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Abstract: Tetrazolato-bridged dinuclear platinum(II) complexes ([{cis-Pt(NH3)2}2(µ-OH)(µ-5-R-
tetrazolato-N2,N3)]2+; tetrazolato-bridged complexes) are a promising source of next-generation
platinum-based drugs. β-Cyclodextrin (β-CD) forms inclusion complexes with bulky organic
compounds or substituents, changing their polarity and molecular dimensions. Here, we determined
by 1H-NMR spectroscopy, the stability constants for inclusion complexes formed between β-CD
and tetrazolato-bridged complexes with a bulky, lipophilic substituent at tetrazole C5 (complexes
1–3, phenyl, n-nonyl, and adamantyl substitution, respectively). We then determined the in vitro
cytotoxicity and in vivo antitumor efficacy of complexes 1–3 against the Colon-26 colorectal cancer
cell line in the absence or presence of equimolar β-CD. Compared with the platinum-based anticancer
drug oxaliplatin (1R,2R-diaminocyclohexane)oxalatoplatinum(II)), complex 2 had similar cytotoxicity,
complex 3 was moderately cytotoxic, and complex 1 was the least cytotoxic. The cytotoxicity of the
complexes decreased in the presence of β-CD. When we examined the in vivo antitumor efficacy of
complexes 1–3 (10 mg/kg) against homografted Colon-26 colorectal tumors in male BALB/c mice,
they showed a relatively low tumor growth inhibition compared with oxaliplatin. However, in the
presence of β-CD, complex 3 had higher in vivo antitumor efficacy than oxaliplatin, suggesting a new
direction for future research into tetrazolato-bridged complexes with high in vivo antitumor activity.
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1. Introduction

Platinum(II) coordination compounds are an important group of pharmacophores in cancer
chemotherapy. The first Pt(II) coordination compound approved for clinical use was cisplatin
(cis-diamminedichloridoplatinum(II)) in the 1970s [1–3], and since then, other related compounds have
been developed—such as carboplatin (cis-diammine(1,1-cyclobutanedicarboxylato)platinum(II)) [4,5]
and oxaliplatin (1R,2R-diaminocyclohexane)oxalatoplatinum(II)) [6,7]—which have fewer side effects
than cisplatin and have been approved for different clinical applications (Figure 1). These Pt-based
drugs remain some of the most utilized agents in current cancer chemotherapy.
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Figure 1. Chemical structures of (a) the platinum-based anticancer drugs cisplatin, carboplatin, and 
oxaliplatin, (b) the tetrazolato-bridged complexes 5-H-Y and 1–3, and (c) β-cyclodextrin (β-CD). 

Platinum(II) complexes with the general formula cis-[PtL2X2] (where L = an ammine or amine, 
and X = a leaving group, such as a halide or dicarboxylate) and antitumor efficacy are mostly much 
less effective against cisplatin-resistant cancer cells than against its parent cancer cells, due to their 
similar DNA-binding modes [8–10]. Therefore, we have been systematically modifying these general 
Pt(II) complexes [11–13] to provide structurally unconventional platinum complexes with antitumor 
spectra distinct from those of current platinum-based drugs [14–18]. 

The importance of the platinum–DNA interaction for antitumor efficacy has been shown for 
cisplatin, which forms covalent DNA adducts, such as 1,2-intrastrand and interstrand crosslinks [19–
24], that induce local conformational changes in the DNA structure. Although these conformational 
changes are major determinants of the cytotoxicity of cisplatin, it remains unknown whether the most 
important factor in cytotoxicity is the formation of the DNA adducts themselves or the resulting 
conformational changes. We hypothesized that DNA adduct formation is the most important factor 
and thus designed azolato-bridged dinuclear Pt(II) complexes with the general formula [{cis-
Pt(NH3)2}2-(μ-OH)(μ-azolato)]2+ (azolato = pyrazolato, 1,2,3-triazolato, or tetrazolato) [11–13] that can 
crosslink two adjacent nucleobases with minimal kinking of the double helix [25,26] and escape from 
the DNA repair systems of tumor cells [27,28]. These complexes consist of two Pt(II) coordination 
spheres bridged by azolato and hydroxo anions, the latter of which acts as a leaving group, enabling 
bifunctional covalent binding to DNA. Due to their positive charges, these complexes have 
multimodal DNA binding modes [29,30], a characteristic that makes these series of complexes 
cytotoxic in many human tumor cell lines and circumvents the cross-resistance to cisplatin [31–34]. 

Recently, we reported the structure–activity relationships of a series of tetrazolato-bridged 
dinuclear platinum(II) complexes ([{cis-Pt(NH3)2}2-(μ-OH)(μ-5-R-tetrazolato-N2,N3)]2+; tetrazolato-
bridged complexes) with a diverse range of substituents introduced at tetrazole C5 of [{cis-Pt(NH3)2}2-
(μ-OH)(μ-tetrazolato-N2,N3)]2+ (5-H-Y) and concluded that this series was a promising source of 
next-generation platinum-based drugs. For instance, against the mouse homografted Colon-26 
colorectal tumor, two of the derivatives exhibited much higher in vivo antitumor efficacy than 
oxaliplatin [35], which is currently used for the treatment of colorectal cancer. 

To build on our previous research, here we report the in vitro cytotoxicity and in vivo antitumor 
efficacy of three tetrazolato-bridged complexes, each with a bulky, lipophilic substituent at tetrazole 
C5 ([{cis-Pt(NH3)2}2(μ-OH)(μ-5-phenyltetrazolato-N2,N3](NO3)2 (1), [{cis-Pt(NH3)2}2(μ-OH)(μ-5-
nonyltetrazolato-N2,N3] (NO3)2 (2), and [{cis-Pt(NH3)2}2(μ-OH)(μ-5-adamantyltetrazolato-N2,N3] 

Figure 1. Chemical structures of (a) the platinum-based anticancer drugs cisplatin, carboplatin,
and oxaliplatin, (b) the tetrazolato-bridged complexes 5-H-Y and 1–3, and (c) β-cyclodextrin (β-CD).

Platinum(II) complexes with the general formula cis-[PtL2X2] (where L = an ammine or amine,
and X = a leaving group, such as a halide or dicarboxylate) and antitumor efficacy are mostly much
less effective against cisplatin-resistant cancer cells than against its parent cancer cells, due to their
similar DNA-binding modes [8–10]. Therefore, we have been systematically modifying these general
Pt(II) complexes [11–13] to provide structurally unconventional platinum complexes with antitumor
spectra distinct from those of current platinum-based drugs [14–18].

The importance of the platinum–DNA interaction for antitumor efficacy has been shown
for cisplatin, which forms covalent DNA adducts, such as 1,2-intrastrand and interstrand
crosslinks [19–24], that induce local conformational changes in the DNA structure. Although these
conformational changes are major determinants of the cytotoxicity of cisplatin, it remains unknown
whether the most important factor in cytotoxicity is the formation of the DNA adducts themselves or the
resulting conformational changes. We hypothesized that DNA adduct formation is the most important
factor and thus designed azolato-bridged dinuclear Pt(II) complexes with the general formula
[{cis-Pt(NH3)2}2-(µ-OH)(µ-azolato)]2+ (azolato = pyrazolato, 1,2,3-triazolato, or tetrazolato) [11–13]
that can crosslink two adjacent nucleobases with minimal kinking of the double helix [25,26] and
escape from the DNA repair systems of tumor cells [27,28]. These complexes consist of two Pt(II)
coordination spheres bridged by azolato and hydroxo anions, the latter of which acts as a leaving
group, enabling bifunctional covalent binding to DNA. Due to their positive charges, these complexes
have multimodal DNA binding modes [29,30], a characteristic that makes these series of complexes
cytotoxic in many human tumor cell lines and circumvents the cross-resistance to cisplatin [31–34].

Recently, we reported the structure–activity relationships of a series of tetrazolato-bridged
dinuclear platinum(II) complexes ([{cis-Pt(NH3)2}2-(µ-OH)(µ-5-R-tetrazolato-N2,N3)]2+;
tetrazolato-bridged complexes) with a diverse range of substituents introduced at tetrazole
C5 of [{cis-Pt(NH3)2}2-(µ-OH)(µ-tetrazolato-N2,N3)]2+ (5-H-Y) and concluded that this series was
a promising source of next-generation platinum-based drugs. For instance, against the mouse
homografted Colon-26 colorectal tumor, two of the derivatives exhibited much higher in vivo
antitumor efficacy than oxaliplatin [35], which is currently used for the treatment of colorectal cancer.

To build on our previous research, here we report the in vitro cytotoxicity and in vivo
antitumor efficacy of three tetrazolato-bridged complexes, each with a bulky, lipophilic
substituent at tetrazole C5 ([{cis-Pt(NH3)2}2(µ-OH)(µ-5-phenyltetrazolato-N2,N3](NO3)2 (1),
[{cis-Pt(NH3)2}2(µ-OH)(µ-5-nonyltetrazolato-N2,N3] (NO3)2 (2), and [{cis-Pt(NH3)2}2(µ-OH)(µ-5-
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adamantyltetrazolato-N2,N3] (NO3)2 (3)), against the Colon-26 colorectal cancer cell line.
We hypothesized that the addition of the bulky, lipophilic substituents would increase the membrane
permeability of the complexes and thereby increase antitumor efficacy. We also examined the effects
of the presence of β-cyclodextrin (β-CD) on the actions of the compounds because β-CD can form
an inclusion complex with bulky organic compounds or substituents and change their polarity or
molecular dimensions, thereby altering their efficacy compared with the non-complexed compound.

2. Results

2.1. Determination of the Stability Constant of Inclusion Complexes with β-CD

β-CD is a cyclic oligosaccharide comprising seven (α-1,4)-linked D-glucopyranose units arranged
in a doughnut shape, with a hydrophilic outer surface and a somewhat lipophilic central cavity
(Figure 1). Generally, β-CD increases drug permeability through biological membranes and improves
drug bioavailability. To find out if this is also true for tetrazolato-bridged complexes, we determined the
stability constants (Ks) for inclusion complexes formed between complexes 1–3, oxaliplatin, or 5-H-Y
and β-CD. The Ks values were determined from the 1H-NMR chemical shift of the Pt(II) complexes
(0.2 mM) in different concentrations of β-CD (0.2–2 mM) in D2O at 293 K. The Ks values shown in Table 1
were obtained using the Benesi–Hildebrand equation [36–38], assuming a 1:1 guest/host interaction
(Pt(II) complex/β-CD). For complexes 1–3, the observed linear correlation (Figure 2) confirmed that
they formed a 1:1 inclusion complex with β-CD. No definite directional downfield/upfield shift or
chemical shift change in protons originating from the guest compounds was observed for oxaliplatin
or 5-H-Y, in the presence of β-CD, within the concentration range examined. This implied that they
weakly associate with β-CD and that the 1:1 inclusion complexes for complexes 1–3 were formed
via interactions between the substituent at tetrazole C5 and the lipophilic surface inside the β-CD
cavity. The highest stability constant was obtained for complex 3 (adamantyl group at tetrazole C5) and
decreased by approximately one order of magnitude in the following order of complexes: 3 > 2 (n-nonyl
group at tetrazole C5) > 1 (phenyl group at tetrazole C5). The order of the stability constants was
somewhat consistent with previously reported data: The stability constants for complexes containing
adamantane moieties are between 104 and 105 M−1 in water [39,40], those for a series based on the
cationic surfactant cetyltrimethylammonium bromide (CTAB) are mostly within the range of 103 to
104 M−1 [41], and those for benzene [42] or phenylalanine [43] are less than 103 M−1. The Ks value for
the inclusion complex between complex 3 and β-CD indicates that they form a tight inclusion complex,
in which the adamantyl group is located within the β-CD cavity. It is generally considered that β-CD
affects drug biodistribution and elimination only when Ks is greater than 105 M−1 [44]. Therefore,
the in vivo antitumor efficacy study described in later sections was performed with a 1:1 (molar ratio)
mixture of complex 3 with β-CD, in addition to complex 3 alone, to examine how the formation of the
β-CD inclusion complex affects tumor growth inhibition.
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Figure 2. Benesi–Hildebrand plots of 0.2 mM of complexes 1 ((a) R2 = 0.997), 2 ((b), R2 = 0.999) and
3 ((c) R2 = 0.990) for various concentrations of β-CD (0.2–2 mM) at 293 K in D2O, as assessed by 1H
NMR titration.
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Table 1. Stability constant (Ks) of Pt(II) complex/β-cyclodextrin (β-CD), as determined from the
1H-NMR chemical shift of Pt(II) complexes (0.2 mM) in different concentrations of β-CD (0.2–2 mM) in
D2O at 293 K.

Pt(II) Complex Ks/M−1

Oxaliplatin n. d. a

5-H-Y n. d. a

1 (1.81 ± 1.28) × 103

2 (1.30 ± 0.26) × 104

3 (1.27 ± 0.03) × 105

a Not determined since no definite directional downfield/upfield shift or no chemical shift change on protons
originating from the guest compounds was observed.

2.2. In Vitro Cytotoxicity

We evaluated the in vitro cytotoxicity of four platinum(II) complexes—5-H-Y and
complexes 1–3—against the Colon-26 colorectal cancer cell line in the absence or
presence of equimolar β-CD. Oxaliplatin was used as the positive control. The Colon-26
cells were exposed to each of the compounds for 24 or 48 h, after which an MTS
(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium,
inner salt) assay was used to determine the half-maximal inhibitory concentrations (IC50) of the
complexes (Table 2). As expected, the longer exposure time (48 h) provided lower IC50 values for
all of the tested compounds in the absence of β-CD. When the shorter exposure time was used
(24 h), in the absence of β-CD, 5-H-Y had the highest cytotoxicity and was approximately 20 times
more cytotoxic than oxaliplatin; complex 2 had a level of cytotoxicity similar to that of oxaliplatin,
complex 3 was moderately cytotoxic, and complex 1 had the least cytotoxicity. β-CD alone showed
no cytotoxicity (data not shown). In the presence of β-CD, the cytotoxicity of each of the complexes
decreased, particularly that of oxaliplatin (24-h exposure), complex 1 (48-h exposure) and 3 (both 24 h
and 48 h exposure). Only complex 3 showed a marked decrease in cytotoxicity at both exposure
times, probably because this complex possessed an adamantyl group and so likely formed a tight
inclusion complex with β-CD, as indicated by the Ks value of the 1:1 inclusion complex. In contrast,
for 5-H-Y, which did not have an additional substituent, and complex 2, which had a phenyl group at
tetrazole C5, there was little difference between the IC50 values in the absence or presence of β-CD
(+β-CD/−β-CD ratio in Table 2).

Table 2. In vitro cytotoxicity (IC50) of oxaliplatin, 5-H-Y, and derivatives of 5-H-Y with bulky
substitutions at tetrazole C5 (complexes 1–3) against Colon-26 colorectal cancer cells in the absence
(−β-CD) or presence (+β-CD) of β-cyclodextrin (β-CD). +β-CD/−β-CD values are the ratios of the
mean IC50 values in the presence or absence of β-CD.

Pt(II) Complex
Mean IC50 ± SD/µM (n = 6)

−β-CD +β-CD +β-CD/−β-CD

Oxaliplatin (24 h) a 11 ± 3 28 ± 3 2.5
Oxaliplatin (48 h) b 5.7 ± 1.2 7.9 ± 0.3 1.4

5-H-Y (24 h) a 0.59 ± 0.21 0.74 ± 0.03 1.3
5-H-Y (48 h) b 0.23 ± 0.09 0.25 ± 0.02 1.1

1 (24 h) a >360 >270 -
1 (48 h) b 43 ± 1 >270 >6.3
2 (24 h) a 6.3 ± 0.7 5.6 ± 0.5 0.9
2 (48 h) b 4.9 ± 0.6 7.4 ± 0.2 1.5
3 (24 h) a 113 ± 8 >270 >2.4
3 (48 h) b 109 ± 10 >270 >2.5

a Exposed to the Pt(II) complex for 24 h; b exposed to the Pt(II) complex for 48 h.
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2.3. In Vivo Antitumor Efficacy

We examined the in vivo antitumor efficacy of complexes 1–3 against homografted Colon-26
colorectal tumors in male BALB/c mice. This was a preliminary study, in which the same dosage
was used for all of the compounds tested, to ensure that the animals survived for at least one week.
Complexes 1–3, oxaliplatin, or a 1:1 (molar ratio) mixture of complex 3 with β-CD were dissolved in
5% glucose and administered to the mice as a single dose (10 mg (Pt complex)/kg) via the tail vein
on day 0, which was 7 days after their inoculation with the Colon-26 colorectal cancer cells. No mice
in any of the groups died and none showed significant body weight loss (Figure 3a). No marked
tumor growth inhibition was observed in the mice treated with complexes 1–3: The mean terminal
tumor volume in the mice treated with complexes 1–3 was 90%, 83%, and 89% of that in the control
group, respectively, and the value for oxaliplatin was 54% (Figure 3b). However, when complex 3 was
administered as a 1:1 (molar ratio) mixture with β-CD, marked tumor growth inhibition was observed
five times greater than that when complex 3 was administered alone (mean terminal tumor volume,
44% of that in the control group) and was slightly more effective than oxaliplatin (Figure 3b).

Inorganics 2019, 7, x FOR PEER REVIEW 5 of 10 

 

We examined the in vivo antitumor efficacy of complexes 1–3 against homografted Colon-26 
colorectal tumors in male BALB/c mice. This was a preliminary study, in which the same dosage was 
used for all of the compounds tested, to ensure that the animals survived for at least one week. 
Complexes 1–3, oxaliplatin, or a 1:1 (molar ratio) mixture of complex 3 with β-CD were dissolved in 
5% glucose and administered to the mice as a single dose (10 mg (Pt complex)/kg) via the tail vein on 
day 0, which was 7 days after their inoculation with the Colon-26 colorectal cancer cells. No mice in 
any of the groups died and none showed significant body weight loss (Figure 3a). No marked tumor 
growth inhibition was observed in the mice treated with complexes 1–3: The mean terminal tumor 
volume in the mice treated with complexes 1–3 was 90%, 83%, and 89% of that in the control group, 
respectively, and the value for oxaliplatin was 54% (Figure 3b). However, when complex 3 was 
administered as a 1:1 (molar ratio) mixture with β-CD, marked tumor growth inhibition was 
observed five times greater than that when complex 3 was administered alone (mean terminal tumor 
volume, 44% of that in the control group) and was slightly more effective than oxaliplatin (Figure 3b).  

 

Figure 3. (a) Body weight and (b) tumor volume in male BALB/c mice laterally homografted with 
Colon-26 colorectal cancer cells and then treated with 10 mg kg−1 oxaliplatin, complexes 1–3, a 1:1 
(molar ratio) mixture of complex 3 and β-cyclodextrin (β-CD), or vehicle. Mice were treated with a 
single dose of the test compounds or vehicle on day 0, which was 7 days after their inoculation with 
the Colon-26 colorectal cancer cells. Body weights and tumor volumes were measured weekly, 
starting on day 0. Each data point represents the mean of six body weights or tumor volumes, and the 
error bars indicate standard deviations of the mean. 

3. Discussion 

Previously, we found that a variety of substitutions at tetrazole C5 increased the cytotoxicity of 
the tetrazolato-bridged complex, and that complexes with an ester group substituted at tetrazole C5, 
such as [{cis-Pt(NH3)2}2(μ-OH)(μ-ethyl tetrazolato-5-carboxylate-N2,N3)](NO3)2 and [{cis-
Pt(NH3)2}2(μ-OH)(μ-propyl tetrazolato-5-acetate-N2,N3)](NO3)2, had much higher antitumor 
efficacies than oxaliplatin [35]. To build on this previous research, here we examined the efficacies of 
derivatives with bulky alkyl or aryl groups at tetrazole C5. 

Compared with 5-H-Y, complexes 1–3 were much less cytotoxic against the Colon-26 cell line. 
Comparable results were obtained for cytotoxicity against L1210 murine leukemia cell lines [35]. 
Therefore, the introduction of bulky substituents tended to produce a lower in vitro cytotoxicity, 
possibly because the DNA interaction mode and cellular accumulation of complex 1 and 2 are distinct 
from those of 5-H-Y, and from other derivatives with a relatively small substituent at tetrazole C5 
[34,45]. The cytotoxicity of oxaliplatin and complex 3 was markedly decreased in the presence of 
equimolar β-CD, whereas the cytotoxicity of 5-H-Y and complex 2 remained largely unchanged. 
Complex 3 possesses an adamantyl group that forms a tight inclusion complex with β-CD, as 
indicated by the stability constant. β-CD and other CDs, and their inclusion complexes, are unable to 

Figure 3. (a) Body weight and (b) tumor volume in male BALB/c mice laterally homografted with
Colon-26 colorectal cancer cells and then treated with 10 mg kg−1 oxaliplatin, complexes 1–3, a 1:1
(molar ratio) mixture of complex 3 and β-cyclodextrin (β-CD), or vehicle. Mice were treated with
a single dose of the test compounds or vehicle on day 0, which was 7 days after their inoculation with
the Colon-26 colorectal cancer cells. Body weights and tumor volumes were measured weekly, starting
on day 0. Each data point represents the mean of six body weights or tumor volumes, and the error
bars indicate standard deviations of the mean.

3. Discussion

Previously, we found that a variety of substitutions at tetrazole C5 increased the cytotoxicity
of the tetrazolato-bridged complex, and that complexes with an ester group substituted at
tetrazole C5, such as [{cis-Pt(NH3)2}2(µ-OH)(µ-ethyl tetrazolato-5-carboxylate-N2,N3)](NO3)2 and
[{cis-Pt(NH3)2}2(µ-OH)(µ-propyl tetrazolato-5-acetate-N2,N3)](NO3)2, had much higher antitumor
efficacies than oxaliplatin [35]. To build on this previous research, here we examined the efficacies of
derivatives with bulky alkyl or aryl groups at tetrazole C5.

Compared with 5-H-Y, complexes 1–3 were much less cytotoxic against the Colon-26 cell line.
Comparable results were obtained for cytotoxicity against L1210 murine leukemia cell lines [35].
Therefore, the introduction of bulky substituents tended to produce a lower in vitro cytotoxicity,
possibly because the DNA interaction mode and cellular accumulation of complex 1 and 2 are distinct
from those of 5-H-Y, and from other derivatives with a relatively small substituent at tetrazole C5 [34,45].
The cytotoxicity of oxaliplatin and complex 3 was markedly decreased in the presence of equimolar
β-CD, whereas the cytotoxicity of 5-H-Y and complex 2 remained largely unchanged. Complex 3
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possesses an adamantyl group that forms a tight inclusion complex with β-CD, as indicated by the
stability constant. β-CD and other CDs, and their inclusion complexes, are unable to cross the cell
membrane. Therefore, the reduction in cytotoxicity induced by β-CD could be due to a reduction in
the speed of release of the platinum(II) complex from the β-CD inclusion complex.

Although the in vitro cytotoxicity results for complexes 1–3 suggest that the substitution of
relatively bulky alkyl or aryl groups at tetrazole C5 is not a successful approach for improving
antitumor efficacy, because β-CD decreased the cytotoxicity of the compounds, we did find in vivo
that β-CD markedly enhanced the antitumor efficacy of complex 3 until it was higher than that of
oxaliplatin. Some anticancer drugs complexed with a cyclodextrin have increased bioavailability and
reduced toxicity, indicating that complexation with cyclodextrin changes the polarity and molecular
dimensions of the compound. The present results suggest that the water solubility of complex 3
was increased by partial inclusion into β-CD, which covered the lipophilic part of the complex.
Since opposite trends were observed in vitro and in vivo, the improved water solubility and increase in
the molecular dimensions of complex 3 must have improved its delivery to the tumor site and reduced
its cellular accumulation; the increase in the molecular dimensions likely means that the complex was
unaffected by the enhanced permeability and retention effect. Together, the present results suggest
that substitution with substituents bulkier than those examined here may be a promising means of
identifying highly antitumor-active lead tetrazolato-bridged complexes.

With respect to methodology, the present in vivo study was a preliminary study in which
the same dosage was used for all of the compounds tested to ensure that the animals survived
for at least one week. Therefore, it is possible that the antitumor efficacy of the complexes can
be increased by increasing the dosage. Furthermore, it may be possible to combine complex 3
with other β-CD derivatives, such as methyl-β-CD, (2-hydroxyalkyl)-β-CD, or other specially
functionalized cyclodextrins. Further studies are warranted. We have already designed and synthesized
tetrazolato-bridged complexes with an adamantyl group linked by an ester or alkyl group at tetrazole
C5, and in future experiments, we intend to find out which derivative is most suitable for complexation
with β-CD.

4. Materials and Methods

4.1. Materials

Tetrazolato-bridged complexes with the formula [{cis-Pt(NH3)2}2(µ-OH)(µ-5-R-tetrazolato-N2,N3)]
(NO3)2 (complexes 1–3, 5-H-Y) were prepared using previously reported methods [13,31,34,35].
Oxaliplatin and β-CD were purchased from Tokyo Chemical Industry (Tokyo, Japan) and Wako Pure
Chemical (Osaka, Japan), respectively.

4.2. Determination of Stability Constant

The stability constant (Ks) of Pt(II) complex/β-CD was determined by analysis of the 1H-NMR
chemical shift of Pt(II) complexes (0.2 mM) in different concentrations of β-CD (0.2–2 mM) in D2O at
293 K. To prevent changes of the resonance frequency due to the formation of an inclusion complex
between β-CD and the reference compound, 3-(Trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt
(TSP), a solution of TSP in D2O, sealed in a capillary tube, was placed inside an NMR tube. The NMR
tube was then placed in the sample solution and used as the reference (δ = 0). The Ks value was
obtained by using the Benesi–Hildebrand Equation (1), assuming a 1:1 guest/host interaction (Pt(II)
complex/β-CD):

1/∆δ = 1/(Ks ∆δmax [H]0) + 1/∆δmax, (1)

where ∆δ is the change in the 1H-NMR chemical shift, ∆δmax is the maximum possible change in the
1H-NMR chemical shift, [H]0 is the total β-CD concentration, and Ks is the stability constant.



Inorganics 2019, 7, 5 7 of 10

4.3. In Vitro Cytotoxicity Study

The murine colorectal cancer cell line Colon-26 was provided by RIKEN BioResource Center
through the National Bio-Resource Project of the Ministry of Education, Culture, Sports, Science,
and Technology of Japan. The Colon-26 mouse colorectal cells were maintained in RPMI-1640
containing 10% fetal bovine serum (Gibco; Life Technologies, Carlsbad, CA, USA), 100 U/mL penicillin,
and 100 mg/mL streptomycin (Wako, Osaka, Japan) in a humidified atmosphere of 5% CO2 at 310 K.
The Colon-26 cells (3 × 104 cells/mL; 100 µL/well) were seeded onto 96-well microplates (Corning,
Corning, NY, USA). All of the Pt(II) complexes tested, except for complex 2, were dissolved in water to
prepare 4 mM solutions. For assays in the presence of β-CD, each Pt(II) complex solution was mixed
with 12 mM β-CD aqueous solution in a 1:1 molar ratio and incubated for at least 10 min. Due to the
low solubility of complex 2, the concentrations of the solution or suspension of complex 2 were 0.25
or 1 mM for assays in the absence or presence of β-CD, respectively. After sterilization by filtration,
the solutions were diluted with water, and then 10 µL of each diluted solution was added to the wells
of the microplate. After incubation of the microplate for 23 or 47 h at 310 K, 10 µL of Cell Counting Kit-8
solution (Nacalai Tesque, Kyoto, Japan) was added to each well, and the incubation was continued
for an additional 1 h at 310 K. The absorbance of each well at a wavelength of 460 nm was measured
with a Spectra Max M5 microplate reader (Molecular Device; Orleans Drive Sunnyvale, CA, USA).
Each experiment was performed independently for six wells per drug concentration. Half-maximal
inhibitory concentrations (IC50) were calculated as the concentration that provided 50% formazan
production, relative to the control (no complex added), using the KaleidaGraph analytical software
(version 4; Synergy Software, Reading, PA, USA).

4.4. In Vivo Mouse Homografts

The homograft study was performed using BALB/c mice (male, 4 weeks old; Japan SLC,
Inc., Hamamatsu, Japan). The Colon-26 cells were maintained in 55-cm2 dishes containing
RPMI-1640 medium (Sigma-Aldrich (Merck), Darmstadt, HE, Germany) supplemented with 10%
fetal bovine serum (Gibco; Life Technologies, Carlsbad, CA, USA) containing 100 U/mL penicillin,
and 100 mg/mL streptomycin. The cultures were grown in a humidified atmosphere of 5% CO2 at
310 K. Cells were grown to 80%–90% confluence and then harvested with 0.25% trypsin/0.02%
ethylenediaminetetraacetic acid (Sigma-Aldrich (Merck), Darmstadt, HE, Germany) before each
subsequent passage.

The Colon-26 cells were subcutaneously injected into the lateral side of the mice (2 million
cells/flank). About 7 days later (tumor diameter, ca. 8 mm), the animals were randomly assigned
to the following eight study groups (n = 6 per group): Control, oxaliplatin, 5-H-Y, complexes 1–3,
and 1:1 (molar ratio) mixture of complex 3 and β-CD. Test substances were dissolved in 5% glucose
and administered by single intravenous injection to the Colon-26 cell-bearing mice. The control group
received 5% glucose (vehicle) only (total volume = 200 µL). The homograft tumor dimensions (d and D,
shortest and longest dimensions of the tumor, respectively) were measured once a week with a digital
caliper, and tumor volume (mm3) was calculated by using the equation d2D/2. The body weights were
measured weekly and statistically analyzed by means of one-way analysis of variance. This animal
study was carried out with approval from the Institutional Animal Care and Use Committee of Suzuka
University of Medical Science (Permission number: 34, 9 August 2017) and in accordance with all
applicable institutional animal experimentation regulations.

5. Conclusions

The approval of cisplatin for clinical use prompted a search for novel platinum coordination
compounds with improved efficacy. The tetrazolato-bridged complex can be greatly modified from
the basic structure that is in current clinical use, and these modified complexes are an important group
of potential next-generation platinum-based drug candidates. In the present study, the introduction
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of a bulky adamantyl group at tetrazole C5 provided the interesting finding that while the in vitro
cytotoxicity of the modified complex was reduced in the presence of β-CD, its in vivo antitumor
efficacy increased and was greater than that of the currently used colorectal cancer treatment,
oxaliplatin. This finding indicates a new direction for further drug discovery research to provide
tetrazolato-bridged complexes with high in vivo antitumor activity and less toxicity.
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