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Abstract: The reaction of [(Cp*Ir)2(µ-dmpm)(µ-H)][OTf] (2) [Cp* = η5-C5Me5, dmpm
= bis(dimethylphosphino)methane] with 2,3-dihydrofuran gives [(Cp*IrH)2(µ-dmpm){µ-(2,3-
dihydrofuranyl)}][OTf] (3) in an isolated yield of 70% via the C–H bond activation at the 5-position of
2,3-dihydrofuran. Complex 3 is slowly converted into [(Cp*Ir)2(µ-dmpm)(µ-C=C(H)CH2CH2OH)]
[OTf] (4) quantitatively via the proton-mediated C–O bond activation. The reaction of 2 with ethyl
vinyl ether gives [(Cp*Ir)2(µ-dmpm)(µ-CH=CH2)][OTf] (5) in the isolated yield of 64% via the
successive activation of C–H and C–O bonds.

Keywords: iridium complex; multinuclear complex; C–H activation; C–O cleavage; vinyl ether

1. Introduction

Vinyl ethers are versatile substrates used to synthesize various oxygen-containing organic compounds,
such as functionalized alkenes or ketones [1–5]. Many transition metal-catalyzed synthetic reactions using
vinyl ethers as starting materials, such as the Heck-type reaction [6–9], hydrofunctionalization [10–13],
cycloaddition [14–16], Claisen rearrangement [17–19], alcoholysis [20,21], and polymerization [22–24] have
been known. Further reactions involving the C–H [25–28] or C–O [29,30] bond activation of vinyl ethers
as a key step have been reported. These synthetic methods are powerful because there is no need for
the pre-functionalization of substrates and specificity in their skeletal rearrangement. To obtain insight
into the reaction mechanism and reactivity to develop better catalytic reactions, it must be important
to reveal the fundamental aspects of the activation of vinyl ethers by transition metal complexes.
However, although there are many studies on C–H [31–35] and C–O [36–41] bond activation reactions
by transition metal complexes, fundamental studies on the C–H and C–O bond activation of vinyl
ethers by transition metal complexes are relatively unexplored [42–53].

Meanwhile, much attention has been paid to the activation of organic molecules by multinuclear
complexes in expectation of the synergetic effect of the multi-metal centers. Therefore, various multimetallic
systems that are capable of the bond activation of organic substrates were disclosed [54–58]. We have
reported the facile activation of the sp2 C–H bonds of aromatic compounds and an olefin by
a diphosphine and hydrido-bridged diiridium complex, [(Cp*Ir)2(µ-dmpm)(µ-H)2]2+ (1) [Cp* =

η5-C5Me5, dmpm = bis(dimethylphosphino)methane], in which the cationic 32e− IrII–IrII complex,
[(Cp*Ir)2(µ-dmpm)(µ-H)]+ (2), would be a true active species [59–61]. In the course of our study on
the chemistry of 2, we have found that the reaction of 2 with vinyl ethers resulted in the activation
of the vinylic C–H bond followed by the activation of the sp2 C–O bond. In this paper, we report
the successive activation of C–H and C–O bonds of 2,3-dihydrofuran and ethyl vinyl ether by 2,
which affords µ-vinylidene and µ-vinyl complexes.

Inorganics 2019, 7, 121; doi:10.3390/inorganics7100121 www.mdpi.com/journal/inorganics

http://www.mdpi.com/journal/inorganics
http://www.mdpi.com
https://orcid.org/0000-0003-1520-5829
https://orcid.org/0000-0002-8362-2694
http://dx.doi.org/10.3390/inorganics7100121
http://www.mdpi.com/journal/inorganics
https://www.mdpi.com/2304-6740/7/10/121?type=check_update&version=3


Inorganics 2019, 7, 121 2 of 10

2. Results and Discussion

2.1. C–H Activation of 2,3-Dihydrofuran

As we previously reported, the treatment of 1 with methyl triflate at −30 ◦C followed by warming
to room temperature afforded the 32e− complex 2 as a purple powder, which is highly active for C–H
activation [60]. The addition of 2,3-dihydrofuran to the preformed 2 followed by stirring at 0 ◦C for
18 h gave complex 3 in an isolated yield of 70% via selective C–H activation at the 5-position and
iridation at the 4-position (Equation (1)). We have already reported the regioselective C−H activation
of furan at the 2-position by the reaction with preformed 2, giving stable product without C–O bond
activation [59]. In the 1H NMR spectrum of 3, two doublets due to hydrides were observed at δ
−16.27 (JPH = 32 Hz) and −18.23 (JPH = 42 Hz), which indicated that these hydrides coordinated to
each iridium center with terminal fashion. In the 13C{1H} NMR, a signal due to C5 was observed at a
lower field (δ 220.4), which indicated its carbene character. On the other hand, a signal due to C4 was
observed at a relatively high field (δ 47.4). By considering these signal patterns, the structure of 3 can
be described as oxacarbene (I) rather than µ-vinyl (II) [62], which would be simply formed via the C–H
activation at the right iridium center followed by the coordination of C=C moiety to the left iridium
center (Figure 1). The structure of 3 was confirmed by X-ray diffraction study (details are indicated in
the Supplementary Materials). The molecular geometry of 3 is shown in Figure 2. The length of the
Ir(1)–C(26) bond [1.978(11) Å] is slightly longer than that of typical iridium-carbon double bond [63,64]
but it is considerably shorter than that of the iridium-alkenyl carbon single bond [65,66]. The distance
between Ir(2) and C(26) [2.875(12) Å] indicates that there is no bonding interaction. Therefore, the solid
state structure of 3 can be described as the oxacarbene (I).
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2.2. C–O Bond Activation of 3

In a dichloromethane solution, complex 3 was slowly converted to a µ-vinylidene complex 4,
which was formed by the activation of the C–O bond (Equation (2)). After the reaction at room
temperature for 150 h, the quantitative formation of 4 was observed. In the 1H NMR spectrum of 4,
a signal due to the bridging hydride was observed at δ −17.97 as a triplet (JPH = 11 Hz), and a signal
due to the vinylic proton was observed at δ 5.21. In the 13C{1H} NMR spectrum, the signals due to the
α- and β-carbon of the vinylidene moiety were observed at δ 192.5 and 121.8, respectively. These signal
patterns are very similar to those of the vinylidene-bridged diiridium complexes, which have been
previously reported by Cowie et al. [67,68]. The structure of 4 was unequivocally confirmed by X-ray
diffraction study (Figure 3, details are indicated in the Supplementary Materials).
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The proton-mediated ring opening reaction of a [5-(2,3-dihydrofuranyl)]ruthenium complex has
been reported by Gunnoe [48]. Thus, we next examined the effect of Brønsted acid and base towards
the conversion of 3 into 4. When the solution of 3 in dichloromethane containing acetic acid (0.9 equiv.)
was stirred at room temperature, complete conversion into 4 was observed after 75 h, while the reaction
in the absence of the acid required 150 h (vide supra). The employment of stronger acid resulted in the
formation of unidentified byproduct, probably by the unexpected decomposition of the intermediate.
On the other hand, the addition of a base (2,2,6,6-tetramethylpiperidine) suppressed the conversion
into 4 (similar reaction of 3 in the presence of 2,2,6,6-tetramethylpiperidine (1.8 equiv.) resulted in
the formation of 4 in ca. 10% yield after 100 h). The employment of other base gave rise to the
formation of other byproduct, probably formed by the ligation to the iridium centers. These results
obviously suggest that the C–O bond cleavage is proton-mediated. A plausible pathway for the
transformation of 3 into 4 is as follows (Scheme 1): First, protonation at the oxygen atom in 3 affords
A or B. Then, the C–O bond cleavage and elimination of one of the iridium hydrides as a proton
occurs to give product 4. It should be noted that this pathway corresponds to the reverse reaction of
intramolecular hydroalkoxylation of 3-butyne-1-ols to produce 2,3-dihydrofurans [69].Inorganics 2019, 7, x FOR PEER REVIEW 4 of 10 
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2.3. Successive Activation of C–H and C–O Bonds of Ethyl Vinyl Ether

We next studied the reactivity of 2 with acyclic vinyl ether. The reaction of the preformed 2
with ethyl vinyl ether at 0 ◦C for 20 h gave a µ-vinyl complex 5 in an isolated yield of 64% with a
concomitant formation of ethanol (Equation (3)) (similar reactions of 2 with n-butyl vinyl ether and
isopropyl vinyl ether gave the same µ-vinyl complex 5 accompanied by the release of 1-butanol and
2-propanol, respectively). In the 1H NMR spectrum of 5, the two signals due to Cp* ligands were
non-equivalently observed at δ 1.93 and 1.78 and three signals due to µ-vinyl protons were observed at
δ 7.62, 3.82, and 2.02. No signals for hydrides were observed. In the 13C{1H} NMR spectrum, the signals
due to the µ-vinyl carbons were observed at δ 113.2 (Cα) and 45.6 (Cβ). All the NMR data of 5 were
consistent with the proposed structure, and the signal patterns were similar to the related dicationic
µ-vinyl complex [(Cp*Ir)2(µ-dmpm)(µ-CH=CH2)(µ-H)][OTf]2, which was previously reported by
us [70]. In addition, the structure of 5 was confirmed by X-ray diffraction study (Figure 4, details are
indicated in the Supplementary Materials).

Inorganics 2019, 7, 121 4 of 10 

 

 

Scheme 1. Plausible pathway for the transformation of 3 into 4. 

2.3. Successive Activation of C–H and C–O Bonds of Ethyl Vinyl Ether 

We next studied the reactivity of 2 with acyclic vinyl ether. The reaction of the preformed 2 with 

ethyl vinyl ether at 0 °C for 20 h gave a μ-vinyl complex 5 in an isolated yield of 64% with a 

concomitant formation of ethanol (Equation (3)) (similar reactions of 2 with n-butyl vinyl ether and 

isopropyl vinyl ether gave the same μ-vinyl complex 5 accompanied by the release of 1-butanol and 

2-propanol, respectively). In the 1H NMR spectrum of 5, the two signals due to Cp* ligands were 

non-equivalently observed at δ 1.93 and 1.78 and three signals due to μ-vinyl protons were observed 

at δ 7.62, 3.82, and 2.02. No signals for hydrides were observed. In the 13C{1H} NMR spectrum, the 

signals due to the μ-vinyl carbons were observed at δ 113.2 (Cα) and 45.6 (Cβ). All the NMR data of 5 

were consistent with the proposed structure, and the signal patterns were similar to the related 

dicationic μ-vinyl complex [(Cp*Ir)2(μ-dmpm)(μ-CH=CH2)(μ-H)][OTf]2, which was previously 

reported by us [70]. In addition, the structure of 5 was confirmed by X-ray diffraction study (Figure 4, 

details are indicated in the Supplementary Materials). 

 

(3) 

 

Figure 4. ORTEP drawing of the cationic part of 5. Hydrogen atoms are omitted for clarity. 

To obtain information concerning the mechanism of the formation of 5, the reaction of 2 with 

ethyl vinyl ether was monitored by the 1H and 31P{1H} NMR analyses from −40 °C to room 

temperature. At the early stage of the reaction (45 min at −40 °C, 75% conversion of 2), the formation 

of an intermediate C (Figure 5, ca. 30% yield) was observed, which was afforded by the C–H 

activation of terminal vinyl moiety in ethyl vinyl ether. In addition to C, the formation of other two 

species, those might be intermediates in the transformation of C to 5, was observed during the NMR 

monitoring. However, we could not determine their structures so far. The observed 1H and 31P{1H} 

(3)



Inorganics 2019, 7, 121 5 of 10

Inorganics 2019, 7, x FOR PEER REVIEW 4 of 10 

 

3

Ir
H

Ir
H

O

Ir
H

Ir
H

OH

[H+]

+

Ir Ir

H
C2H4OH

H
Ir Ir

H

H C2H4OH

4

−[H+]

B

Ir
H

Ir
H

OH
+

A

or

+ + + + +

 

Scheme 1. Plausible pathway for the transformation of 3 into 4. 

2.3. Successive Activation of C–H and C–O Bonds of Ethyl Vinyl Ether 

We next studied the reactivity of 2 with acyclic vinyl ether. The reaction of the preformed 2 with 
ethyl vinyl ether at 0 °C for 20 h gave a μ-vinyl complex 5 in an isolated yield of 64% with a 
concomitant formation of ethanol (Equation (3)) (similar reactions of 2 with n-butyl vinyl ether and 
isopropyl vinyl ether gave the same μ-vinyl complex 5 accompanied by the release of 1-butanol and 
2-propanol, respectively). In the 1H NMR spectrum of 5, the two signals due to Cp* ligands were 
non-equivalently observed at δ 1.93 and 1.78 and three signals due to μ-vinyl protons were observed 
at δ 7.62, 3.82, and 2.02. No signals for hydrides were observed. In the 13C{1H} NMR spectrum, the 
signals due to the μ-vinyl carbons were observed at δ 113.2 (Cα) and 45.6 (Cβ). All the NMR data of 5 
were consistent with the proposed structure, and the signal patterns were similar to the related 
dicationic μ-vinyl complex [(Cp*Ir)2(μ-dmpm)(μ-CH=CH2)(μ-H)][OTf]2, which was previously 
reported by us [70]. In addition, the structure of 5 was confirmed by X-ray diffraction study (Figure 4, 
details are indicated in the Supplementary Materials). 

 

(3) 

 
Figure 4. ORTEP drawing of the cationic part of 5. Hydrogen atoms are omitted for clarity. 

To obtain information concerning the mechanism of the formation of 5, the reaction of 2 with 
ethyl vinyl ether was monitored by the 1H and 31P{1H} NMR analyses from −40 °C to room 
temperature. At the early stage of the reaction (45 min at −40 °C, 75% conversion of 2), the formation 
of an intermediate C (Figure 5, ca. 30% yield) was observed, which was afforded by the C–H 
activation of terminal vinyl moiety in ethyl vinyl ether. In addition to C, the formation of other two 
species, those might be intermediates in the transformation of C to 5, was observed during the NMR 

Figure 4. ORTEP drawing of the cationic part of 5. Hydrogen atoms are omitted for clarity.

To obtain information concerning the mechanism of the formation of 5, the reaction of 2 with ethyl
vinyl ether was monitored by the 1H and 31P{1H} NMR analyses from −40 ◦C to room temperature.
At the early stage of the reaction (45 min at −40 ◦C, 75% conversion of 2), the formation of an
intermediate C (Figure 5, ca. 30% yield) was observed, which was afforded by the C–H activation
of terminal vinyl moiety in ethyl vinyl ether. In addition to C, the formation of other two species,
those might be intermediates in the transformation of C to 5, was observed during the NMR monitoring.
However, we could not determine their structures so far. The observed 1H and 31P{1H} NMR signals
for C are as follows: In the 1H NMR spectrum, two signals due to hydrides were observed at δ
−16.76 (terminal) and at δ −26.05 (bridge), which is a typical signal pattern for the C–H activation
product formed from 2 [60]. The signals due to two vinylic protons were observed at δ 6.72 and 5.74.
These signals were mutually coupled (JHH = 6 Hz), indicating cis configuration of the alkenyl moiety.
The signals for ethoxy group were found at δ 3.68 and 1.23. In the 31P{1H} NMR spectrum, two signals
were observed at δ −34.8 and −42.9 as doublets coupling to each other (JPP = 52 Hz). Upon warming
the sample to room temperature, the intermediate C disappeared, and 5 was formed quantitatively
accompanied by the release of ethanol. Although the detailed mechanism for the C–O activation
(C to 5) is currently not clear, we believe that this is also a proton-mediated process, similar to the
formation of 3.
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3. Materials and Methods

3.1. General

All manipulations were performed under a dry argon atmosphere with standard Schlenk
techniques. 1H NMR spectra were measured with JEOL EX-270 and JEOL A-500 spectrometers
(JEOL Ltd., Tokyo, Japan). Elemental analyses were carried out at the Microanalysis Center of Kyoto
University. The complex 1 was prepared according to the literature [60]. Solvents were dried by
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using standard procedures and distilled prior to use. Other reagents were used as obtained from
commercial sources.

3.2. C–H Bond Activation of 2,3-dihydrofuran to Give 3

A two-necked 30 mL flask was charged with 1 (238 mg, 0.299 mmol) and dichloromethane (6 mL)
at −30 ◦C. Methyl triflate (49.1 mg, 0.299 mmol) was added to the solution and the reaction mixture
was stirred for 2 h. After the removal of the solvent in vacuo at −30 ◦C, the flask was warmed to
room temperature. The brown solid was turned into purple. To the purple solid, 2,3-dihydrofuran
(6 mL) was added at −30 ◦C and stirred for 18 h at 0 ◦C. After the removal of the solvent in vacuo,
the washing of the residue with toluene and hexane gave the light yellow powder of 3 (213 mg, 70%).
1H NMR (500 MHz, CD2Cl2): δ 4.23 (1H, d, J = 5 Hz, C=CH–), 4.04−3.88 (2H, m, O–CH2–CH2),
2.49 (1H, m, CH–CHH–CH2), 1.91 (15H, d, J = 3 Hz, Cp*), 1.87 (15H, s, Cp*), 1.76 (3H, d, J = 10 Hz, PMe),
1.66 (d, J = 9 Hz, PMe and overlapped CH–CHH–CH2), 1.65 (3H, d, J = 10 Hz, PMe), 1.53 (3H, d, J = 10
Hz, PMe), −16.27 (1H, d, J = 32 Hz, Ir–H), −18.23 (1H, d, J = 42 Hz, Ir–H). 13C{1H} NMR(125.65 MHz,
CD2Cl2): δ 220.4 (m, Ir–C), 121.4 (q, J = 322 Hz, CF3), 95.7 (d, J = 2 Hz, C5Me5), 95.0 (d, J = 2 Hz, C5Me5),
75.5 (s, O–CH2–CH2), 47.4 (s, C=CH), 39.1 (s, CH–CHH–CH2), 26.6 (dd, J = 43 Hz, 35 Hz, P–CH2–P),
22.8 (dd, J = 39 Hz, 5 Hz, PMe), 22.1 (d, J = 32 Hz, PMe), 21.8 (dd, J = 35 Hz, 5 Hz, PMe), 17.2 (d,
J = 33 Hz, PMe), 10.7 (s, C5Me5), 10.2 (s, C5Me5). 31P{1H} NMR (109.25 MHz, CD2Cl2): δ −33.2 (d, J = 8
Hz), −41.7 (d, J = 8 Hz). Anal calcd for C30H51F3Ir2O4P2S: C, 35.63; H, 5.08. Found: C, 35.35; H, 5.01.

3.3. Conversion of 3 into Vinylidene Complex 4

In a NMR tube, 3 (21.8 mg, 0.0216 mmol) and CD2Cl2 (0.6 mL) were placed. The progress of
the reaction was monitored by 1H NMR analysis. Quantitative conversion of 3 into the µ-vinylidene
complex 4 was observed after 150 h. Samples for the elemental analysis were obtained by the slow
diffusion of hexane into a dichloromethane solution of 4. 1H NMR (500 MHz, CD2Cl2): δ 5.21
(1H, m, C=CH), 3.69–3.57 (2H, m, CH2–CH2–OH), 2.67 (m, 1H, =CH–CHH–CH2), 2.39 (m, 1H,
=CH–CHH–CH2), 2.02 (15H, s, Cp*), 1.91 (15H, s, Cp*), 1.63–1.56 (9H, m, 3 PMe), 1.48 (3H, d, J = 8 Hz,
PMe), −17.97 (1H, t, J = 11 Hz, Ir–H–Ir). 13C{1H} NMR(125.65 MHz, CD2Cl2): δ 192.5 (t, J = 9 Hz,
Ir–C–Ir), 121.8 (s, C=CH), 121.3 (q, J = 322 Hz, CF3), 96.5 (d, J = 2 Hz, C5Me5), 95.9 (d, J = 2 Hz, C5Me5),
63.9 (s, CH2–CH2–OH), 39.0 (s, CH–CH2–CH2), 23.1 (t, J = 37 Hz, P–CH2–P), 20.1–19.6 (m, two PMe
carbons), 15.6 (dd, J = 32 Hz, 15 Hz, PMe), 13.0 (dd, J = 35 Hz, 13 Hz, PMe), 11.1 (s, C5Me5), 10.4 (s, C5Me5).
31P{1H} NMR (109.25 MHz, CD2Cl2): δ −14.84, −14.86. Anal calcd for C30H51F3Ir2O4P2S: C, 35.63;
H, 5.08. Found: C, 35.58; H, 4.97.

3.4. Reaction of Complex 1 with Ethyl Vinyl Ether to Give 5

After the treatment of complex 1 (202 mg, 0.255 mmol) with MeOTf (41.8 mg, 0.255 mmol) similar
to the procedure described above (Section 3.2), ethyl vinyl ether (5 mL) and dichloromethane (2.5 mL)
were added to the purple residue. The solution was stirred at 0 ◦C for 20 h then volatiles were removed
in vacuo. The residue was washed with toluene to give the orange powder of 5 (157 mg, 64%). 1H NMR
(500 MHz, CD2Cl2): δ 7.62 (1H, m, Ir–CH=), 3.82 (1H, m, –CH=CHH), 3.12 (1H, m, P–CHH–P), 2.23 (1H,
m, P–CHH–P), 2.02 (m, –CH=CHH and overlapped PMe), 1.93 (15H, d, J = 2 Hz, Cp*), 1.78 (15H, d, J
= 3 Hz, Cp*), 1.67 (3H, d, J = 10 Hz, PMe), 1.67 (3H, d, J = 11 Hz, PMe), 1.49 (3H, d, J = 11 Hz, PMe).
13C{1H} NMR(125.65 MHz, CD2Cl2): δ 121.4 (q, J = 320 Hz, CF3), 113.2 (dd, J = 7 Hz, 2 Hz, Ir–C),
94.7 (d, J = 2 Hz, C5Me5), 94.1 (d, J = 3 Hz, C5Me5), 45.7 (d, J = 6 Hz, CH=CH2), 29.1 (d, J = 46 Hz,
PMe), 19.9 (d, J = 39 Hz, PMe), 17.6 (dd, J = 36 Hz, 9 Hz, PMe), 16.6 (dd, J = 32 Hz, 11 Hz, PMe),
10.7 (s, C5Me5). 31P{1H} NMR (109.25 MHz, CD2Cl2): δ −34.8 (d, J = 52 Hz), −42.9 (d, J = 52 Hz).
Anal calcd for C28H47F3Ir2O3P2S: C, 34.77; H, 4.90. Found: C, 34.47; H, 4.78.
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4. Conclusions

We described the successive C–H and C–O bond activation of vinyl ethers by a diphosphine and
hydrido-bridged diiridium complex. In the reaction of 2 with 2,3-dihydrofuran, a rapid C–H activation
at the 5-position occurred to afford dinuclear oxacarbene complex 3, which was slowly converted into
µ-vinylidene complex 4 via the C–O activation mediated by a proton. On the other hand, the reaction
of 2 with ethyl vinyl ether resulted in the rapid successive activation of the C–H and C–O bonds to
give the µ-vinyl complex 5. It should be noted that the activation of the sp2 C–O bond in vinyl ethers is
very rare, and the results shown here provide important information regarding the activation of vinyl
ethers by transition metal complexes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/7/10/121/s1,
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