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Abstract: In the search for a more effective chemotherapy for the treatment of Chagas’ disease, caused
by Trypanosoma cruzi parasite, the use of gold compounds may be a promising approach. In this work,
four gold(I) compounds [AuCl(HL)], (HL = bioactive 5-nitrofuryl containing thiosemicarbazones)
were studied. The compounds were theoretically characterized, showing identical chemical structures
with the metal ion located in a linear coordination environment and the thiosemicarbazones acting as
monodentate ligands. Cyclic voltammetry and Electron Spin Resonance (ESR) studies demonstrated
that the complexes could generate the nitro anion radical (NO2

−) by reduction of the nitro moiety.
The compounds were evaluated in vitro on the trypomastigote form of T. cruzi and human cells of
endothelial morphology. The gold compounds studied showed activity in the micromolar range
against T. cruzi. The most active compounds (IC50 of around 10 µM) showed an enhancement of
the antiparasitic activity compared with their respective bioactive ligands and moderate selectivity.
To get insight into the anti-chagasic mechanism of action, the intracellular free radical production
capacity of the gold compounds was assessed by ESR and fluorescence measurements. DMPO
(5,5-dimethyl-1-pirroline-N-oxide) spin adducts related to the bioreduction of the complexes and
redox cycling processes were characterized. The potential oxidative stress mechanism against T. cruzi
was confirmed.

Keywords: gold compounds; thiosemicarbazones; Trypanosoma cruzi; free radicals

1. Introduction

Neglected Tropical Diseases (NTDs) are a diverse group of 20 conditions mainly
prevalent in tropical areas worldwide. These illnesses affect impoverished communities
and cause devastating health, social, and economic consequences to more than one billion
people [1]. The epidemiology of NTDs is complex and the pharmaceutical industry does
not invest in drug research to combat NTDs because of the low associated revenue, which
makes their public health control challenging. Among them, American Trypanosomiasis,
or Chagas’ disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), affects
around 7 million people worldwide, mostly in Latin America [2]. In the endemic zones, the
T. cruzi parasites are mainly transmitted to mammalian hosts by infected blood-sucking
insects. In addition, other modes of transmission have spread the disease to non-endemic
regions, such as blood transfusion, organ transplants, and congenital transmission.
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The currently available chemotherapy includes drugs developed more than 50 years
ago, Nifurtimox and Benznidazol. These drugs are efficient only in the acute phase of the
disease, but they are not effective in clinical treatment during the chronic phase. Moreover,
these clinically approved drugs present toxicity, require long treatments, and often the
parasites develop resistance to them [3]. Although some synthetic and natural compounds
have been tested against T. cruzi, few have been successfully processed through clinical
trials [4–6]. In this context, the development of new drugs is urgently needed for the
effective treatment of Chagas’ disease.

Medicinal Inorganic Chemistry has proven to be a promising approach in the search
for new therapeutic agents against Chagas’ disease. Prospective metal-based drugs, which
include different metal ion that acts through diverse mechanisms of action, have been iden-
tified [7–9]. In this respect, our main design strategy has been to develop metal compounds
with known bioactive molecules as ligands, in particular the bioactive 5-nitrofuryl con-
taining thiosemicarbazones (HL, Figure 1). These molecules contain the same 5-nitrofuran
pharmacophore as the drug Nifurtimox. The 5-nitrofuryl-containing thiosemicarbazones
have shown good activities in vitro against T. cruzi; however, they also showed cytotoxicity
against mammalian cells [10]. The main mechanism of action of these bioactive molecules
is based on the bioreduction of the nitro group to a nitro anion radical, generating toxic
reactive oxygen species (ROS) against T. cruzi [10].
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Figure 1. Chemical structure of (a) Nifurtimox, (b) 5-nitrofuryl-containing thiosemicarbazone ligands,
and (c) [AuCl(HL)] compounds.

In order to improve the pharmacological properties of these bioactive organic molecules,
72 classical and organometallic compounds had been previously synthesized. These metal
compounds included Pt(II), Pd(II), Ru(II), Ru(III) and Re(I) metal centers, and different
co-ligands to modulate biologically relevant physicochemical properties [8,11]. Among
them, the complexes that included Pt(II) metal center and lipophilic co-ligands such as
dppf (1,1′-bis(diphenylphosphino)ferrocene) have been the most active complexes against
T. cruzi [12].

On the other hand, gold compounds currently have several medicinal applications.
They have long been used in the treatment of rheumatoid arthritis and tuberculosis [13],
and some gold complexes are in clinical trials as potential anticancer agents [14]. However,
a small number of gold(I) compounds have been evaluated as potential metal-based drugs



Inorganics 2024, 12, 133 3 of 17

against T. cruzi. These compounds have included bioactive ligands such as Clotrimazole
(CTZ) [15] and pyridine-2-thiol N-oxide (mpo) [16]. In particular, the trypanocidal activ-
ity of the Au(I)-mpo compound was associated with the inhibition of NADH fumarate
reductase activity, a kinetoplastid parasite-specific enzyme absent in the host [16]. Gold(I)
ion is a soft Lewis acid and has a high affinity for thiol groups present in biomolecules.
It has been confirmed that the gold compounds could act as cysteine protease inhibitors,
which gives them potential pharmaceutical applications [17]. Gold(I) compounds in-
cluding thiosemicarbazone-derived ligands with activity against T. cruzi have still not
been reported.

Recently, gold(I) compounds that include 5-nitrofuryl-containing thiosemicarbazones
were synthesized and fully characterized [18]. The [AuCl(HL)] complexes (Figure 1) were
evaluated as potential anticancer agents in a panel of human cancer cells. The complexes
demonstrated high activity and selectivity, and their main mechanism of action was related
to the capacity of the compounds to accumulate in the cancer cell nuclei and interact with
DNA, which caused subsequent cancer cell death via apoptosis [18].

Parasites and neoplastic cells have common features. For example, they present some
similar metabolic processes, and both have common antigens and enzymes [19–21]. The
presence of common targets favors the effectiveness of certain molecules as both anticancer
drugs and antiprotozoal agents. Several drugs that have proved active as antiparasitic
agents have also been efficacious preclinically as anticancer agents [22,23].

Due to the promising anticancer activity reported for [AuCl(HL)] compounds, we
propose that these complexes might also be useful as potential anti-T. cruzi agents. In this
work, we theoretically characterized the neutral and radical chemical structure of the gold(I)
compounds and evaluated the in vitro activity against Trypanosoma cruzi. In addition, we
studied the probable anti-chagasic mechanism of action of the compounds related to ROS
generation.

2. Results and Discussion
2.1. Theoretical Calculations

As previously mentioned, the [AuCl(HL)] (1–4) compounds had been recently synthe-
sized and fully characterized in solid state and solution [18]. However, no crystallographic
data of the monomeric structures had been obtained due to the low solution stability
reported for these complexes. In this work, we have calculated theoretically the chemical
structure of the gold compounds to evaluate their electronic properties and spin density
distribution for correlating them with the experimental ESR spectra.

After performing a conformational search, the minimum energy conformation was
obtained and then, geometry optimization using ORCA was carried out. In all cases,
the theoretical calculations were performed using DMSO as the solvent to simulate the
experimental conditions (see below). The geometry optimization results showed that all
the compounds would have an identical chemical structure, with the metal ion located in a
linear coordination environment and the thiosemicarbazone acting as monodentate ligands
in Z-conformation (Figure 2).

Natural Bond Orbital (NBO) Analysis

Considering that the probable mechanism of action of the [AuCl(HL)] compounds
could be related to the generation of the nitro anion radical, Natural Bond Orbital (NBO)
studies were performed. A second-order perturbation analysis was developed to identify
the electronic delocalization for the four gold compounds. These studies allowed us to
analyze the effect of gold(I) and the different R substituents of the thiosemicarbazone on the
electronic delocalization of the nitro anion radical. Therefore, all studies were performed on
the molecule in the radical anion state. Table 1 shows, as an example, the results obtained
for compound 1, and Tables S1–S3 summarize the results for the rest of the compounds.
Figures S1–S4 show the NBO-selected bonds for the four gold complexes.
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Figure 2. Optimized structures (left) and LUMO calculated (right) for (a) [AuCl(HL1)] (1),
(b) [AuCl(HL2)] (2), (c) [AuCl(HL3)] (3), and (d) [AuCl(HL4)] (4) compounds. Colors correspond to
the following atoms: oxygen (red), nitrogen (blue), carbon (gray), hydrogen (white), sulfur (yellow),
gold (orange), and chloro (green).

The non-bonding electron pair of N9 stabilized the antibonding orbital formed by
C10-N11 atoms for the alpha wave function. The sulfur atom stabilized the same bond with
one of its pairs of unshared electrons but at a lower energy value (see Table 1). Thus, the
Au-S bond stabilization was achieved by an electron pair from the chlorine atom. The beta
electrons showed higher stabilization energy due to an electron pair from N6 bonding with
the oxygen atoms attached to form the nitro group. The C10-N11 antibonding orbital was
also stabilized by a sulfur atom at a similar energy value. Similar behavior was observed
for compounds 2, 3, and 4 after replacing one of the hydrogen atoms bonded to N11
for the methyl, ethyl, and phenyl groups, respectively. However, for compound 4, the
unshared electron pair from the chlorine atom that stabilizes the bond S-Au in all previous
compounds was not observed.
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Table 1. Natural Bond Orbital (NBO) results for [AuCl(HL1)] (1) compound.
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Spin Donor (L) NBO 1 Acceptor (NL) NBO 2 E(2) 3 kcal/mol

α 32. LP (1) N 11 93. BD*(1) C
10–N 9 73.13

α 34. LP (2) S 12 93. BD*(1) C
10–N 9 33.07

α 43. LP (4) Cl 14 99. BD*(1) S
12–Au 13 75.17

β 30. LP (1) N 6 99. BD*(1) O
15–O 16 1075.57

β 32. LP (1) N 9 93. BD*(1) C
10–N 11 68.87

β 34. LP (2) S 12 93. BD*(1) C
10–N 11 35.94

β 43. LP (4) Cl 14 98. BD*(1) S
12–Au 13 75.13

1 L corresponds to the “Lewis orbital” type with an occupation number near two. 2 NL corresponds to the
“non-Lewis orbital” type with an occupation number near zero. 3 When the non-Lewis orbital exhibits higher E(2)
values, this means significant delocalization effects. LP is a lone pair of electrons. BD* is an anti-bonding natural
orbital. The numbers on the left of each atom correspond to the respective NBO orbitals.

The gold(I) metal center did not exhibit effects on the electronic density of the nitro
anion radical. Meanwhile, the different substituents of the amine terminal group showed a
small decrease in stabilization over the C-N bond from the imino group. This bond showed
an increase of the energy for the alpha electrons of around 3 kcal/mol when increasing the
size of the substituent group. An inverse tendency was exhibited by the compounds for the
beta electrons, showing lower energy changes at around 1 kcal/mol.

Finally, a high value of E(2) in the nitro group region for all compounds was observed.
These values indicate a large zone of electronic delocalization centered on the nitro anion
radical. Compound 1 showed higher E(2) values than the rest of the compounds. These
values decreased gradually with the increase in the aliphatic chain length of the substituent
groups in the thiosemicarbazone ligands.

2.2. Cyclic Voltammetry

The electrochemical behavior of the [AuCl(HL)] compounds was studied at room
temperature by cyclic voltammetry in DMSO solutions. The compounds were evaluated in
the negative potential zone using a hanging drop mercury electrode. Figure 3 shows the
voltammograms obtained for 2 and the HL2 ligand. Selected electrochemical data for all
complexes are shown in Table 2.

The compounds showed three ligand-centered electrochemical processes. These redox
couples have been previously reported for the 5-nitrofuryl-containing thiosemicarbazone
ligands (HL) and their metal compounds [24,25]. The redox couple I could be assigned to
the quasi reversible self-protonation process of the HL ligands [24,25].

The second electrochemical process (couple II) at around −0.9 V (vs. Ag/AgCl)
corresponds to a quasi-reversible reduction by one electron of the nitro group to a nitro
anion radical (NO2

·−). A minimum variation in the reduction potential values of the
thiosemicarbazone ligands upon gold(I) coordination was observed. This behavior agrees
with the theoretical NBO calculations, which indicated that the gold(I) center does not
generate a significant effect on the reactivity of the nitro group. The electrochemical
behavior of Nifurtimox, the anti-chagasic reference drug, was evaluated under the same
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experimental conditions. Nifurtimox also showed this reversible reduction process to
generate the nitro anion radical, which agrees with their principal mechanism of action. For
the gold(I) compounds, this couple was observed at less negative potentials. This change
could be biologically relevant since it would further favor the generation of ROS in the
T. cruzi parasites in comparison to Nifurtimox. Therefore, this bioreduction process could
be one principal mechanism involved in the biological action of the [AuCl(HL)] compounds
against Trypanosoma cruzi, as it is for the free ligands [10].
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Figure 3. Cyclic voltammograms of [AuCl(HL2)] (2) compound and the HL2 ligand measured in
the cathodic direction at 1.0 V·s−1. Experimental conditions: Samples 1 mM in DMSO solution,
hanging drop mercury working electrode, Pt wire auxiliary electrode, Ag/AgCl reference electrode,
and supporting electrolyte 0.1 mol·L−1 TBAP.

Table 2. Selected potential values (Volts) for [AuCl(HL)] compounds and Nifurtimox in 1mM DMSO
solutions at a scan rate of 1.0 V·s−1. The values in parentheses correspond to the potentials of the free
ligands reported in reference [12].

Compound
Couple I Couple II Couple III

Epc
1 Epa

2 Epc
1 Ep

2 Epc

[AuCl(HL1)] −0.80 - −0.96 (−0.92) −0.89 (−0.80) −1.38

[AuCl(HL2)] −0.80 −0.73 −0.95 (−0.98) −0.89 (−0.85) −1.39

[AuCl(HL3)] −0.79 −0.72 −0.93 (−0.95) −0.87 (−0.84) −1.35

[AuCl(HL4)] −0.75 −0.74 −0.92 (−0.92) −0.86 (−0.81) −1.38

Nifurtimox - - −1.18 −1.12 -
1 Epc: cathodic peak potential. 2 Epa: anodic peak potential.

Previous cyclic voltammetry studies had demonstrated that the bidentate coordination
of 5-nitrofuryl thiosemicarbazone to different metal ions leads to a displacement toward
less negative potential values of the nitro group/nitro anion radical couple [12]. To analyze
the effect of the gold center over the reduction potential of the nitro group of the HL1-
HL4 ligands, these results were compared with metal complexes chemically related, such
as [PdCl2(HL)], [PtCl2(HL)], and [RuCl2(HL)2] [24,26,27]. Although no regular trend in
reduction potential was observed in complexes that include chloride as co-ligands like
those reported here, it is possible to observe that the monodentate coordination to gold(I)
ion did not generate a significant change in the reduction potential in comparison with the
effect generated by the other metal ions. The shifts toward less negative potential values
have been only observed in complexes that include more lipophilic co-ligands [12].
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Finally, towards more negative potential values all complexes showed an irreversible
reduction process (couple III) that was assigned to the further reduction of the nitro group
to the hydroxylamine [25].

2.3. Electron Spin Resonance

The nitro anion radical generated for the [AuCl(HL)] compounds was characterized
and studied by Electron Spin Resonance (ESR). The radicals were prepared in situ in the
cavity of the ESR spectrometer by electrochemical reduction in DMSO solutions, applying
a potential corresponding to couple II obtained from the voltammetry studies. All gold(I)
compounds formed stable paramagnetic intermediates at that first reduction step according
to the proposed electrochemical characterization.

The global behavior of the [AuCl(HL)] complexes is exemplified by the ESR spectrum
of compound 1. Figure 4 summarizes the atoms’ numbering system used for ESR signals
assignment.
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Figure 4. Chemical structure of [AuCl(HL)] compounds, which includes the hydrogen (green) and
nitrogen (light blue) atoms’ numbering system used for ESR signal assignation.

After generating the radical species in situ, a spectrum was recorded to determine the
hyperfine coupling constants by simulation. Figure 5 shows the spin density calculated for
compound 1, the experimental ESR spectrum, and the simulation of the same spectrum
WINEPR-SimFonia 1.25 software. Table 3 summarizes the most relevant hyperfine coupling
constant values obtained from WINEPR-SimFonia and the most relevant spin densities
calculated by ORCA. Figures S5–S7 show the spin density calculated for compounds 2, 3,
and 4, and Table S4 summarizes the complete table of spin densities calculated for all of
these compounds.
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Table 3. Spin density calculated by ORCA and hyperfine splitting constants (a, (G)) determined by
WINEPR-SimFonia 1.25 software, for [AuCl(HL)] compounds studied by ESR performing in situ
electrochemical generation, with a precision of 0.05 G.

[AuCl(HL1)] [AuCl(HL2)] [AuCl(HL3)] [AuCl(HL4)]

Spin Density a (G) Spin Density a (G) Spin Density a (G) Spin Density a (G)

N6 0.202404 8.55 0.199949 9.16 0.200306 9.05 0.196242 8.20

H17 0.000468 5.20 0.000456 5.42 0.000462 5.43 0.00043 5.10

H18 −0.000346 3.28 −0.000343 3.35 −0.000348 3.30 −0.000338 3.40

H19 −0.000119 0.83 −0.000103 0.53 −0.000107 0.96 −0.000087 0.90

N8 0.149215 1.09 0.15112 1.07 0.150759 1.05 0.152195 1.07

N9 0.003226 0.88 0.002067 0.98 0.002081 0.94 0.000466 0.90

H20 −0.000051 0.67 −0.000031 0.46 −0.000034 0.80 −0.000061 0.90

N11 0.00880 - 0.012168 - 0.012004 - 0.00945 -

H21 0.000103 - −0.000003 - −0.000012 - 0.000026 -

All compounds present a simulated spectrum with a hyperfine pattern of three triplets
assigned to the effect caused by the nitrogen atoms N6 (nitro), N8, and N9 of the thiosemi-
carbazone, and four doublets assigned to the effect caused by the hydrogens H17 and
H18 (furan ring) and H19 and H20 (thiosemicarbazone). The hyperfine coupling constants
recorded indicate the existence of a greater delocalization of the unpaired electron funda-
mentally in the N6 nitrogen of the nitro group of the furan ring. The hyperfine pattern and
the determined coupling constants of the complexes have similarities with the hyperfine
pattern described for the free ligands [25]. In particular, the hyperfine coupling constants
determined for the nitrogen atom N6 (nitro) in the gold(I) compounds were similar to
the values reported for [PdCl2(HL)], and both were higher than the values reported for
[PtCl2(HL)] and [RuCl2(HL)2] complexes [24,26,27]. These results suggest that in the
[AuCl(HL)] compounds, the electron is preferably more localized in the nitro group than in
the rest of the molecule.

In addition, the spin densities and ESR properties on the radical forms of the gold(I)
complexes were determined. All analyses were performed using DMSO as the solvent to
simulate the experimental conditions. The analysis of the ESR spectrum using a simulation
process confirmed the stabilities of the radical species due to the delocalization of the
unpaired electron. The isosurfaces obtained for all compounds demonstrate that the spin
densities extend throughout the thiosemicarbazone ligand, which is minimally impacted by
the presence of the metal ion (see Figure 5 and Figures S5–S7). The subsequent examination
of substituents for the terminal amine group showed that H, methyl, ethyl, and phenyl do
not have a significant structural impact compared to the parental compound.

2.4. Lipophilicity

Lipophilicity is an important physicochemical property to understand the biological
behavior of prospective drugs, such as transmembrane transport and interaction with
biological receptors. Thus, its correlation with biological activity is usually a relevant
characteristic to be studied.

It has been previously determined that the [AuCl(HL)] compounds present partition
coefficient (log P) values between −0.31 to 0.26 [18]. In this work, the lipophilicity was
experimentally determined using reversed-phase TLC. This method allows us to determine
and compare under the same experimental conditions the lipophilicity of the gold com-
pounds, the free thiosemicarbazone ligands, and Nifurtimox. The stationary phase (silica
gel 60 RP-18 F254s) may be considered to simulate membrane lipids or biological receptors,
and the mobile phase (DMSO:PBS (80:20 v/v)) resembles the aqueous medium. The com-



Inorganics 2024, 12, 133 9 of 17

position of the mobile phase was tuned up to allow differentiating the gold compounds,
the free ligands, and Nifurtimox according to their lipophilicity.

As expected, the lipophilicity of the thiosemicarbazone ligands increased when the
substituent group changed from hydrogen to a phenyl group. A small increase in the
lipophilicity of the thiosemicarbazone ligands upon gold(I) center coordination was ob-
served, except in the compound with phenyl substituent (Table 4). The RM values were
lower than those reported for chemically related ruthenium(II) compounds, which sug-
gests that the gold(I) ion does not generate a significant increase in the lipophilicity of
5-nitrofuryl-containing thiosemicarbazones ligands [26]. Compound 2 showed a lipophilic-
ity like Nifurtimox with RM values close to zero.

Table 4. In vitro activity (measured as the IC50 value, the half inhibitory concentration) against T. cruzi
trypomastigotes (Dm28c), cytotoxicity on EA.hy926 human cells of endothelial morphology and
selectivity index (SI) values of [AuCl(HL)] compounds, HL1–HL4 ligands, and Nifurtimox (included
for comparison). RM values (lipophilicity) of the complexes, and the corresponding free ligands and
Nifurtimox, determined by reversed-phase TLC using DMSO:PBS (80:20 v/v) as the mobile phase,
are also depicted.

Compound T. cruzi
IC50/µM

EA.hy926
IC50/µM SI 1 RM

3

[AuCl(HL1)] (1) 24.5 ± 1.4 108.2 ± 6.6 4 −0.22
HL1 9.8 ± 1.5 2 >100 2 >10 −0.31

[AuCl(HL2)] (2) 10.3 ± 1.0 94.0 ± 1.7 9 −0.01
HL2 17.4 ± 1.9 2 >100 2 >6 −0.04

[AuCl(HL3)] (3) 9.9 ± 1.9 46.7 ± 0.7 5 0.13
HL3 18.5 ± 1.7 2 >100 2 >5 0.12

[AuCl(HL4)] (4) 49.1 ± 7.3 78.4 ± 2.1 2 0.17
HL4 22.7 ± 1.6 2 >100 2 >4 0.29

Nifurtimox 10.0 ± 0.4 >200 >20 0.02
1 IC50 EA.hy926/IC50 T. cruzi. 2 From reference [12]. 3 RM = log10[(1/Rf)-1].

2.5. Biological Studies: Anti-Trypanosoma Cruzi Activity and Cytotoxicity on Mammalian
Cells Models

The cytotoxicity of [AuCl(HL)] compounds 1–4 was evaluated in vitro on T. cruzi
trypomastigotes (Dm28c), as well as human cells of endothelial morphology (EA.hy926).
Table 4 shows the cell viability values determined as the ability of the compounds to inhibit
cell viability after 24 h incubation using the MTT method.

The four [AuCl(HL)] compounds were active against T. cruzi parasites, displaying IC50
values in the low micromolar range. Compounds 2 and 3 were the most active compounds,
and both showed an enhancement in antiparasitic activity compared with their respective
thiosemicarbazone ligands. In addition, compounds 2 and 3 showed similar antiparasitic
activity to the reference drug, Nifurtimox. To analyze the effect of the gold(I) on the
biological activity of the thiosemicarbazone ligands, it could be observed that this metal
ion generated an increase in the biological activity of the HL2 and HL3 ligands, higher than
that observed for the complexes with similar chemical structure that include Pd(II), Pt(II),
or Ru(II) metal centers [24,26,27].

The specificity of the anti-trypanosomal activity of the compounds was evaluated
by analyzing their cytotoxicity against human-derived morphologically endothelial cells
(EA.hy926). Complex 2 was the most selective gold compound against Trypanosoma cruzi.

Anticancer activity studies recently reported for the [AuCl(HL)] compounds confirmed
that the stability in solution and biological media is directly related to the biological
activity of the complexes. These studies showed that the compounds evolve in solution to
cationic monometallic species ([Au(HL)(DMSO)]+ or [Au(HL)]+) and/or to neutral dimeric
compounds, [{Au(HL)}2], which always contain the thiosemicarbazone ligands. Compound
2 was the most stable in DMSO and DMSO/culture medium solution for over a week or
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72 h, respectively, and was the most cytotoxic and selective compound against different
cancer cell lines [18]. In the present work, 2 and 3 were the most active compounds, and
particularly compound 2 was also the most selective against T. cruzi. Therefore, a quite
good correlation between the antineoplastic and antiparasitic effects of the [AuCl(HL)]
compounds was identified. As previously mentioned, some antiparasitic agents have
shown high effectiveness as potential anticancer drugs [22,23]. Therefore, this relationship
of the biological activity of the [AuCl(HL)] compounds could be a good approach for
developing prospective gold-based drugs.

Conversely, no clear correlation between the lipophilicity of the compounds and their
antiparasitic activity could be identified. However, it was observed that compound 2,
one of the most active and selective gold compounds, exhibited biological activity and
lipophilicity similar to those of Nifurtimox. This gold compound also showed the highest
hyperfine coupling constant values (a = 9.16 G) for the nitrogen atom of the nitro group (see
Table 3); hence, their ROS generation ability could be related to their high activity against
T. cruzi. Based on these results, and as shown in Figure S8, it could be suggested that a
high localization of the electron on the nitro group and lipophilicity close to the Nifurtimox
could favor the activity and selectivity of the [AuCl(HL)] compounds against Trypanosoma
cruzi parasites.

2.6. Insights into the Mechanism of Action: Production of Free Radical Species and Reactive
Oxygen Species on Trypanosoma cruzi

Intraparasite bioreduction and consecutive ROS generation is the principal anti-
trypanosomal mechanism of action of the 5-nitrofuryl-containing thiosemicarbazone bioac-
tive ligands [10]. This mechanism of action is also maintained by metal compounds that
include these thiosemicarbazone ligands [24,26,27]. As stated above, the first step of the
mechanism involves the nitro anion radical generation by bioreduction of the nitrofuran
moiety. The electrochemical and ESR studies suggest that the four gold(I) complexes would
have the ability to generate the NO2

·− radical. To assess the ROS production capacity
in the biological medium of 1–4, the compounds were incubated with T. cruzi parasites
(trypomastigotes, Dm28 strain) and then studied by ESR experiments. DMPO was added as
a spin-trapping agent to detect radical species of short half-time lives. The global behavior
of the gold compounds is exemplified by the ESR spectrum of [AuCl(HL2)], displayed in
Figure 6.
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Figure 6. ESR spectra obtained after 15 min incubation of [AuCl(HL2)] (2) compound (1 mM) with
T. cruzi trypomastigotes (Dm28c strain, final protein concentration 4–8 mg/mL), NADPH (1 mM),
and DMPO (100 mM). Above: Negative control. Below: [AuCl(HL2)] compound. (*) characteristic
signals of DMPO-CH3 spin adduct. (+) characteristic signals of DMPO-OH spin adduct. (#) DMPOX
or DMPO-OH oxidation signals.
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ESR spectra of the four [AuCl(HL)] compounds showed a similar thirteen-line pattern,
whose signals correspond to three different DMPO spin adducts. One of them corresponds
to a six-line pattern (marked with *, Figure 6) related to the trapping of a carbon-centered
radical by DMPO (aN = 16.3 G and aH = 23.5 G), associated with the methyl radical
generated by the presence of DMSO as a vehicle [28]. The second group of signals (+,
Figure 6) consisting of a four-line pattern, corresponds to the DMPO-OH adduct [28].
Intracellular hydroxyl radical species would arise due to the redox cycling process that
involves the reduction of the nitro group. The last three-line pattern (#, Figure 6) could be
related to the oxidation of the spin trap and/or the rapid decomposition of DMPO-OH
adduct (DMPOX) [28].

In addition, the intracellular ROS generation on T. cruzi (trypomastigotes, Dm28c) pro-
duced by [AuCl(HL)] compounds was quantified in vitro using a 2‘,7’-dichlorofluorescein
(DCF) probe (Figure 7). The four complexes showed the ability to cross the cell membrane,
generating an increase in the ratio of fluorescence areas related to the negative control.
Moreover, all complexes generated an increase in intracellular ROS in comparison with
the reference drug, Nifurtimox. Complex 3 was the compound that generated the greatest
amount of intracellular ROS and it was notably one of the most active gold compounds
against T. cruzi. One-way analysis of variance (ANOVA) was performed with subsequent
Tukey’s multiple comparisons test to show that only the production of cytosolic ROS pro-
duced by compound 3, versus the other compounds, is statistically significant (Figure S9).
Based on these results, we could suggest that the antiparasitic activity of the [AuCl(HL)]
compounds could be related to their ROS generation ability.
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Figure 7. Rate of increase in areas of fluorescence spectra relative to the negative control having a
value of 1. Negative control corresponds to parasites without treatment, positive control corresponds
to parasites treated with 10 µM Nifurtimox, and 1–4 corresponds to parasites treated with each gold
compound to 10 µM concentration. For each treatment, one-way analysis of variance (ANOVA)
compared to negative control rate was performed with subsequent Dunnett’s test (** p < 0.01;
*** p < 0.001; **** p < 0.0001).

The biological oxidative stress generation ability of the [AuCl(HL)] compounds on the
intact parasites was confirmed. It can be concluded that the complexes would maintain the
mechanisms of action of the 5-nitrofuryl pharmacophore.

Globally, the results of this work show that the inclusion of the Au(I) metal center does
not have significant effects on the nitro anion radical generation of the thiosemicarbazone
ligands. However, the presence of this metal ion means that the electron is preferably more
localized in the nitro group than in the rest of the molecule. This behavior could be directly
related to the antiparasitic activity shown by the complexes, as a correlation between the
biological activity and their ability to generate ROS was observed. Compounds 2 and 3
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were the most active gold compounds, and they produced a higher amount of ROS on
T. cruzi parasites.

The anti-chagasic mechanism of action of the [AuCl(HL)] compounds is related to the
damage by oxidative stress on T. cruzi parasites. However, their biological activity could
also be associated with other mechanisms of action or with the interaction with biological
targets. Studies recently performed have confirmed that [AuCl(HL)] compounds have a
high interaction with DNA [18].

3. Materials and Methods

The [AuCl(HL)] (1–4) compounds studied in this work had been previously synthe-
sized and fully characterized in solid state and solution [18].

3.1. Theoretical Calculations

Avogadro software (1.2.0n) [29] with the MMFF94 force field was utilized to perform a
conformational search. The minimum energy conformation was obtained and then a geom-
etry optimization was conducted using ORCA 5.0.4 [30]. SMD solvation model [31] with
DMSO as the solvent was used to replicate the experimental conditions. All optimizations
were carried out using the wB97XD functional with def2-TZVP basis set [32]. ECPs for the
Au atom were performed [33–35].

The NBO analysis provides an accurate Lewis structure picture of the compounds
using the highest percentage of orbital electron density representation [36–38]. This tool
allows us to understand the intra and/or intermolecular interactions that occur between
filled and virtual orbitals. Moreover, it gives information regarding charge density changes
between atoms, which act as donors and/or acceptors with respect to a single molecule
or different molecules interacting with each other. The relationship between donor (i) and
acceptor (j) corresponds to the stabilization energy E(2), which is estimated as:

E(2) = ∆Eij = qi
F
(
i, j)2

Ej − Ei

where qi is the donor orbital occupancy; Ei and Ej are diagonal elements, and F(i,j) is
the off-diagonal NBO Fock matrix element. A large E(2) value corresponds to a stronger
interaction between donor and electron acceptor atoms, which means a stronger donating
tendency from donor to electron acceptor and consequently, a greater extension of the
conjugation in the whole system, resulting in a stabilization of the system. All calculations
were carried out using the NBO program.

3.2. Electrochemical Studies

The electrochemical behavior of the [AuCl(HL)] compounds was studied by cyclic
voltammetry experiments recorded using a Methrom 797 VA. A standard electrochemical
cell of three electrodes of 10 mL volume was used. The reduction process was studied
employing a hanging drop mercury electrode (HDME) as working electrode, an Ag/AgCl
electrode as a reference electrode, and a platinum wire as counter electrode. Measurements
were performed at room temperature in 1 mM DMSO solutions of each gold complex,
using tetrabutyl ammonium perchlorate (TBAP, 0.1 M) as supporting electrolyte. Solutions
were deoxygenated via purging with nitrogen for 15 min prior to the measurements. A
continuous gas stream was passed over the solutions between measurements.

3.3. ESR Spectroscopy

ESR spectra were recorded in the X band (9.85 GHz) using a Bruker ECS 106 spec-
trometer with a rectangular cavity and 50 kHz field modulation. The nitro anion radicals
were generated by electrolytic reduction in situ, applying a potential corresponding to
couple II obtained from the voltammetry studies. A platinum wire as working electrode
and tetrabutyl ammonium perchlorate (TBAP, 0.1 M) as supporting electrolyte were used.
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The compounds were dissolved in DMSO at room temperature and the solutions were
deoxygenated via purging with nitrogen. Simulations of the experimental spectra were
performed using the WINEPR-SimFonia 1.25 software. The hyperfine splitting constants
were estimated to be accurate within 0.05 G.

The ESR parameters calculations of all gold compounds have also been obtained from
the optimized structure using ORCA 5.0.4. Calculations of g and the isotropic part of
hyperfine coupling constants were determined with the functional w97X with Def2-TZVP
basis set. SMD solvent model was employed to describe the experimental conditions of the
experimental data using DMSO as solvent.

3.4. Lipophilicity

Reversed-phase thin layer chromatography (TLC) experiments were performed on
precoated TLC plates silica gel 60 RP-18 F254s using DMSO:PBS (80:20 v/v) as mobile
phase (PBS: 10 mM Na2HPO4; 1.8 mM KH2PO4; 137 mM NaCl; 2.7 mM KCl; pH = 7.4).
Stock solutions of the complexes and ligands were prepared in pure acetone (Aldrich) prior
to use. The plates were developed in a closed chromatographic tank and dried, and the
spots were located under UV light at 254 nm. The Rf values were averaged from three
determinations, and converted to RM via the relationship: RM = log10[(1/Rf) − 1] [12].

3.5. Biological Studies
3.5.1. Viability on T. cruzi (Dm28c) Trypomastigotes

Vero cells (CCL-81TM ATCC®) were infected with Trypanosoma cruzi metacyclic try-
pomastigotes from 15 days old. Subsequently, the trypomastigotes parasites harvested
from this culture were used to infect further Vero cell cultures at a multiplicity of infection
(MOI) of 10. These trypomastigote-infected Vero cell cultures were incubated at 37 ◦C in
humidified air and 5% CO2 for 72–96 h. After this time, trypomastigotes were harvested
from the culture media, and then culture media were collected and centrifuged at 500×
g for 5 min (25 ◦C) to eliminate cellular detritus. The supernatant was then centrifuged
at 4000× g for 10 min (4 ◦C). The trypomastigote-containing pellets were resuspended in
RPMI (without phenol red) media supplemented with 5% inactivated fetal bovine serum
(FBSi) and penicillin (50 UI/mL)–streptomycin (50 µg/mL) at a final density of 1 × 107

parasites/mL. 2.2 × 108 trypomastigotes are equivalent to 1 mg of protein or 12 mg of
wet weight. Viability assays were performed by using the MTT (3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyl tetrazolium bromide) reduction method as previously described [39,40].
Briefly, 3 × 106 trypomastigotes were incubated in RPMI (without phenol red) culture
medium with 5% FBSi at 37 ◦C for 24 h with and without the compounds under study
at different concentrations, and Nifurtimox 10 µM as positive control. The compounds
were dissolved in DMSO and diluted in culture media or PBS (0.1% DMSO) for biological
experiments. An aliquot of the parasites suspensions was extracted, and it was incubated
in a flat-bottom 96-well plate with MTT 0.5 mg/mL and phenazine 0.22 µg/mL at 37 ◦C
for 3 h, and then, solubilized with 10% sodium dodecyl sulfate 0.01 N HCl and incubated
overnight. Formazan formation was measured at 570 nm in a multiwell reader Varioskan
Flash Multimode (Thermo Fisher®, Santiago, Chile). Untreated parasites were used as
negative controls (100% of cell viability). Finally, IC50 values (concentration at which 50%
of cell viability is inhibited) were determined by nonlinear regression with variable slope
(four parameters) of viability versus log(concentration), by GraphPad8® software (version
8.0), for 4 independent experiments. The results are presented as the average of IC50 with
its standard deviation.

3.5.2. Cytotoxicity on Endothelial Mammalian Cells

The endothelial cell line EA.hy926 (a somatic hybrid cell with endothelial morphol-
ogy) was maintained in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco®, Santiago,
Chile, high glucose and without phenol red), supplemented with 10% FBSi and penicillin
(50 UI/mL)–streptomycin (50 µg/mL). Cells were maintained as a monolayer culture in
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tissue culture flasks (Thermo Scientific Nunc™) in an incubator at 37 ◦C in a humidified
atmosphere composed of 5% CO2. A total of 5 × 104 cells were incubated per each well
in a flat-bottom 96-well plate. After 24 h, the culture media was extracted and washed
with PBS and then each compound concentration dissolved in culture media was added.
Viability assays were performed using the MTT reduction method as previously described
for T. cruzi trypomastigote assay (see above) but without phenazine.

3.6. Insight into the Mechanism of Action
3.6.1. Generation of Free Radical Species in T. cruzi

The free radical production capacity of the gold(I) compounds was assessed in the
Trypanosoma cruzi parasites with ESR spin trapping using DMPO (5,5-dimethyl-1-pirroline-
N-oxide) as spin trap. Each tested compound was dissolved in DMSO (spectroscopy
grade, approximately 1 mM) and the solution was added to a mixture containing the
trypomastigote form of T. cruzi (Dm28 strain; 12 mg/mL), NADPH 1 mM, and DMPO
100 mM. The mixture was transferred to a 100 µL capillary. ESR spectra were recorded
using an X-band Bruker ECS 106 spectrometer (9.85 GHz) with a rectangular cavity and
50 kHz field modulation. All the spectra were registered in the same scale, after 50 scans.
The ESR spectra were simulated using WINEPR-SimFonia 1.25 software.

3.6.2. Intraparasitic Reactive Oxygen Species (ROS)

To study the generation of reactive oxygen species in trypomastigotes of T. cruzi Dm28c
after treatment with gold(I) compounds, the probe 2′,7′-dihydrodichlorofluorescin diacetate
(DCFH2-DA) was used. Cell suspensions with 1 × 107 parasites/mL were used, which were
incubated in 96-well plates with a PBS solution of 20 µM DCFH2-DA for 15 min at 37 ◦C and
5% CO2. The loaded parasites were centrifuged and washed with PBS in duplicate. Gold(I)
compounds were added to the loaded parasites at a concentration of 10 µM, using 10 µM
Nifurtimox as a positive control and untreated parasites as a negative control. Fluorescence
(λex. = 488 nm; λem. = 528 nm) was recorded for 60 min and every 1 min. The area under
the curve of relative fluorescence versus time was calculated using OriginPro8.5® software
(Version 10.0) and normalized versus the negative control. The results of three independent
experiments (N = 3) are presented as the average of the area ratio of increased fluorescence
with respect to the negative control, with its standard deviation. For each treatment, a
one-way analysis of variance (ANOVA) with subsequent Dunnett’s test using OriginPro
8.5® software.

4. Conclusions

The chemical structure of four gold compounds, [AuCl(HL)], that include 5-nitrofuryl-
containing thiosemicarbazones as bioactive ligands were theoretically calculated. All
compounds showed identical structures, with the metal ion located in a linear coordination
environment and the thiosemicarbazones acting as monodentate ligands.

Natural Bond Orbital (NBO) results showed that the compounds present a large zone
of electronic delocalization centered on the nitro anion radical. Cyclic voltammetry studies
confirmed that the compounds can be reduced to generate the nitro anion radical (NO2

·−).
An almost negligible effect on the nitro moiety reduction potential was observed as a
consequence of Au(I) complexation. The presence of this reduction process is biologically
relevant since it would favor the toxic radical oxygen species (ROS) generation in Try-
panosoma cruzi. Electron Spin Resonance (ESR) studies allowed the determination of the
hyperfine coupling constants for the gold compounds and ORCA calculations allowed
their spin densities to be determined, which confirmed the existence of a great localization
of the unpaired electron in the nitrogen atom of the nitro group.

The compounds were active against the bloodstream form of T. cruzi with IC50 values
in the micromolar range. Complexes 2 and 3 were the most active compounds and showed
an enhancement in antiparasitic activity compared with their respective bioactive ligands.
The compounds showed moderate selectivity towards the parasites concerning the selected
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mammalian cell model. Regarding the probable mechanism of action, the compounds were
capable of producing free radical species in the intact parasites. Using spin trapping with
ESR and fluorescence measurements it was possible to identify, characterize, and quantify
the reactive oxygen species generated within the parasites after the treatment with gold(I)
compounds.

Globally, these results show a relationship between the ROS generation ability and
the antiparasitic activity of the [AuCl(HL)] compounds, hence the potential oxidative
stress mechanism against T. cruzi could be confirmed. Gold(I) compounds containing
thiosemicarbazones are promising antiparasitic compounds that deserve further studies in
the search for prospective broad-spectrum drugs.
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