Pybox-Iron(II) Spin-Crossover Complexes with Substituent Effects from the 4-Position of the Pyridine Ring (Pybox = 2,6-Bis(oxazolin-2-yl)pyridine)
Abstract
:1. Introduction
2. Results
2.1. Preparation
2.2. Crystal Structures
2.3. Mangetic Properties of Polycrystalline Specimens
2.4. Mangetic Properties of Solution Specimens
3. Discussion
3.1. Substituent Effect
3.2. Coordination Structure Effect
3.3. Electronic Substituent Effect
4. Experimental Section
4.1. Materials
4.2. Crystallographic Analysis
4.3. Magnetic Study
4.4. DFT Calculation Study
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gütlich, P.; Goodwin, H.A. (Eds.) Spin Crossover in Transition Metal Compounds I, II, and III; Springer: Berlin, Germany, 2004. [Google Scholar]
- Gütlich, P.; Gaspar, A.B.; Garcia, Y. Spin state switching in iron coordination compounds. Beilstein J. Org. Chem. 2013, 9, 342–391. [Google Scholar] [CrossRef] [PubMed]
- Halcrow, M.A. Spin-Crossover Materials: Properties and Applications; John Wiley & Sons, Ltd.: Oxford, UK, 2013. [Google Scholar]
- Halcrow, M.A. Spin-Crossover compounds with wide thermal hysteresis. Chem. Lett. 2014, 43, 1178–1188. [Google Scholar] [CrossRef]
- Kahn, O. Chapter 4. In Molecular Magnetism; VCH: Weinhein, Germany, 1993. [Google Scholar]
- Harding, D.J.; Harding, P.; Phonsri, W. Spin crossover in iron(III) complexes. Coord. Chem. Rev. 2016, 313, 38–61. [Google Scholar] [CrossRef]
- Letard, J.-F.; Guionneau, P.; Nguyen, O.; Costa, J.S.; Marcen, S.; Chastanet, G.; Marchivie, M.; Goux-Capes, L. A guideline to the design of molecular-based materials with long-lived photomagnetic lifetimes. Chem. Eur. J. 2005, 11, 4582–4589. [Google Scholar] [CrossRef] [PubMed]
- Letard, J.-F.; Guionneau, P.; Godjovi, E.; Lavastre, O.; Bravic, G.; Chasseau, D.; Kahn, O. Wide Thermal Hysteresis for the Mononuclear Spin-Crossover Compound cis-Bis(thiocyanato)bis[N-(2’-pyridylmethylene)-4-(phenylethynyl)anilino]iron(II). J. Am. Chem. Soc. 1997, 119, 10861–10862. [Google Scholar] [CrossRef]
- Yamada, M.; Hagiwara, H.; Torigoe, H.; Matsumoto, N.; Kojima, M.; Dahan, F.; Tuchagues, J.P.; Re, N.; Iijima, S. A variety of spin-crossover behaviors depending on the counter anion: Two-dimensional complexes constructed by NH···Cl− hydrogen bonds, [(FeIIH3LMe)]Cl·X (X = PF6−, AsF6−, SbF6−, CF3SO3−; H3LMe = tris[2-{[(2-methylimidazol-4-yl)methylidene]amino}ethyl]amine). Chem. Eur. J. 2006, 12, 4536–4549. [Google Scholar] [PubMed]
- Takahashi, K.; Kawakami, T.; Gu, Z.; Einaga, Y.; Fujishima, A.; Sato, O. An abrupt spin transition based on short S...S contacts in a novel Fe(II) complex whose ligand contains a 1,3-dithiole ring. Chem. Commun. 2003, 2374–2375. [Google Scholar] [CrossRef]
- Mochida, N.; Kimura, A.; Ishida, T. Spin-Crossover Hysteresis of [FeII(LHiPr)2(NCS)2] (LHiPr = N-2-Pyridylmethylene-4-isopropylaniline Accompanied by Isopropyl Conformation Isomerism. Magnetochemistry 2015, 1, 17–27. [Google Scholar] [CrossRef]
- Oso, Y.; Ishida, T. Spin-crossover transition in a mesophase iron(II) thiocyanate complex chelated with 4-hexadecyl-N-(2-pyridylmethylene)aniline. Chem. Lett. 2009, 38, 604–605. [Google Scholar] [CrossRef]
- Oso, Y.; Kanatsuki, D.; Saito, S.; Nogami, T.; Ishida, T. Spin-crossover transition coupled with another solid-solid phase transition for iron(II) thiocyanate complexes chelated with alkylated N-(di-2-pyridylmethylene)anilines. Chem. Lett. 2008, 37, 760–761. [Google Scholar] [CrossRef]
- Halcrow, M.A. Iron(II) complexes of 2,6-di(pyrazol-1-yl)pyridines—A versatile system for spin-crossover research. Coord. Chem. Rev. 2009, 253, 2493–2514. [Google Scholar] [CrossRef]
- Craig, G.A.; Roubeau, O.; Aromi, G. Spin state switching in 2,6-bis(pyrazol-3-yl)pyridine (3-bpp) based Fe(II) complexes. Coord. Chem. Rev. 2014, 269, 13–31. [Google Scholar] [CrossRef]
- Krober, J.; Codjovi, E.; Kahn, O.; Groliere, F.; Jay, C. A Spin Transition System with a Thermal Hysteresis at Room Temperature. J. Am. Chem. Soc. 1993, 115, 9810–9811. [Google Scholar] [CrossRef]
- Hirosawa, N.; Oso, Y.; Ishida, T. Spin-crossover and light-induced excited spin-state trapping observed for an iron(II) complex chelated with tripodal tetrakis(2-pyridyl)methane. Chem. Lett. 2012, 41, 716–718. [Google Scholar] [CrossRef]
- Yamasaki, M.; Ishida, T. Heating-rate dependence of spin-crossover hysteresis observed in an iron(II) complex having tris(2-pyridyl)methanol. J. Mater. Chem. C 2015, 3, 7784–7787. [Google Scholar] [CrossRef]
- Yamasaki, M.; Ishida, T. Spin-crossover thermal hysteresis and light-induced effect on iron(II) complexes with tripodal tris(2-pyridyl)methanol. Polyhedron 2015, 85, 795–799. [Google Scholar] [CrossRef]
- Johnson, J.S.; Evans, D.A. Chiral Bis(oxazoline) Copper(II) Complexes: Versatile Catalysts for Enantioselective Cycloaddition, Aldol, Michael, and Carbonyl Ene Reactions. Acc. Chem. Res. 2000, 33, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Desimoni, G.; Faita, G.; Quadrelli, P. Pyridine-2,6-bis(oxazolines), Helpful Ligands for Asymmetric Catalysts. Chem. Rev. 2003, 103, 3119–3154. [Google Scholar] [CrossRef] [PubMed]
- Yuasa, J.; Ohno, T.; Miyata, K.; Tsumatori, H.; Hasegawa, Y.; Kawai, T. Noncovalent Ligand-to-Ligand Interactions Alter Sense of Optical Chirality in Luminescent Tris(β-diketonate) Lanthanide(III) Complexes Containing a Chiral Bis(oxazolinyl) Pyridine Ligand. J. Am. Chem. Soc. 2011, 133, 9892–9902. [Google Scholar] [CrossRef] [PubMed]
- De Bettencourt-Dias, A.; Barber, P.S.; Viswanathan, S.; de Lill, D.T.; Rollett, A.; Ling, G.; Altun, S. Para-Derivatized Pybox Ligands As Sensitizers in Highly Luminescent Ln(III) Complexes. Inorg. Chem. 2010, 49, 8848–8861. [Google Scholar] [CrossRef] [PubMed]
- De Bettencourt-Dias, A.; Barber, P.S.; Bauer, S. A Water-Soluble Pybox Derivatives and Its Highly Luminescent Lanthanide Ion Complexes. J. Am. Chem. Soc. 2012, 134, 6987–6994. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.-Y.; Li, H.-Q.; Ding, Z.-Y.; Lu, X.-J.; Zhao, L.; Meng, Y.-S.; Liu, T.; Gao, S. Spin transition in a series of [Fe(pybox)2]2+ complexes modulated by ligand structures, counter anions, and solvents. Inorg. Chem. Front. 2016, 3, 1624–1636. [Google Scholar] [CrossRef]
- Zhu, Y.-Y.; Liu, C.-W.; Yin, J.; Meng, Z.-S.; Yang, Q.; Wang, J.; Liu, T.; Gao, S. Structural phase transition in a multi-induced mononuclear FeII spin-crossover complex. Dalton Trans. 2015, 44, 20906–20912. [Google Scholar] [CrossRef] [PubMed]
- Burrows, K.E.; McGrath, S.E.; Kulmaczewski, R.; Cespedes, O.; Barrett, S.A.; Halcrow, M.A. Spin State of Homochiral and Heterochiral Isomers of [Fe(PyBox)2]2+ Derivatives. Chem. Eur. J. 2017, 23, 9067–9075. [Google Scholar] [CrossRef] [PubMed]
- De Bettencourt-Dias, A.; Rossini, J.S.K. Ligand Design for Luminescent Lanthanide-Containing Metallopolymers. Inorg. Chem. 2016, 55, 9954–9963. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Yang, T.; Wang, S.; Xu, H.; Gong, H. Nickel-Catalyzed Reductive Cross-Coupling of Unactivated Alkyl Halides. Org. Lett. 2011, 13, 2138–2141. [Google Scholar] [CrossRef] [PubMed]
- Vermonden, T.; Branowska, D.; Marcelis, A.T.M.; Sudholter, E.J.R. Synthesis of 4-functionalized terdendate pyridine-based ligads. Tetrahedron 2003, 59, 5039–5045. [Google Scholar] [CrossRef]
- Hansch, C.; Leo, A.; Taft, R.W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91, 165–195. [Google Scholar] [CrossRef]
- Cook, L.J.K.; Rafal, K.; Mohammed, R.; Dudley, S.; Barrett, S.A.; Little, M.A.; Deeth, R.J.; Halcrow, M.A. A Unified Treatment of the Relationship Between Ligand Substituents and Spin State in a Family of Iron(II) Complexes. Angew. Chem. Int. Ed. 2016, 55, 4327–4331. [Google Scholar] [CrossRef] [PubMed]
- Isaccs, N.S. Chapter 4. In Physical Organic Chemistry; Wiley: New York, NY, USA, 1987. [Google Scholar]
- Tweedle, M.F.; Wilson, L.J. Variable Spin Iron(III) Chelates with Hexadentate Ligands Derived from Triethylenetetramine and Various Salicylaldehydes. Synthesis, Characterization, and Solution State Studies of a New 2T ↔ 6A Spin Equilibrium System. J. Am. Chem. Soc. 1976, 98, 4824–4834. [Google Scholar] [CrossRef]
- Takahashi, K.; Hasegawa, Y.; Sakamoto, R.; Nishikawa, M.; Kume, S.; Nishibori, E.; Nishihara, H. Solid-State Ligand-Driven Light-Induced Spin Change at Ambient Temperatures in Bis(dipyrazolylstyrylpyridine)iron(II) Complexes. Inorg. Chem. 2012, 51, 5188–5198. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.; Hrudka, J.J.; Igimbayeva, D.; Daku, L.M.L.; Shatruk, M. A Simple Approach for Predicting the Spin State of Homoleptic Fe(II) Tris-diimine Complexes. J. Am. Chem. Soc. 2017, 139, 6437–6447. [Google Scholar] [CrossRef] [PubMed]
- Guionneau, P.; Marchivie, M.; Bravic, G.; Létard, J.-F.; Chasseau, D. Structural Aspects of Spin Crossover. Example of the [FeIILn(NCS)2] Complexes. Top. Curr. Chem. 2004, 234, 97–128. [Google Scholar]
- Marchivie, M.; Guionneau, P.; Letard, J.F. Photo-induced spin-transition: the role of the iron(II) environment distortion. Acta Crystallogr. Sect. B Struct. Sci. 1991, 15, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Halcrow, M.A. Structure:function relationships in molecular spin-crossover complexes. Chem. Soc. Rev. 2011, 40, 4119–4142. [Google Scholar] [CrossRef] [PubMed]
- Lluncll, M.; Casanova, D.; Circra, J.; Bofill, J.M.; Alcmany, P.; Alvarez, S.; Pinsky, M.; Avnir, D. SHAPE; v2.1; University of Barcelona and The Hebrew University of Jerusalem: Barcelona, Spain, 2005. [Google Scholar]
- Gaussian 03; revision C.02; Gaussian Inc.: Wallingford, CT, USA, 2004.
- Kroll, N.; Theilacker, K.; Schoknecht, M.; Baabe, D.; Wiedemann, D.; Kaupp, M.; Grohmann, A.; Hörner, G. Controlled ligand distortion and its consequences for structure, symmetry, conformation and spin-state preferences of iron(II) complexes. Dalton Trans. 2015, 44, 19232–19247. [Google Scholar] [CrossRef] [PubMed]
- Matouzenko, G.S.; Jeanneau, E.; Verat, A.Y.; de Gaetano, Y. The Nature of Spin Crossover and Coordination Core Distortion in a Family of Binuclear Iron(II) Complexes with Bipyridyl-Like Bridging Ligands. Eur. J. Inorg. Chem. 2012, 969–977. [Google Scholar] [CrossRef]
- Cook, L.J.K.; Thorp-Greenwood, F.L.; Comyn, T.P.; Cespedes, O.; Chastanet, G.; Halcrow, M.A. Unexpected Spin-Crossover and a Low-Pressure Phase Change in an Iron(II) Dipyrazolylpyridine Complex Exhibiting a High-Spin Jahn–Teller Distortion. Inorg. Chem. 2015, 54, 6319–6330. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Cheng, X.; Gao, C.; Wang, B.; Wang, Z.; Gao, S. Structural Distortion Controlled Spin-Crossover Behavior. Cryst. Growth Des. 2015, 15, 2565–2567. [Google Scholar] [CrossRef]
- CRYSTALSTRUCTURE, version 4.2.1; Rigaku/MSC: The Woodlands, TX, USA, 2015.
X | H | Cl | Cl | CH3O | CH3S |
---|---|---|---|---|---|
T/K | 400 | 100 | 400 | 100 | 100 |
Formula weight | 689.20 | 758.09 | 758.09 | 749.25 | 845.46 |
Crystal system | monoclinic | monoclinic | monoclinic | monoclinic | orthorhombic |
Space group | P21/n | P21/c | P21/c | Cc | P212121 |
a/Å | 16.140(3) | 14.787(2) | 15.857(4) | 12.084(3) | 12.656(3) |
b/Å | 10.9603(17) | 11.170(2) | 10.588(3) | 12.822(3) | 15.676(4) |
c/Å | 17.049(3) | 18.164(3) | 19.084(4) | 19.328(5) | 16.897(4) |
β/° | 102.736(9) | 109.071(8) | 107.947(11) | 101.716(12) | 90. |
V/Å3 | 2941.8(9) | 2835.4(8) | 3048.1(13) | 2932.3(12) | 3352.1(13) |
Z | 4 | 4 | 4 | 4 | 4 |
dcalcd./g·cm−3 | 1.556 | 1.776 | 1.652 | 1.697 | 1.675 |
μ (MoKα)/mm−1 | 0.763 | 0.983 | 0.914 | 0.778 | 0.811 |
No. of unique reflections | 5760 | 6481 | 6966 | 6488 | 7660 |
R (F) (I > 2σ (I)) a | 0.0830 | 0.0698 | 0.0830 | 0.0361 | 0.0503 |
wR (F2) (all reflections) b | 0.2959 | 0.1978 | 0.2863 | 0.0908 | 0.1193 |
Goodness-of-fit parameter | 0.981 | 1.047 | 1.009 | 1.052 | 1.068 |
Flack parameter | - | - | - | −0.008(4) | 0.002(9) |
X | H (400 K) | Cl (100 K) | Cl (400 K) | CH3O (100 K) | CH3S (100 K) |
---|---|---|---|---|---|
d (Fe1–N1) | 2.134(6) | 1.956(4) | 2.153(4) | 2.209(3) | 1.991(4) |
d (Fe1–N2) | 2.060(5) | 1.896(4) | 2.098(4) | 2.115(3) | 1.907(4) |
d (Fe1–N3) | 2.161(5) | 1.963(4) | 2.159(5) | 2.203(3) | 1.981(4) |
d (Fe1–N4) | 2.129(6) | 1.960(4) | 2.149(4) | 2.159(3) | 1.956(4) |
d (Fe1–N5) | 2.067(5) | 1.901(4) | 2.088(4) | 2.136(3) | 1.901(4) |
d (Fe1–N6) | 2.160(6) | 1.977(4) | 2.194(4) | 2.218(3) | 1.978(5) |
Average | 2.12 | 1.94 | 2.14 | 2.17 | 1.95 |
X | H (400 K) | Cl (100 K) | Cl (400 K) | CH3O (100 K) | CH3S (100 K) |
---|---|---|---|---|---|
ϕ (N1–Fe1–N2) | 75.2(2) | 79.55(17) | 74.14(16) | 74.73(12) | 78.90(18) |
ϕ (N1–Fe1–N3) | 150.8(2) | 159.31(17) | 148.07(18) | 147.31(12) | 158.41(18) |
ϕ (N1–Fe1–N4) | 96.0(2) | 92.36(15) | 92.48(15) | 103.25(12) | 93.7(2) |
ϕ (N1–Fe1–N5) | 105.6(2) | 97.50(16) | 102.35(16) | 116.23(12) | 104.09(18) |
ϕ (N1–Fe1–N6) | 91.5(2) | 93.41(16) | 95.74(16) | 88.78(12) | 89.80(19) |
ϕ (N2–Fe1–N3) | 75.5(2) | 79.76(17) | 73.93(17) | 73.65(12) | 79.53(18) |
ϕ (N2–Fe1–N4) | 105.9(2) | 101.08(16) | 105.09(15) | 125.05(12) | 98.96(19) |
ϕ (N2–Fe1–N5) | 177.6(2) | 177.03(16) | 176.50(15) | 156.74(12) | 176.62(19) |
ϕ (N2–Fe1–N6) | 102.8(2) | 99.94(17) | 105.62(16) | 87.91(12) | 102.61(19) |
ϕ (N3–Fe1–N4) | 91.17(19) | 91.28(15) | 95.20(16) | 88.33(12) | 89.0(2) |
ϕ (N3–Fe1–N5) | 103.7(2) | 103.19(16) | 109.57(18) | 96.25(12) | 97.45(18) |
ϕ (N3–Fe1–N6) | 95.7(2) | 90.46(16) | 93.30(17) | 98.11(12) | 95.55(19) |
ϕ (N4–Fe1–N5) | 76.4(2) | 79.34(16) | 74.76(15) | 74.30(12) | 79.4(2) |
ϕ (N4–Fe1–N6) | 158.89(18) | 158.89(18) | 149.28(16) | 146.72(12) | 158.42(18) |
ϕ (N5–Fe1–N6) | 79.78(18) | 79.78(18) | 74.58(15) | 72.55(12) | 79.10(19) |
Parameters a | H b | Cl | CH3O | CH3S | ||
---|---|---|---|---|---|---|
T/K | 173 | 400 c | 100 | 400 c | 100 | 100 |
Σ/° | 90.1 | 130.3 | 90.8 | 142.0 | 158.8 | 96.6 |
Θ/° | 293 | 417 | 310 | 455 | 596 | 326 |
α/° | 79.7 | 75.5 | 79.6 | 74.4 | 73.8 | 79.2 |
CShM (Oh) | 2.224 | 4.327 | 2.283 | 5.019 | 6.919 | 2.484 |
ϕ/° | 179.14(11) | 177.6(2) | 177.03(16) | 176.50(15) | 156.74(12) | 176.6(2) |
θ/° | 92.5 | 95.12(7) | 91.06(4) | 93.04(5) | 93.41(3) | 94.99(5) |
dcalc. (N–N)/Å d | 2.855 | 2.854 | 2.854 | 2.852 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimura, A.; Ishida, T. Pybox-Iron(II) Spin-Crossover Complexes with Substituent Effects from the 4-Position of the Pyridine Ring (Pybox = 2,6-Bis(oxazolin-2-yl)pyridine). Inorganics 2017, 5, 52. https://doi.org/10.3390/inorganics5030052
Kimura A, Ishida T. Pybox-Iron(II) Spin-Crossover Complexes with Substituent Effects from the 4-Position of the Pyridine Ring (Pybox = 2,6-Bis(oxazolin-2-yl)pyridine). Inorganics. 2017; 5(3):52. https://doi.org/10.3390/inorganics5030052
Chicago/Turabian StyleKimura, Akifumi, and Takayuki Ishida. 2017. "Pybox-Iron(II) Spin-Crossover Complexes with Substituent Effects from the 4-Position of the Pyridine Ring (Pybox = 2,6-Bis(oxazolin-2-yl)pyridine)" Inorganics 5, no. 3: 52. https://doi.org/10.3390/inorganics5030052
APA StyleKimura, A., & Ishida, T. (2017). Pybox-Iron(II) Spin-Crossover Complexes with Substituent Effects from the 4-Position of the Pyridine Ring (Pybox = 2,6-Bis(oxazolin-2-yl)pyridine). Inorganics, 5(3), 52. https://doi.org/10.3390/inorganics5030052