Supplementary Information

Figure S1. Ball and stick representation with partial atomic labeling scheme, selected bond distances (Å) and bond valence summations (BVS) for the two independent POMs in NH₄Mo₆(AlePy₂Mo)₂.

Mo6 O21 1.839(10)

Mo6 O26 1.972(9)

Mo1 O1 1.715(7). Mo1 O3 1.924(8). Mo1 O2 1.948(8). Mo1 O4 2.115(8) . Mo1 O5 2.126(7). Mo1 O6 2.142(8) Mo1 Mo2 2.5630(14) $\Sigma(Mo1) = 4.5$ Mo2 O7 1.700(7) Mo2 O2 1.941(9) Mo2 O3 1.957(9) Mo2 O8 2.113(9) Mo2 O9 2,124(8) Mo2 O10 2.144(8) $\Sigma(Mo2) = 4.8$ Mo3 O11 1.704(14) Mo3 O12 1.723(14) Mo3 O13 1.847(11) Mo3 O14 1.986(10) Mo3 O15 2.333(11) Mo3 O16 2.361(11) Mo3 Mo4 3.209(2) $\Sigma(Mo3) = 6.0$ Mo4 O17 1.723(13) Mo4 O18 1.747(12) Mo4 O5 1.801(7) Mo4 O13 2.018(11) Mo4 O15 2.321(10) Mo4 O16 2.392(11) $\Sigma(Mo4) = 5.9$ Mo5 O19 1.704(14) Mo5 O20 1.731(16) Mo5 O10 1.772(8) Mo5 O21 2.010(10) Mo5 O22 2.348(11) Mo5 O23 2.377(11) Mo5 Mo6 3.210(2) $\Sigma(Mo5) = 6.1$ Mo6 O24 1.684(17)

Mo6 O25 1.764(15)

Mo6 O23 2.318(13) Mo6 O22 2.363(10) $\Sigma(Mo6) = 6.0$ Mo7 O27 1.741(9) Mo7 O29 1.746(7) Mo7 O28 1.749(8) Mo7 N12 2.294(9) Mo7 N19 2.344(10) Mo7 N5 2.360(8) $\Sigma(Mo7) = 6.0$ Mo8 O30 1.704(8) Mo8 O32 1.751(7) Mo8 O31 1.753(7) Mo8 N31 2.301(8) Mo8 N38 2.306(8) Mo8 N24 2.353(8) $\Sigma(Mo8) = 6.2$ Mo9 O33 1.711(8) Mo9 O34 1.921(8) Mo9 O35 1.951(9) Mo9 O36 2.120(8) Mo9 O37 2.144(8) Mo9 O38 2.155(8) Mo9 Mo10 2.5606(14) $\Sigma(Mo9) = 4.8$ Mo10 O39 1.708(7) Mo10 O35 1.929(9) Mo10 O34 1.947(8) Mo10 O41 2.115(8) Mo10 O40 2.120(9) Mo10 O42 2.157(7) $\Sigma(Mo10) = 4.8$ Mo11 O43 1.690(13) Mo11 O44 1.714(14) Mo11 O45 1.856(12) Mo11 O46 1.970(9)

Mo11 O47 2.339(9)

Mo11 O48 2.348(10) $\Sigma(Mo11) = 6.1$ Mo12 O49 1.668(16) Mo12 O50 1.747(13) Mo12 O37 1.782(9) Mo12 O45 2.024(11) Mo12 O48 2.310(11) Mo12 O47 2.364(10) $\Sigma(Mo12) = 6.2$ Mo13 O51 1.706(13) Mo13 O52 1.751(12) Mo13 O42 1.763(7) Mo13 O53 2.005(9) Mo13 O54 2.333(9) Mo13 O55 2.383(11) $\Sigma(Mo13) = 6.1$ Mo14 O57 1.703(15) Mo14 O56 1.740(13) Mo14 O53 1.874(9) Mo14 O58 1.970(9) Mo14 O55 2.347(12) Mo14 O54 2.380(8) $\Sigma(Mo14) = 5.8$ Mo15 O61 1.732(9) Mo15 O59 1.745(8) Mo15 O60 1.747(8) Mo15 N57 2.306(8) Mo15 N50 2.348(10) Mo15 N43 2.363(8) $\Sigma(Mo15) = 6.0$ Mo16 O63 1.744(7) Mo16 O62 1.749(8) Mo16 O64 1.759(7) Mo16 N69 2.322(8) Mo16 N76 2.322(8) Mo16 N62 2.367(8) $\Sigma(Mo16) = 6.0$

Figure S2. Representation of the crystal packing in (a) $NaMo_6(Ale-4Py)_2$ and (b) $NaKMo_6(Ale-4Py)_2$; blue octahedra: Mo^{VI}O₆, pink tetrahedra: PO₄, orange spheres: O, black spheres: C, green spheres: N, cyan spheres: Na, plum spheres: K ; hydrogen atoms have been omitted for clarity.

N-Н…О	H…O (Å)	N…O (Å)	N-H…O (°)
	NaMo ₆ (Ale-4Py)2	
N5-H5BO5W	1.800	2.765	164.92
N5-H5A…O19	1.925	2.825	169.33
N10-H10····O14	1.899	2.764	167.41
N17-H17B…O7W	1.751	2.618	158.43
N17-H17A····O13	1.815	2.761	158.50
N22-H22····O4W	1.873	2.674	150.43
	NaKMo6(Ale-4Py	y)2	
N29-H29A-O7W	2.171	2.961	144.97
N29-H29B…O46	1.969	2.844	160.48
N34-H34····O40	1.832	2.704	170.44
N41-H41B…O1W	2.355	3.208	156.41
N41-H41A····O41	1.963	2.848	163.93
N46-H46…O6W	1.862	2.688	155.68
N5-H5B…O13W	1.952	2.801	154.70
N5-H5A…O18	1.968	2.808	152.66
N10-H10····O14	1.837	2.704	167.83
N17-H17B…O5W	1.917	2.729	147.63
N17-H17A…O13	1.949	2.792	153.37
N22-H22····O21W	1.861	2.695	157.18

Table S1. Geometry of hydrogen-bonding interactions in $NaMo_6(Ale-4Py)_2$ and $NaKMo_6(Ale-4Py)_2$ for which N····O < 3.1 Å, associated to Figure 4.

(a)

(b)

Figure S4. (a) Photographs of the powder of NaMo₆(Ale-4Py)₂ at different UV irradiation time (in min). (b) Evolution of the photo-generated absorption in NaMo₆(Ale-4Py)₂ after 0, 0.5, 1, 2, 3, 5, 7, 10, 15, 20, 30, 60, 90, and 130 min of UV irradiation ($\lambda_{ex} = 365$ nm).

Figure S5. Evolution of the photoreduction degree (Y(t)) in (a) NaMo₆(Ale-4Py)₂ and (b) NaKMo₆(Ale-4Py)₂ with the UV irradiation time *t*. Y(t) is defined as $100 \times C_{5+}(t)/C_{6+,r}(0)$, with $C_{6+,r}(0)$ the concentration of reducible Mo⁶⁺ cations at t = 0 i.e., at the time just before UV illumination, and $C_{5+}(t)$ the concentration of photo-reduced Mo⁵⁺ ions at a given UV irradiation time *t* (for details of the photocoloration kinetics model, see reference 6 in the manuscript).

Table S2. Optical characteristics and coloration kinetic parameters of NaMo₆(Ale-4Py)₂ and NaKMo₆(Ale-4Py)₂ compared with those of Mo₆-Ale, i.e., the fastest photochromic members of the Mo₆(BP)₂ series (reference 19 in the article). The R⁵⁰⁸(*t*) *vs. t* curve relative to the three materials are fitted as R⁵⁰⁸(*t*) = $a/(bt+1) + R^{508}(\infty)$. R⁵⁰⁸(∞) is the reflectivity value at the end of the photochromic process, that is at $t = \infty$. The a parameter is defined as $a = R^{508}(0) - R^{508}(\infty)$, i.e. the difference between the reflectivity values just before UV illumination (t = 0) and at $t = \infty$. The b parameter is defined as $b = k^c \times C_{6+,r}(0)$, where k^c is the coloration rate constant, and $C_{6+,r}(0)$ is the initial concentration of photo-reducible Mo⁶⁺ centers per unit volume. The coloration kinetic half-life time (t_{1/2}) is defined as $t_{1/2} = b^{-1}$. The coloration rate constant ratio k_i/k_j is defined as $k_i/k_j = b_ja_i/b_ja_j$.

	NaMo ₆ (Ale-4Py) ₂	NaKMo ₆ (Ale-4Py) ₂	Mo ₆ -Ale
$\lambda_{\max} (nm)^a$	508	508	508
$R^{508}(0)^b$	0.730	0.655	0.892
a^c	0.655	0.589	0.799
b^c	2.682	2.731	0.348
\mathbb{R}^{2d}	0.995	0.998	0.997
$t_{1/2} (min)^e$	0.37	0.37	2.87
$k^{c}(j)/k^{c}(Mo6-Ale)^{f}$	9.4	10.6	1

^aPhotoinduced absorption band wavelength. ^b Reflectivity value before UV excitation (t = 0) at λ_{max} = 508 nm.

^c Salient coloration kinetic parameters. ^d Regression coefficient for the R(t) vs. t plots. ^e Coloration kinetic half-life time (min). ^fColoration rate constants ratio.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).