the sample charge in the experiments, an ion-electronic
charge compensation system was used. All peaks were calibrated relative to the C1s peak
at 284.6 eV. The processing of experimental data was carried out using the software of the
ESCALAB 250Xi spectrometer (Avantage v5.9925, Great Britain). The samples were studied
using NEXAFS spectroscopy at the NanoFES station of the KISS synchrotron source at the
Kurchatov Institute (Moscow, Russia) [30]. NEXAFS spectra were obtained by recording
the total electron yield (TEY) with an energy resolution of 0.5 eV.

3. Results and Discussion
3.1. Phase Composition of the Bi2Zn(Mg)xMn1−xTa2O9.5−∆

The choice of the stoichiometry of ceramic is based on our previous research on the
doping of magnesium-containing pyrochlores based on bismuth tantalate with transition
3d elements [21,22]. X-ray phase analysis revealed that samples with the composition
Bi2ZnxMn1−xTa2O9.5−∆ (x = 0.3–0.7) are two-phase. In addition to the main cubic phase,
they contain triclinic bismuth orthotantalate BiTaO4 as an impurity (Figure 1) [31]. The
analysis of the reflection extinctions of the cubic phase confirmed that the symmetry of
the crystal structure is cubic with the space group Fd-3m [10,11]. The unit cell parameter
of cubic pyrochlore in Bi2ZnxMn1−xTa2O9.5−∆ increases uniformly with an increase in
the zinc ion content (and a decrease in the manganese ion content) in the samples from
10.4895(5) (x = 0.3) to 10.5325(5) Å (x = 0.7). In addition, X-ray spectroscopy indicates
that the ionic radius of zinc(II) (R(Zn(II))c.n-6 = 0.74 Å) is smaller than that of Mn(II) ions
(R (Mn(II))c.n-6 = 0.83 Å) present in the samples (Figure 1) [32]. The observed unusual
behavior can be explained by several factors. Firstly, the amount of impurity decreases
with increasing zinc content, resulting in a higher pyrochlore cell parameter. Secondly,
Mn(II) ions occupy bismuth(III) positions, which have a similar ionic radius to bismuth(III)
(R(Bi(III))c.n-8 = 1.17 Å, R(Mn(II))c.n-8 = 0.90 Å), and do not significantly contribute to
the cell parameter. The increase in the cell parameter occurs due to the distribution of
large zinc(II) ions into the octahedral positions of tantalum(V) (R(Zn(II))c.n-6 = 0.74 Å,
R(Ta(V))c.n-6 = 0.64 Å). Quantitative assessment of the bismuth orthotantalate content
showed that the impurity content varies from 11.9 (x(Zn) = 0.7) to 20.0 wt.% (x = 0.3)
and increases with increasing manganese content in the samples. As previously demon-
strated [20], the presence of impurities in the samples can be associated with the placement
of Mn(II) ions both in the octahedral sublattice of tantalum(V) and the bismuth(III) sub-
lattice, due to the larger size of Mn(II) ions compared to Zn(II). It is probable that most
of the relatively large manganese ions are distributed within the octahedral sublattice
of tantalum(V) leading to oxygen vacancies and stress in the octahedral framework as a
whole. In order to relieve stress in the crystal structure, some manganese(II) ions are placed
in the bismuth(III) position. This causes the system to create vacancies in the bismuth
sublattice, resulting in the release of the bismuth orthotantalate phase as an impurity [20].
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In most cases, the amount of bismuth orthotantalate impurity is typically proportional
to the number of 3 ions located in the bismuth position [33]. These ions may include
manganese(II) and zinc(II) ions, since they have similar ionic radii (R(Zn(II))c.n-8 = 0.90 Å,
R(Mn(II))c.n-8 = 0.96 Å) [32]. Additionally, zinc(II) ions are typically characterized by tetra-
hedral coordination rather than octahedral. On the other hand, manganese(II) ions have
a larger ionic radius than Zn(II). Therefore, considering the change in the cell parame-
ter, it can be assumed that all manganese ions occupy the bismuth position, especially
at high values of x(Mn). The inset in Figure 1 shows the dependence of the change in
the unit cell parameter on the manganese content and the amount of BiTaO4 impurity in
Bi2ZnxMn1−xTa2O9.5−∆.
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Figure 1. X-ray diffraction patterns of samples Bi2ZnxMn1−xTa2O9.5−∆ at different values of the
x(Mn) index. The inset shows the dependence of the amount of BiTaO4 impurity and the unit cell
parameter of pyrochlore on the x(Mn) index in the samples.

The magnesium-containing samples of Bi2MgxMn1−xTa2O9.5−∆ (x = 0.3–0.7) are also
two-phase and contain β-BiTaO4 as an impurity (Figure 2). The amount of bismuth orthotan-
talate is proportional to the content of manganese ions and varies from 7.9 (x(Mn) = 0.3)
to 23.8 wt.% (x(Mn) = 0.7). The proportionality of the impurity amount to the manganese
content in the samples may indicate the distribution of some manganese ions in the bis-
muth position and magnesium ions in the octahedral positions of tantalum(V). This was
previously demonstrated in the example of solid solutions Bi2MgxM1−xTa2O9.5−∆ (M-
Ni, Cr, Fe) [21]. The analysis of the reflection extinctions in the cubic phase confirmed
that the symmetry of the crystal structure is cubic and is described by the space group
Fd-3m, which is characteristic of cubic pyrochlore [10]. The unit cell parameter of cubic
pyrochlore in Bi2MgxMn1−xTa2O9.5−∆ decreases uniformly with an increase in the content
of manganese ions (and a decrease in magnesium ions) in the samples from 10.5248(8)
(x(Mn) = 0.3) to 10.4970(8) Å (x(Mn) = 0.7), despite the fact that the ionic radius of magne-
sium(II) is smaller than that of the Mn(II) ions (Figure 2 insert) (R(Mg(II))c.n-6 = 0.72 Å,
R(Mn(II))c.n-6 = 0.83 Å) [32]. This increase is due to the difference in ionic radii between
magnesium and tantalum(V) (R(Mg(II))c.n-6 = 0.72 Å, R(Ta(V))c.n-6 = 0.64 Å). When ana-



Inorganics 2024, 12, 74 5 of 14

lyzing the phase composition of Bi2Mg(Zn)xMn1−xTa2O9.5−∆ (x = 0.3; 0.5; 0.7) samples, it
is noteworthy that the only impurity present in both series with zinc and magnesium is
BiTaO4. The amount of impurity increases with increasing manganese content in x(Mn)
samples, which may be due to an increase in the content of large Mn(II) ions and their
distribution in the Bi(III) position. Based on Figure 3a, zinc preparations have a higher
impurity level at low concentrations of x(Mn) < 0.5, while magnesium pyrochlores have a
higher impurity level at higher concentrations of x(Mn) > 0.5. There are several reasons
for this phenomenon. In accordance with earlier X-ray diffraction studies of magnesium-
containing preparations Bi2MgxM1−xTa2O9.5−∆ (M-Ni, Cr, Cu, Fe) showed the distribution
of magnesium ions in the octahedral sublattice, which means that with a combination of
Mn/Mg in bismuth positions there will be manganese ions in the entire concentration
interval x(Mn). In Mn/Zn samples, it was previously noted that both manganese and zinc
ions have the potential to occupy bismuth positions. In this regard, the higher amount
of impurities in zinc preparations at x(Mn) < 0.5 can be explained by the fact that with a
high content of zinc ions, some of them move to the bismuth position, and with a decrease
in zinc ions content, manganese ions are distributed in the bismuth(III) position (II). This
statement is supported by the fact that the composition of Bi2MgTa2O9 is a single-phase py-
rochlore, while the Bi2ZnTa2O9 sample is a non- single phase with an admixture of BiTaO4
in addition to the main pyrochlore phase. It is interesting to note that, despite having the
same charge and comparable ionic radii of magnesium and zinc in six and eight coordinate
positions (R(Bi(III))c.n-8 = 1.17 Å, R(Mg(II))c.n-8 = 0.89 Å, R(Zn(II))c.n-8 = 0.90 Å), their
distribution in the bismuth position is different and zinc ions have a greater tendency to
occupy it. This phenomenon is mainly influenced by the polarization properties of the ions.
In particular, the electronegativity of bismuth and zinc atoms according to Allred–Rochow
coincides and is equal to 1.67, and the electronegativity of magnesium is significantly less
at 1.23 and is closer to the electronegativity of tantalum [34].
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Figure 3. Comparison of the amount of BiTaO4 impurity (a) and the unit cell parameter of the
Bi2MgxMn1−xTa2O9.5−∆ (dotted lines) and Bi2ZnxMn1−xTa2O9.5−∆ samples (solid lines) at different
values of the x(Mn) index (b).

The lower amount of impurities in zinc preparations at x(Mn) > 0.5 is explained by
the lower content of Mn(II) ions compared to magnesium preparations (Figure 3). X-ray
spectroscopy data shows that the amount of oxidized manganese(III) ions throughout
the entire concentration range is greater in zinc preparations than in magnesium prepa-
rations. Earlier, we observed this interesting experimental fact while studying the mag-
netic behavior of solid solutions of heterovalent substitution Bi5Nb3−3xMn3xO15−δ and
Bi2BaNb2−2xMn2xO9−δ [35,36]. It has been shown that with an increase in manganese
dopant ions, the proportion of oxidized manganese ions increases in order to neutralize
the effect of heterovalent substitution and reduce the number of oxygen vacancies that
destabilize the crystal structure. In this case, the difference between magnesium and zinc
preparations is based on the degree of distortion of the octahedral framework when re-
placing Ta(V) positions. Apparently, zinc ions, unlike magnesium ions, cause significant
geometric distortions of the polyhedral environment due to a tendency towards tetrahedral
coordination. These distortions affect the oxygen environment of manganese ions, resulting
in an asymmetrical environment. In order to stabilize the oxygen framework, manganese
ions pass into an oxidized state. It is interesting to note that in the competition to occupy bis-
muth positions, zinc ions are less effective than manganese(II) ions. This can be attributed
to the difference in ionic radii between zinc and manganese(II) (R(Zn(II))c.n-6 = 0.74 Å,
R(Mn(II))c.n-6 = 0.83 Å).

The unit cell parameter of pyrochlore in magnesium compositions Bi2MgxMn1−xTa2O9.5−∆
is greater than in similar zinc compositions (Figure 3). This can occur due to two reasons.
Firstly, BiTaO4 impurities in zinc compositions are significantly higher than in magnesium
compositions, but only for compositions with x(Mn) < 0.5. Secondly, in zinc compositions,
the proportion of oxidized manganese (+3) ions is higher than in magnesium composi-
tions. The unit cell parameter decreases when octahedrally coordinated and oxidized
manganese ions are present, due to their radius being small compared to magnesium Mg(II)
and Ta(V) (R(Mn(IV))c.n-6 = 0.53 Å, R(Mn(III))c.n-6 = 0.645 Å, R(Mg(II))c.n-6 = 0.72 Å,
R(Ta(V))c.n-6 = 0.64 Å). NEXAFS studies show that zinc compositions have a higher pro-
portion of oxidized manganese ions than magnesium compositions, with comparable
amounts of impurities.

3.2. NEXAFS and XPS of the Bi2Mg(Zn)xMn1−xTa2O9.5−∆

The electronic state of ions in Zn(Mg),Mn-codoped bismuth tantalate pyrochlores was
studied using X-ray spectroscopy methods (NEXAFS and XPS). XPS spectra of Bi2MgTa2O9
and Bi2MgxMn1−xTa2O9.5−∆ (x = 0.5, 0.7) precursor oxides are presented in Figure 4a–f.
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Figure 4a shows XPS spectra in a wide binding energies range (20–1400 eV) and in the
region of the Bi4f-, Bi5d-, Ta4f-, Ta4d- and Mn2p-ionization thresholds of
Bi2Mg0.5Mn0.5Ta2O9.5−∆ and Bi2MgTa2O9 (Figure 4a–f). The spectral dependences were de-
composed into individual peaks by Gaussian –Lorentzian curves and the background lines
were modeled by Shirley or smart approximation. The XPS survey spectrum exhibits a C1s
peak indicating the presence of organic contaminants on the sample surface. Since the sig-
nal from surface contaminants contributes to the intensity of the O1s peak, the composition
of the sample surface was characterized using metal ion spectra. The energy positions of the
components in the measured XPS spectra of the samples are presented in Table 1. It should
be noted that the doping with manganese and magnesium atoms has almost no effect on
the spectral characteristics of bismuth and tantalum atoms (Figure 4b,d,e). The XPS spectra
of the oxides Bi2O3 and Ta2O5 (Figures 4 and 5) were obtained by our research group. The
comparative analysis of the XPS Bi4f spectra of the investigated sample and Bi2O3 oxide
(Figure 4b,d) highlights that the energy position and width of the peaks in the sample
spectrum correlate with the corresponding spectra of Bi2O3 oxide. It is notable that the
Bi5d3/2, Bi5d5/2, Bi4f7/2, and Bi4f5/2 absorption bands of the Bi2Mg0.5Mn0.5Ta2O9.5−∆
sample are slightly shifted to a lower energy region compared to the Bi2MgTa2O9 sample,
from 164.12 eV to 164.35 eV (for Bi4f5/2 band), respectively. This fact indicates a decrease
in the effective charge of bismuth ions in the samples. Apparently, the shift of the peaks
is associated with the placement of a certain fraction of divalent manganese(II) ions in
the bismuth position demonstrated by X-ray phase analysis. The energy positions of the
peaks in the XPS Mg1s spectra shown in Figure 4c are typical for the divalent magnesium
atom [37]. The analysis of the peak shape in the spectrum of tantalum atoms (Figure 4d,e)
indicates that all tantalum atoms are in the same charge state. However, the energy position
of the peaks shows a characteristic shift towards lower energies compared to the binding
energy in pentavalent tantalum oxide Ta2O5. This shift towards lower energies indicates
a decrease in the effective positive charge. Specifically, Ta4f and Ta5p spectra exhibit an
energy shift of ∆E = 0.7 eV, while the Ta4d spectra exhibit an energy shift of 1 eV. This
suggests that tantalum atoms have the same effective charge +(5-δ) as observed in similar
spectra of tantalum in bismuth tantalates doped with Cr, Fe, Co, Ni, Cu atoms [21,22,24].
The shift of the Ta4f and Ta5p spectra for Bi2Mg0.5Mn0.5Ta2O9.5−∆ and Bi2MgTa2O9 may
also be associated with the presence of a certain fraction of heterovalent manganese and
magnesium ions in the tantalum(V) position.

Table 1. Energy positions of the components of XPS spectra depending on the chemical composition
of the compounds.

Chemical Composition of Compounds

Peak
Bi2Mg0.5Mn0.5Ta2O9.5−∆ Bi2MgTa2O9 Bi2Zn0.3Mn0.7Ta2O9.5−∆ Bi2Zn0.7Mn0.3Ta2O9.5−∆

Energy (eV)

Bi4f7/2 158.80 159.03 158.81 158.79

Bi4f5/2 164.12 164.35 164.13 164.10

Bi5d5/2 25.82 26.11 25.81 25.87

Bi5d3/2 28.72 29.08 28.71 28.78

Ta4f7/2 25.31 25.66 25.35 25.41

Ta4f5/2 27.21 27.56 27.25 27.31

Mg1s 1302.49 1303.19

Mn2p3/2 640.83 640.98 640.71

Mn2p1/2 652.39 652.75 652.51

Zn2p3/2 1021.07 1020.98

Zn2p1/2 1044.10 1043.99
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Figure 5. Survey XPS spectra of Bi2ZnxMn1−xTa2O9.5−∆ (x = 0.3 and 0.7) (a); XPS Bi4f7/2
and Bi4f5/2 spectra of bismuth (b); XPS Zn2p spectra (c); XPS spectra of tantalum and
bismuth in Bi2ZnxMn1−xTa2O9.5−∆ in Bi2O3 and Ta2O5 oxides (d); XPS Mn2p spectra in
Bi2ZnxMn1−xTa2O9.5−∆ in the oxides MnO, Mn2O3 and MnO2 (e); decomposition of XPS Mn2p
spectra in Bi2ZnxMn1−xTa2O9.5−∆ into Mn(II) and Mn(III)-green line (f,g); NEXAFS Mn2p spectra in
Bi2ZnxMn1−xTa2O9.5−∆ (x = 0.3 and 0.7) and manganese oxides (h).



Inorganics 2024, 12, 74 10 of 14

Let us move on to consider the Mn2p spectra presented in Figure 4f. The comparative
analysis of the composite spectra with the spectra of the oxides MnO [38], Mn2O3 [39]
and MnO2 [40] from the literature data shows that the peak energy positions of the spec-
trum of Bi2Mg0.5Mn0.5Ta2O9.5−∆ correlates well with the spectrum of MnO, while the
spectra of Mn2O3 and MnO2 are shifted towards higher energies. This suggests that
manganese ions predominantly have an oxidation state of (2+). Figure 4f shows the in-
complete energy coincidence of the components of the spectrum of manganese in MnO
and Bi2Mg0.5Mn0.5Ta2O9.5−∆, indicating the presence of oxidized manganese ions (3+,
4+). The degree of oxidation of manganese in solid solutions was clarified by NEXAFS
studies. Figure 4h shows the NEXAFS Mn2p spectra of Bi2Mg0.5Mn0.5Ta2O9.5−∆ and
Bi2Mg0.3Mn0.7Ta2O9.5−∆ and manganese oxides. The correlation between the spectra shape
and energy position of the main peaks (a-c) in the NEXAFS Mn2p spectra of all samples and
in oxides indicates that the manganese atoms primarily have a charge state of +2. It should
be noted that band c, which can be identified as a separate peak in the spectrum of MnO,
is visible in the spectra of the samples as a shoulder. In addition, the relative intensity of
the b bands also increases compared to the MnO spectrum. Shoulder c coincides in energy
position with a broad band in the spectrum of MnO2, and bands a and b correlate well
with the corresponding features in the spectra of Mn2O3, but with different intensities. This
suggests that the manganese atoms in the composites are both in the +2-charge state and
partially in the +3/+4 state. To clarify this conclusion, we decomposed the XPS Mn2p spec-
tra of the Bi2Mg0,5Mn0,5Ta2O9.5−∆ sample into individual components (Figure 4g) using
the spectra of the oxides presented in Figure 4f. The decomposition occurred in multiple
stages: (1) subtraction of the background lines obtained using the Shirley approximation,
(2) the “background-free” XPS spectra were normalized by equal areas (in this case, one
was taken), (3) a model spectrum was constructed as the sum of the XPS spectra of MnO,
Mn2O3 and MnO2 with the corresponding coefficients α, β and γ (α + β + γ = 1). The
value of coefficients was selected in order to achieve the best possible agreement with the
composite spectrum. The Fisher F-criterion was used to determine optimal agreement
between intensities of the XPS spectra of the composite and the model spectrum. The results
of optimal modeling are presented in Figure 4h, with α = 0.77, β = 0.23 and γ = 0 (Fisher’s
F test is 0.9998). The obtained data suggest that the Bi2Mg0,5Mn0,5Ta2O9.5−∆ composite has
two nonequivalent states of manganese atoms: about 77% are in the +2-charge state, and
the remaining 23% are in +3 state. This fact allows us to conclude that the intense b band
presented in the NEXAFS spectra (Figure 4h) indicates the presence of Mn3+ ions in the
composite. Moreover, with increasing manganese content in Bi2MgxMn1−xTa2O9.5−∆, the
intensity of this peak also increases, indicating an increase in Mn3+ ion content. Figure 5a–f
shows the XPS spectra of Bi2ZnxMn1−xTa2O9.5−∆ (x = 0.3 and 0.7) and the initial metal (Bi
and Mn) oxides used in the sample synthesis. Table 1 summarizes the energy positions of
the separated peaks in the measured spectra. As in the case of composition with Mn,Mg,
doping with manganese atoms does not change the spectral characteristics of bismuth,
tantalum and zinc atoms (Figure 5). Comparing the XPS Bi4f spectra of the sample under
study and Bi2O3 oxide (Figure 5b) highlights the energy position and width of the peaks
in the spectra of the samples almost completely coincides and correlates well with the
corresponding spectra of the oxide. In the case of Bi2ZnxMn1−xTa2O9.5−∆ samples, the
position of the Bi4f7/2 and Bi4f5/2 bands correlates with the magnesium compositions.
The sample spectrum shows a slight shift of the Bi4f7/2 and Bi4f5/2 absorption bands
relative to the Bi2O3 spectrum, both relative to each other and to the lower energy region in
general. For example, the Bi4f5/2 band shifts from 164.10 eV (x = 0.7) to 164.13 eV (x = 0.3),
indicating a decrease in the effective charge of bismuth ions with increasing x(Zn). This
shift is associated with the placement of a certain fraction of divalent ions in the bismuth
position. The observed concentration dependence also suggests the possible distribution of
zinc ions in the bismuth position compared to manganese ions at large values of x(Zn). The
energy positions of the peaks in the XPS Zn2p spectra shown in Figure 5c are characteristic
of the divalent zinc ion [41]. When analyzing the spectra of tantalum ions (Figure 5d), it
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is important to note that the peaks are not split or distorted. This clearly indicates that
all tantalum atoms are in the same charge state. However, the energy position of the
peaks has a characteristic shift towards lower energies compared to the binding energy in
pentavalent tantalum oxide Ta2O5 [42,43]. The shift towards lower energies is characteristic
of a decrease in the effective positive charge; in particular, for the presented Ta4f and Ta5p
spectra, the energy shift is ∆E = 0.65 eV, which suggests that tantalum ions have the same
effective charge +(5-δ). Figure 5e shows the XPS Mn2p spectra of Bi2ZnxMn1−xTa2O9.5−∆
(x = 0.3 and 0.7) samples and manganese oxides presented in a comparison of the composite
spectra, with different manganese oxides spectra showing a strong correlation in the energy
position of the peaks in both composite and MnO spectra. This led to the conclusion that
manganese ions predominantly have an oxidation state of (2+). Figure 5e shows that there
is no complete energy coincidence between the components of the spectrum of manganese
in the composites and MnO, indicating the presence of oxidized manganese ions (3+,
4+). To clarify this conclusion, we attempted to decompose the XPS Mn2p spectra of the
Bi2Zn0.3Mn0.7Ta2O9.5−∆ and Bi2Zn0.7Mn0.3Ta2O9.5−∆ samples into individual components
according to the method described above, using the spectra of the oxides presented in
Figure 5e. The results of optimal modeling for the Bi2Zn0.7Mn0.3Ta2O9.5−∆ sample (α = 0.79,
β = 0.21 and γ = 0) and the Bi2Zn0.3Mn0.7Ta2O9.5−∆ sample (α = 0.48, β = 0.52 and γ = 0)
are presented in Figure 5f and in Figure 5e, respectively. The obtained data indicate that the
composites contain two nonequivalent states of manganese atoms: +2 and +3. Moreover,
it was found that with increasing manganese content, the proportion of states with +3
increases from 0.21 to 0.52 in the total magnesium content. The NEXAFS studies clarified
the oxidation degree of manganese in solid solutions. Figure 5h shows the NEXAFS Mn2p
spectra of Bi2Zn0.3Mn0.7Ta2O9.5−∆ and Bi2Zn0.7Mn0.3Ta2O9.5−∆ and manganese oxides.
The comparison of the samples and oxides spectra draws our attention tothe shape of the
spectra; the energy position of the main peaks of the samples (640.3 and 641.5) correlate
with the spectra of MnO. This suggests that the manganese atoms in the studied samples
are primarily in +2 charge state. Moreover, some spectra features indicate the presence of
oxidized manganese (III, IV) ions in the samples. This is indicated by the absence of clear
absorption lines at 644 and 639 eV, which appear in the spectrum of MnO. Additionally,
the ratio of the intensities of the lines at 640.3 and 641.5 eV observed in the spectra of the
samples is lower than for the lines in the MnO spectrum.

The lines in the Mn2p spectra of the samples appear broad and diffuse compared
to MnO, which could be due to the superposition of the spectra of manganese ions in
different oxidation states. In addition, the ratio of line intensities at 640.3 and 641.5 eV is
not constant for the Bi2ZnxMn1−xTa2O9.5−∆ samples (x = 0.3 and 0.7). The line intensities
ratio decreases with the manganese content x(Mn) increases, which indicates a variable
ionic composition of manganese in the samples and a higher concentration of oxidized
manganese ions in samples with the highest manganese content, which is consistent with
XPS data. Thus, it can be concluded that in the XPS spectra of both series bismuth and
tantalum samples there is an energy shift of the absorption bands towards lower energy
values, depending on the dopant content. This shift is typical for bismuth and tantalum ions
with an effective charge of (+3-δ) and (+5-δ), respectively, due to the distribution of some of
the transition elements ions in the position of bismuth and tantalum. According to NEXAFS
and XPS spectroscopy data, the manganese ions in the samples have predominantly +2 and
+3 oxidation states. According to X-ray spectroscopy data, zinc-containing preparations
exhibit a higher proportion of oxidized manganese(III) ions compared to magnesium
compounds. In both series of samples, the proportion of oxidized manganese ions increases
with increasing manganese content.

4. Conclusions

The Bi2Mg(Zn)xMn1−xTa2O9.5−∆ composites were synthesized by the solid-phase
method. X-ray diffraction analysis indicates that the composites contain a BiTaO4 impurity
which is directly proportional to the amount of manganese content. The unit cell parameter
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of the pyrochlore phase increases with increasing zinc or magnesium content in the samples.
The XPS spectra of both samples’ series show an energy shift towards the lower energy
region of the bismuth absorption bands (Bi4f7/2 and Bi4f5/2), which is associated with the
presence of some transition element ions in the bismuth position. According to NEXAFS
and XPS data, it was established that the charge states of bismuth, zinc, and magnesium
ions are Bi(+3-δ), Zn(+2), Mg(+2). The XPS Ta4f spectrum of Bi2Mg(Zn)xMn1−xTa2O9.5−∆
demonstrates a lower energy shift of the absorption band by ∆E = 0.7 and 0.65 eV compared
to the Ta2O5 spectrum. This shift allows us to estimate the oxidation state of tantalum ions
as Ta(+5-δ). It has been shown that doping pyrochlores with zinc or magnesium ions leads
to the oxidation of some manganese ions to Mn(III). This effect is particularly significant in
zinc-containing samples.
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