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Abstract: In this work, a fluorescent complex [Zn(NTD)2(DTP)2(H2O)2]·(H2O)0.8 (Complex Zn),
(H2NTD = 1,4-naphthalenedicarboxylic acid and DTP = 3,5-di(1,2,4-triazol-1-yl)pyridine) was synthe-
sized. The fluorescent complex was characterized by single-crystal X-ray diffraction, powder X-ray
diffraction, and thermogravimetric, elemental, infrared spectroscopy, and fluorescence analyses. In
the fluorescence sensing tests, Complex Zn exhibited excellent fluorescence quenching efficiency
towards Fe3+, MnO4

−, Cr2O7
2−, nitrofurantoin, and imidacloprid in aqueous media. A mechanism

investigation suggested that the fluorescence quenching caused by the quenchers toward the sen-
sor was due to the inner filter effect and the fluorescence resonance energy transfer effect in the
fluorescent sensing process.

Keywords: fluorescent sensing; fluorescence; inner filter effect; fluorescence resonance energy transfer;
pesticide sensing

1. Introduction

In association with the rapid development of the industrial, agricultural, and pharma-
ceutical industries, the amounts of various pollutants in the environment have increased,
causing a severe threat to human health and ecosystems [1–3]. Inorganic ions are widely
present in the wastewater generated during mineral and metal refinement, usually as
persistent pollutants, with some even considered carcinogenic [4,5]. An excess intake of
these pollutants may cause disruption and damage to the human body [6]. As organic pol-
lutants, the residues of pesticides and antibiotics in the environment have always attracted
tremendous attention in pollution monitoring [7]. The use of pesticides is beneficial for
crops during agricultural production [8]. However, the leaching of excess pesticides from
agricultural land to surface water bodies may damage the aquatic ecosystem balance [9].

Similarly, antibiotics are typical poisonous organic pollutants. High levels of antibiotic
residues in the environment may lead to the breeding of “super-bacteria”, with possi-
ble sources including waste from the pharmaceutical industry and sewage from poultry
or livestock production farms [10–13]. Currently, the detection methods for antibiotic
residues generally include atomic absorption spectrometry [14], gas chromatography [15],
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high-performance liquid chromatography [16], ion mobility spectrometry [17], and liquid
chromatography–tandem mass spectrometry [18]. These methods are limited by their
high operating costs, area requirements, and expensive instruments, and they are time-
consuming [19]. Consequently, it is urgent to develop a new detection method based on
fluorescent substance sensing with a fast response, low cost, and ease of operation for
different pollutants [20].

Metal complexes are molecular compounds that combine a central metal ion and
one or more ligands through coordination bonds [21]. The ligand’s type and structure
significantly influence its physical and chemical properties [22]. Nitrogen heterocyclic
organic ligands and carboxylic-group-bearing ligands have been intensively studied in
coordination chemistry because of their flexible coordination pattern and easy combination
with metal ions to form complexes [23]. As metal complexes combine the advantages of
both inorganic and organic fluorescent materials, the remarkable optical properties of their
metal centers and organic ligands allow their structures to be designed, modified, and
adapted to achieve the recognition of specific ions and molecules, making them a new type
of multifunctional fluorescent material [24,25]. Metal complexes have been widely used to
detect various organic/inorganic pollutants [6,26]. So far, metal complexes have shown
fascinating applications in environmental pollution detection and have exhibited excellent
fluorescence properties [27,28]. We believe that metal complexes will produce excellent
results in environmental detection.

In this work, a Zn-based mixed-ligand coordinated fluorescent complex was designed
and built, namely, Complex Zn, with the formula [Zn(NTD)2(DTP)2(H2O)2]·(H2O)0.8
(H2NTD = 1,4-naphthalene dicarboxylic acid and DTP = 3,5-di(1,2,4-triazol-1-yl)pyridine).
The complex was characterized by means of infrared spectroscopy and thermogravimetric
analysis (TGA), elemental analysis, powder X-ray diffraction (PXRD) analysis, single-crystal
X-ray diffraction (SCXRD) analysis, and fluorescence measurements. Then, fluorescent
sensing tests were conducted to examine Complex Zn’s performance in the sensing of
anions, cations, antibiotics, and pesticides. The fluorescent sensing tests indicated that
Complex Zn was effective, sensitive, and selective in sensing Fe3+, MnO4

−, and Cr2O7
2−.

For the sensing of pesticides and antibiotics, the sensor’s highest quenching efficiency was
reached using nitrofurantoin (NFT) and imidacloprid (IMI). The inner filter effect (IFE)
and fluorescence resonance energy transfer (FRET) play a crucial role in the complex’s
fluorescence quenching in the presence of ions, pesticides, and antibiotics.

2. Experimental Section
2.1. Synthesis of Complex Zn

ZnSO4·7H2O (2 eq., 13.5 mg, 0.047 mmol), KOH (0.5 eq., 0.5 mg, 0.011 mmol), DTP
(1 eq., 5.0 mg, 0.024 mmol), H2NTD (1 eq., 5.2 mg, 0.024 mmol), and H2O were placed
in a stainless-steel autoclave equipped with a Teflon liner (25 mL). Next, the mixture
was kept at 120 ◦C for 72 h; thereafter, the mixture was cooled to r.t. Furthermore, the
colorless crystals were filtrated and washed with deionized water. After drying in air, a
solid crystalline material was obtained (13.7 mg, yield: 60%). The crystal suitable for X-ray
diffraction was acquired from the synthesis procedure. Elemental analysis calcd. (%) for
C42H33.6N14O10.8Zn (wt%): C, 51.82; H, 3.45; N, 20.15; found: C, 51.76, H, 3.10, N, 20.15; IR
(neat, ν/cm−1): 3855(w), 3736(s), 3650(s), 3117(s), 1684(m), 1604(s), 1541(s), 1507(s), 1457(m),
1407(s), 1375(s), 1282(m), 1237(m), 1131(m), 991(s), 881(s), 779(s), 682(s), 669(w), 553(w).

2.2. Analyte Quenching Test

Before the fluorescent sensing test, well-mashed Complex Zn was ultrasonically sus-
pended for 30 min in water at a concentration of 0.2 mg/mL. Meanwhile, the analytes’
aqueous solutions were then prepared at a concentration of 2 mM (the ions) and 0.2 mM
(the pesticides and the antibiotics). During a typical florescent sensing process, the prepared
sensor’s suspension and the analytes’ solution were mixed in equal volume and injected
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into a cuvette. The fluorescent spectra of the sensor with or without the presence of the
analyte were excited with a wavelength of 259 nm.

The employed analytes include various cations (2 mM): MCl1–3 (M = Cd2+, Fe3+,
Cr3+, Mn2+, Ba2+, Al3+, Na+, Pb2+, Ca2+, Zn2+, Ni2+, Co2+, Cu2+, Mg2+, and K+); differ-
ent anions (2 mM): K1–2X (X = Ac−, B4O7

2−, Br−, Cl−, ClO3
−, ClO4

−, CO3
2−, Cr2O7

2−,
F−, HPO4

2−, H2PO4
−, I−, SCN−, SO3

2−, SO4
2−, MnO4

−, and NO3
−); selected antibi-

otics (0.2 mM) (Table S3): lactams (amoxicillin, AML; cefixime, CFX; benzylpenicillin
potassium, PK; penicillin V potassium, PVK), amino-glycosides (streptomycin, SM; gen-
tamycin, GTM; tobramycin, TOB; karnamycin, KNM), chloramphenicol drugs (thiampheni-
col, TAP; chloramphenicol, CAP), macrolides (roxithromycin, ROX; azithromycin, AZM),
nitrofurans (nitrofurantoin, NFT; nitrofurazone, NFZ), nitromidazoles (1,2-dimethyl-5-
nitro-imidazole, DMZ; metronidazole, MNZ), and sulfonamides (sulphamethazine, SMZ);
selected pesticides (0.2 mM) (Table S4): 2,4-dichlorophenoxyacetic acid, 2,4-D; imazalil,
IMZ; immidacloprid, IMI; pentachloro-nitrobenzene, PCNB; thiophanate-methyl, TPM;
glyphosate, GLY; nitenpyram, NTP; dipterex, DIP; chlorothalonil, TPN; carbendazim, CAR;
and metamitron, MMT.

2.3. Fluorescence Kinetic Titration

The kinetic titration of the analytes was performed in two different ways. In a typical
experiment on the titrated sensing of ions or pesticides, 8.0 mg of finely ground Complex
Zn was added to 40 mL of distilled water, and the resulting suspension was ultrasonicated
for 30 min. Meanwhile, solutions containing different concentrations of ions (20 mM) or
pesticide (5 mM) were prepared. Thereafter, in each sensing experiment, a 2 to 10 µL aliquot
from the reservoir of the analyte was added and vortexed with the aqueous Complex Zn
suspension (4 mL). Finally, the fluorescence spectrum of the mixture was recorded to
determine the performance of the sensor.

For the sensing of NFT, a series of analyte stock solutions were prepared at various
concentrations (0, 0.001, 0.005, 0.010, 0.020, 0.040, 0.050, 0.060, 0.080, 0.090, 0.100, 0.200,
0.300, 0.400, 0.500, and 0.600 mM). The fluorescence spectrum was analyzed after mixing
equal volumes of the analyte solution with the Complex Zn suspension (0.2 mg/mL).

2.4. Recyclability Experiments

The recyclability of Complex Zn for fluorescence analysis was investigated. During the
experiments, the fluorescence of the sensor was recorded, and the Complex Zn suspension
was then collected by means of centrifugation and washed several times with deionized
water. Thereafter, the fluorescence spectrum of the regenerated solid material was recorded.
This procedure was repeated four more times.

2.5. pH Stability Test

The acid and alkali resistance of Complex Zn was determined by adding 50 mg of
ground Complex Zn to 1000 mL of NaOH or HCl solution of pH 6–10 and leaving it to soak
for 12 h. The Complex Zn crystals were filtered out and left at room temperature for 6 h,
then characterized by means of PXRD analysis.

3. Results and Discussion
3.1. Structural Description of Complex Zn

The structural configuration of Complex Zn was revealed by means of SCXRD anal-
ysis. The result showed that Complex Zn crystallized in the trigonal space group of Pı̄
(No. 2) (Table S1). The crystallographic asymmetric unit of Complex Zn contains one-
half Zn(II) ions, one disordered DTP (with occupancies at 0.5 and 0.5, respectively), one
coordination water molecule, 0.40 lattice water molecules, and one disordered monode-
protonated HNTD− ligand (with major and minor occupancies at 0.8 and 0.2, respectively)
(Figure 1a). The Zn(II) ion is six-coordinated by two water molecules, two DTPs, and
two HNTD− ligands, and the center ion displays an octahedral geometry (Figure 1b).
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Finally, along the b-axis, the cascade layers of Complex Zn are connected by additional
strong and weak hydrogen atoms and π···π to form a lattice structure (Figure 1c). All the
ligands are monocoordinated with the Zn(II) center, enabling the formation of the Complex
Zn organometallic molecule. In addition, π···π stacking interactions and hydrogen bonds
enable Complex Zn molecules to build up three-dimensional (3D) supramolecular architec-
tures. The DTP and HNTD− ligands alternatively stack with each other along the a-axis
via the interactions of Cg(1)···Cg(2)#1, Cg(1)···Cg(3)#1, Cg(4)···Cg(3)#1, Cg(1)···Cg(2)#2,
Cg(1)···Cg(3)#2, and Cg(4)···Cg(3)#2. Together with π···π interactions, the hydrogen bond-
ing of O1W-H1WB···O2#3 and weak hydrogen bonds of C9-H9···O2#4, C13-H13···N7#5,
and C20-H20···O1#1 allow the molecules to form a supramolecular 2D structure in the aob
plane. Finally, the adjacent sheets pile on top of each other with O3-H3···N4#6 hydrogen
bonds in the crystallographic direction of the 3D c-axis to build up the 3D supermolecule.
Cg(1), Cg(2), Cg(3), and Cg(4) denote the centers of rings of N4-C16-C15-C19-C18-C17,
C2-C3-C4-C5-C6-C7, C6-C7-C8-C9-C10-C11, and N1-C13-N2-N3-C14, respectively. As
follows, #1: x, 1 + y, z; #2: 1 + x, 1 + y, z; #3: 1 + x, y, z; #4: −x, −y, 1 − z; #5: x, −1 + y, z;
#6: 1 − x, 1 − y, 2 − z. Selected bond lengths and angles data for Complex Zn are listed in
Table S2.
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with the measured one, which confirmed the high phase purity of the synthesized sample. 
The FT-IR spectrum of Complex Zn is shown in Figure S2. The peak at 1684 cm−1, at-
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Figure 1. (a) Coordination environment of Zn(II) ions in Complex Zn. (b) Molecular structure of
Complex Zn, in which Zn(II)1 and carboxylic H atoms are labeled. (c) View of the metal layer along
the b-axis. The hydrogen atoms (except carboxylic hydrogen) and lattice water molecules in (b), as
well as the disorder of the phenyl groups in the HNTD− ligand and the triazole moieties in the DTP
ligand, have been excluded for the sake of clarity.

3.2. PXRD, FT-IR, and TGA

PXRD was employed to identify the phase purity of Complex Zn before the photofluo-
rescence measurements. As shown in Figure S1, the simulated PXRD profile agreed with
the measured one, which confirmed the high phase purity of the synthesized sample. The
FT-IR spectrum of Complex Zn is shown in Figure S2. The peak at 1684 cm−1, attributed
to the stretching vibration of carbonyl(-COOH), remained in the IR spectrum of Complex
Zn [29], which proved the presence of free carboxylic acid and can be explained by the
incomplete deprotonation of H2NTD in the process of Complex Zn formation. An absorp-
tion peak appeared at 1541 cm−1, which was attributed to the stretching vibrations of C=N
bonds in the DTP [30], and additional peaks appeared at 1604 and 1375 cm−1, which were
attributed to C=O asymmetric and symmetric telescopic vibrations [31], respectively.
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The thermodynamic stability of the complex was assessed from room temperature to
800 ◦C (10 ◦C·min−1) under an atmosphere of N2. As shown in Figure 2, the first weight
reduction for Complex Zn from room temperature to 182 ◦C was 4.5% (calculated: 4.2%),
which is equivalent to the loss of coordination and lattice water molecules. A sudden drop
in sample weight at 250 ◦C was noticed, which was due to structural decomposition.
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3.3. Fluorescence of the Complex

Complexes consisting of d10 metals containing organic linkers with N or carboxylic-
containing groups have been widely exhibited as potential fluorescent materials [32]. As
depicted in Figure 3, the fluorescence of suspended Complex Zn was investigated; the apex
of its emission profile appeared at 333 nm upon excitation at 259 nm. The fluorescence
of Complex Zn may be attributed to the intraligand π→π* or n→π* transition inside the
DTP ligand [30]. The fluorescence of Complex Zn is further characterized in the ESI results
presented in Table S3 [33–37].
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3.4. Ionic Sensing

Before the sensing experiments, as-synthesized samples of Complex Zn (10 mg) were
fully dispersed and soaked in 50 mL of H2O with ultrasonic treatment to obtain the
suspensions used to evaluate the sensing abilities of Complex Zn. Different ionic solutions
were prepared at a concentration of 2 mM. During the sensing experiment, the analyte
solution (1.5 mL) was mixed with the complex suspension (1.5 mL) and subjected to
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fluorescence measurements. The final concentrations of ions and metallic complexes in the
resulting mixtures were 1 mM and 0.1 mg/mL, respectively.

Figure 4 shows that the different ions exhibited varying influences on the fluorescence
intensity of Complex Zn. Clearly, Fe3+, Cr2O7

2−, and MnO4
− had an obvious quenching

effect on the fluorescence emission of Complex Zn, whereas the rest of the ions showed
no significant effect on fluorescence intensity. The quenching rate (1 − I/I0) was 98.3%
when Fe3+ was introduced to the sensor. When Cr2O7

2− and MnO4
− were employed, the

quenching rates reached 87.5% and 98.6%, respectively.
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The relationship between the quencher concentration and the fluorescence intensity of
the sensor was subsequently determined in titrimetric experiments involving the gradual
addition of aqueous solutions of Fe3+, Cr2O7

2−, and MnO4
− to suspensions of Complex

Zn. The fluorescent quenching constant (Ksv) was calculated using the Stern–Volmer (SV)
equation, expressed as I0/I − 1 = Ksv[C] [38], where I0 and I are the fluorescence intensities
of Complex Zn before and after addition of the analyte, respectively, and [C] represents
the molar concentration of the analyte. Figures S4–S6 show the results of the fluorometric
titration of the ions. The kinetic plots of Fe3+, Cr2O7

2−, and MnO4
− exhibit a range of linear

dependence for low analyte concentrations (0–0.10 mM for Fe3+ and Cr2O7
2−, 0–0.35 mM

for MnO4
−). Furthermore, as the analyte concentration increases, the curve diverges

upward from the linear relation. Ksv was calculated (Table S5) to be 1.55 × 104 M−1 when
Fe3+ was used for Complex Zn. When sensing anions, the Ksv values of Complex Zn were
1.21 × 104 M−1 for MnO4

− and 1.64 × 104 M−1 for Cr2O7
2−. In combination with the

SV equation, the limit of detection (LOD) is an additional valuable tool for assessing the
sensing capabilities of a fluorescence sensor, where LOD = 3σ/Ksv [39] (σ is the relative
standard error calculated from three replicate blank determinations). The LOD values of
Complex Zn were 0.60 × 10−6 M for Fe3+, 0.77 × 10−6 M for MnO4

−, and 0.57 × 10−6 M
for Cr2O7

2−.

3.5. Anti-Interference Experiments

Anti-interference experiments were carried out to assess the selectivity of Complex Zn
with Fe3+, Cr2O7

2−, and MnO4
− in the presence of interfering ions. The results showed

that the fluorescence quenching response of the interfering ions had a small but significant
effect on Fe3+, Cr2O7

2−, and MnO4
− (Figure S7). In the absence of Fe3+, the fluorescence

intensities with the other ions decreased by 15%. After Fe3+ ions were added, the fluores-
cence was obviously quenched. A similar phenomenon was observed in the case of MnO4

−

and Cr2O7
2−, where the fluorescence intensity of Complex Zn obviously decreased.
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3.6. Antibiotics Sensing

In addition to its ion sensing ability, Complex Zn’s applicability to antibiotic sensing
was investigated. The procedure used for sensing antibiotics was similar to that used for
ions, except that the antibiotics were prepared at a concentration of 0.2 mM. During the
sensing experiment, the sensor and analyte concentrations in the mixed solution were
0.1 mg/mL and 0.1 mM, respectively. As shown in Figure 5, the antibiotics GTM, ROX,
AZM, PK, KNM, SM, PVK, TAP, and TOB exhibited no remarkable fluorescence quenching
of Complex Zn. The rest of the antibiotics exhibited moderate to significant fluorescence
quenching toward Complex Zn, with the quenching rates following the order of NFT > SMZ
≈ NFZ > CFX ≈ MNZ > DMZ > CAP > AML.
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The highest-quenching antibiotic, NFT, was used in subsequent titration experiments
in which NFT was added to a suspension of Complex Zn. Figure S8 shows that the
fluorescence intensity of Complex Zn decreased as the concentration of NFT increased. At
low analyte concentrations (0–0.05 mM), the Ksv values of NFT showed a linear correlation
with the concentration of the analyte. At high analyte concentrations (0.05–0.30 mM), the
values deviated upward from the linear relation. Complex Zn demonstrated lower detection
limits and higher Ksv values for the quantification of contaminant NFT, as compared to the
other reported materials [40–45]. The calculated Ksv and LOD values for Complex Zn were
2.34 × 104 M−1 and 0.4 × 10−6 M, respectively (Table S6).

3.7. Pesticide Sensing

In addition to antibiotics, pesticides also represent important organic pollutants; there-
fore, pesticides were further investigated in the fluorescence sensing process. Firstly, an
equal volume of pesticide (0.2 mM) (2,4-D, IMZ, CAR, DIP, NTP, GLY, IMI, TPM, PCNB,
MMT, or TPN) was added to a suspension of Complex Zn (0.2 mg/mL). As depicted in
Figure 6, the addition of IMZ, DIP, 2,4-D, GLY, or PCNB showed almost no impact on the
fluorescence of Complex Zn. The other tested pesticides exhibited varying influences on
the fluorescence intensity of the sensor. IMI achieved the most significant quenching rate
toward the sensor among the pesticides used, followed by NTP, TPM, TPN, CAR, and
MMT. IMI, which achieved the most significant quenching for Complex Zn, was further
evaluated via kinetic titration experiments. Like in the analogous experiments with ions,
the fluorescence spectra were collected as the concentration of IMI was gradually increased
in a solution of Complex Zn (0.1 mg/mL) (Figure S9). Complex Zn had lower detection
limits and higher Ksv values for the quantification of contaminant IMI compared to the
other reported materials [46–48], as shown in Table S7; the calculated Ksv and LOD values
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for IMI in the Complex Zn suspension were 3.15 × 104 M−1 and 0.29 × 10−6 M, respectively,
at low concentrations (0–0.05 mM).
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3.8. Recyclability

Recycling experiments were performed to determine the reusability of Complex Zn
in the detection of analytical substances. The complex dispersed in an aqueous solution
of MnO4

− was recovered after the sensing experiment by means of centrifugation and
washed with deionized water. During five consecutive cycles, the fluorescence intensity
of Complex Zn remained constant, which suggests the good recycling performance of the
sensor (Figure S10).

3.9. Resistance to pH

To test the acid–base resistance of Complex Zn, it was immersed in HCl and NaOH solutions
at pH 6–10 for 12 h and then characterized by means of PXRD. Figure S11 displays a comparison
of the PXRD results for Complex Zn at pH 6, 7, 8, 9, and 10 before and after immersion in the
solutions. The results revealed no significant change in the PXRD patterns, which led to the
conclusion that Complex Zn has good resistance to pH within the range of 6–10.

3.10. Discussion and Possible Mechanism for Fluorescent Sensing

In order to understand the underlying mechanisms involved in the fluorescence
quenching procedure, further investigations were performed, and the results are discussed.
In summary, the impact of fluorescence can be attributed to two primary processes: struc-
tural transformations [49] and energy transformations [50]. In structural transformation,
skeleton destruction [51], ion or ligand exchange [52], and charge transfer are the major
issues [53]. FT-IR and PXRD analyses of Complex Zn impregnated with various quenchers
(Figures S11 and S12) revealed no discernible discrepancies in the FT-IR and PXRD spec-
tra pre- and post-impregnation. Thus, it can be inferred that the observed fluorescence
quenching is not attributed to substance transformation. Subsequently, the search for the
fluorescence quenching mechanism shifted to the induction of energetic transfer. Generally,
energy transfer mechanisms include IFE [54,55] and FRET [56,57]. IFE refers to an effective
overlap between the excitation spectrum of the analytes and the excitation or emission
spectrum of the sensor, which enhances the sensitivity of the analytical detection as the
variation in absorbance of the analytes can be translated into an exponential change in the
sensor signal. A higher extinction coefficient of the analytes is associated with a larger
spectral overlap region with the sensor and a higher fluorescence quenching efficiency.
FRET refers to the phenomenon in which the emission spectrum of one analyte in two
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different fluorescence groups overlaps somewhat with the excitation spectrum of the sensor,
resulting in a decrease in fluorescence intensity. Thus, UV–Vis profiles of the analytes
at different concentrations were compared to the excitation and emission spectra of the
sensor. As shown in Figure 7, there is a clear overlap between both the excitation and
emission ranges of Complex Zn and those of MnO4

−, Fe3+, Cr2O7
2− (Figure 7a), NFT, and

IMI (Figure 7b) at wavelengths of 259 and 333 nm. As can be seen from the UV–Vis spec-
tra, neither IFE nor FRET as the sole mechanism could effectively explain the quenching
rate. Both mechanisms involve fluorescence quenching, which also occurs while sensing
pesticides and ions. In summary, in the present study, IFE and FRET both perform an
essential role in sensing (Figure 8). Furthermore, all obtained Ksv curves were linear at
low analyte concentrations, thus revealing a dynamic quenching process; at higher analyte
concentrations, the curves deviated upward, thus demonstrating the engagement of a static
quenching process [58].
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4. Materials and Methods

All reagents were analytical grade and used as received without further treatment.
The chemicals of ZnSO4·7H2O, KOH, and H2NTD were provided by Shanghai Aladdin



Inorganics 2024, 12, 93 10 of 14

Biochemical Technology Co., Ltd. (Shanghai, China); DTP was synthesized according to
the relevant literature method [30].

PXRD measurements were performed under a Bruker D8 FOCUS diffractometer
(Bruker Corporation, Karlsruhe, Germany). The X-ray diffractometer was equipped with a
copper target tube and a graphite monochromator scanning in the range of 5–50◦ at 0.2◦/s.
Simulated X-ray diffraction patterns were generated from properly processed cif files of
the target complex crystals using Mercury software (Cambridge Crystallographic Data
Centre, Cambridge, UK). TGA was performed using a Mettler-Toledo 1600TH (Mettler-
Toledo International Inc., Zurich, Switzerland) thermal analyzer to record TG profiles at a
heating rate of 10 ◦C/min in a flowing nitrogen atmosphere from r.t. to 800 ◦C. Elemental
analysis of C, H, and N was performed using a Perkin-Elmer 240 CHN (Perkin-Elmer
inc., Waltham, MA, USA) elemental analyzer. Fourier transform infrared spectra (FT-IR)
were obtained with an Agilent Cary 630 spectrophotometer (Agilent Technologies Co., Ltd.,
Santa Clara City, CA, USA) in the range of 4000 to 500 cm−1. UV-Vis spectroscopy studies
were performed using a Varian UV50 Conc spectrophotometer (Varian Medical Systems,
Inc., Palo Alto, CA, USA). All fluorescence measurements were performed using an Agilent
Cary Eclipse (Agilent Technologies Co., Ltd., Santa Clara City, CA, USA) fluorescence
spectrophotometer at room temperature.

The SCXRD intensity data were subjected to processing and absorption correction
using SAINT and SADABS software (Version: 2016/2) [59]. The line-shot data were then
resolved using the SIR 2004 [60] structure-solving program within the Olex2 software
(Version: 1.3, OlexSys Ltd., Durham, UK) [61]. To further enhance structural accuracy, a
full-matrix least-squares F2 refinement was performed for the non-hydrogen atoms, em-
ploying the ShelXL refinement package (Version: 2017/1) [62]. The positions of hydrogen
atoms were determined through a combination of theoretical hydrogenation and Fourier
methods [63]. During this process, isotropic refinement was applied to the non-hydrogen
atoms, and the coefficients for both the riding mode and the isotropic temperature were
fixed at 1.2 times the U(eq) value of the parent atom.

5. Conclusions

In this work, a Zn-based complex bearing mixed ligands was synthesized. The con-
figuration and purity of the complex were analyzed and identified by means of SCXRD,
PXRD, FT-IR, TGA, and elemental analysis. In the complex, the Zn(II) atom is coordinated
with two mono-protonated HNTD− ligands, two DTP ligands, and two water molecules.
In terms of the fluorescence sensing of different ions and organic pollutants, Complex Zn
showed high sensitivity and selectivity towards Fe3+, MnO4

−, and Cr2O7
2−. For the sens-

ing of antibiotics and pesticides, Complex Zn was sensitive to NFT and IMI, respectively.
An investigation into the mechanism of the sensing process showed that IFE and FRET
both play an essential role in fluorescence intensity.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/inorganics12040093/s1. Table S1: Crystal data for Complex
Zn. Table S2: The selected bond lengths [Å] and angles [◦] for Complex Zn; Table S3: Chemical
structure of the selected antibiotics. Table S4: Chemical structure of the selected pesticides; Figure S1:
PXRD patterns of Complex Zn (as synthesized and simulated); Figure S2: FT-IR spectra of Complex
Zn; Figure S3: Emission spectra (excitation at 259 nm) of H2NTD, H2NTD+ DTP, and Complex
Zn; Figure S4: Fluorescence intensities of Complex Zn (a) dispersed in different concentrations of
Fe3+; the plot of I0/I − 1 of Complex Zn (b) vs. concentration of Fe3+ in aqueous solution (Inset:
The plot of I0/I − 1 of the Complex Zn with the concentration over a Fe3+ concentration range of
0–0.10 mM in aqueous solution); Figure S5: Fluorescence intensities of Complex Zn (a) dispersed
in different concentrations of MnO4

−; the plot of I0/I − 1 of Complex Zn (b) vs. concentration of
MnO4

− in aqueous solution (Inset: The plot of I0/I − 1 of the Complex Zn with the concentration
over a MnO4

− concentration range of 0–0.35 mM in aqueous solution); Figure S6: Fluorescence
intensities of Complex Zn (a) dispersed in different concentrations of Cr2O7

2−; the plot of I0/I − 1 of
Complex Zn (b) vs. concentration of Cr2O7

2− in aqueous solution (Inset: The plot of I0/I − 1 of the
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Complex Zn with the concentration over a Cr2O7
2− concentration range of 0–0.10 mM in aqueous

solution); Table S5: Ksv and LODs values of Complex Zn for ions detection; Figure S7: Fluorescent
intensity of Complex Zn in the presence of other cations and anions. (The other cations = K+, Na+,
Mg2+, Ca2+, Ni2+, Co2+, Mn2+, Cu2+, Zn2+, Cd2+, Pb2+, Ba2+, Al3+, Cr3+and Fe3+; The other anions =
F−, Cl−, Br−, I−, Ac−, SCN−, NO3

−, ClO3
−, ClO4

−, HPO4
2−, H2PO4

−, CO3
2−, B4O7

2−, SO3
2− and

SO4
2−), before and after addition of Fe3+, MnO4

− or Cr2O7
2−; Figure S8: Fluorescence intensities of

Complex Zn (a) dispersed in different concentrations of NFT; the plot of I0/I − 1 of Complex Zn (b)
vs. concentration of NFT in aqueous solution (Inset: The plot of I0/I − 1 of the Complex Zn with
the concentration over a NFT concentration range of 0–0.05 mM in aqueous solution); Table S6: Ksv
and LOD values for recently reported lanthanide CP-based luminescence probes for sensing of NFT;
Figure S9: Fluorescence intensities of Complex Zn (a) dispersed in different concentrations of IMI;
the plot of I0/I − 1 of Complex Zn (b) vs. concentration of IMI in aqueous solution (Inset: The plot of
I0/I − 1 of the Complex Zn with the concentration over a IMI concentration range of 0–0.05 mM in
aqueous solution); Table S7: Ksv and LOD values for recently reported CP-based luminescence probes
for IMI; Figure S10: Recyclability of Complex Zn implemented with 1 mM MnO4

− aqueous solution;
Figure S11: PXRD patterns of Complex Zn about pH resistance test: Complex Zn displayed strong
stability in an aqueous solution with the pH values ranging from 6 to 10; Figure S12: Comparison
before and after adding test substance of FT-IR spectra of Complex Zn; Figure S13: Comparison
before and after adding test substance of PXRD patterns of Complex Zn.
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