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Non-covalent interactions [1] play a crucial role in the final design of supramolecular
and biological systems, encompassing drug production, catalysis, synthesis, crystal engi-
neering, etc. Among the weak interactions, hydrogen [2,3], chalcogen [4,5], dihydrogen [6,7]
and halogen [8–11] bonds, π–π stacking [12–14], semi-coordination [15,16], and π-hole in-
teractions [17] are worthy of mention. These directed interactions are capable of linking
individual components, including crystallizing molecules, into various associates, clusters,
and supramolecular systems, ultimately forming new functional materials [18].

Recently, interest in this area of chemistry has only increased. Special volumes and
article collections are being created that are dedicated to this type of chemical binding in
compounds (see, for example, references [19–25]).

This Special Issue covers a diverse range of ‘composition–structure’ relations identified
using X-ray diffraction and supported by quantum–chemical calculations. Five articles
were submitted and published.

The authors of reference [26] explore a recently described type of non-covalent interaction
between elements of group 12 (Hg) and Lewis bases (S), known as the spodium bond [27–30].
This bond was detected in the structures of homoleptic complexes Hg(S2CNR2)2 (R = ethyl,
isobutyl, and cyclohexyl); the features of the complexes, depending on the type of alkyl
substituent, are discussed.

In reference [31], the authors considered the impact of halogen atoms (Cl, Br, and I) on
the interconversion of kinetically (a) and thermodynamically (b) controlled regioisomers,
leading to equilibrium mixtures of the isomers. The study reveals that thermodynamic
favorability for the formation of thermodynamically controlled regioisomers increases
in the order Cl < Br ≈ I and correlates well with the energy difference between S···N
and S···X (where X = Cl, Br, or I) chalcogen bonds in kinetically and thermodynamically
controlled products.

In reference [32], the interaction between trinuclear silver(I) pyrazolate [AgPz]3 and
pyridine-substituted chalcones was studied and the role of E-Z isomerization on the forma-
tion of final complexes was established. The authors found that chalcones in the E form
adopt planar structures via multiple π–π/M–π interactions, with carbonyl and pyridine
fragments participating in coordination with [AgPz]3. In contrast, chalcones in the Z form
coordinate the silver (I) macrocycle via chelating metal ions using O and N atoms.

In reference [33], lead (II) complexes with closo-decaborate anions, containing
monohydroxy-derivatives [B10H9OH]2−, [B10H9O(CH2)2O(CH2)2O(CH2)2OH]]2−,
and [B10H9O(CH2)5O(CH2)2OH]]2−, were prepared in the presence of bipy. In the final
lead (II) complexes, a combined coordination of the boron cluster via the 3c2e PbHB bonds
and O atoms of the substituents was observed; N atoms of bipy molecules complete the
coordination sphere of lead (II). An extensive network of weak intra- and intermolec-
ular non-covalent interactions were found, including π–π stacking, Pb···B, Pb···H, and
CH···HB interactions.

In reference [34], the authors studied Sn and Pb dichlorine-containing supramolecular
compounds (Me3NH)2{[MCl6]Cl2} using X-ray diffraction and Raman spectroscopy; Cl···Cl
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interactions were revealed in both compounds. The authors showed the crucial role of
multiple cation···anion hydrogen bonds in the overall stabilization of the compounds of
the type (R3NH)2{[MCl6]Cl2} (M = Sn, Pb).

Thus, the articles collected in this Special Issue present the versatile nature of non-
covalent interactions found in coordination compounds, as previously detected by single-
crystal X-ray diffraction and supported by spectroscopic data, including IR, UV-vis, NMR,
and Raman spectroscopy, as well as DFT calculations.
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