L inorganics m\w

Review

Water Oxidation Catalysts: The Quest for New
Oxide-Based Materials

Christos K. Mavrokefalos and Greta R. Patzke *

University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland;
christos.mavrokefalos@chem.uzh.ch
* Correspondence: greta.patzke@chem.uzh.ch; Tel.: +41-44-63-54693

check for
Received: 22 January 2019; Accepted: 17 February 2019; Published: 26 February 2019 updates

Abstract: The expected shortage of fossil fuels as well as the accompanying climate change are
among the major challenges of the 21st century. A global shift to a sustainable energy landscape
is, therefore, of utmost importance. Over the past few years, solar technologies have entered the
energy market and have paved the way to replace fossil-based energy sources, in the long term.
In particular, electrochemical solar-to-hydrogen technologies have attracted a lot of interest—not
only in academia, but also in industry. Solar water splitting (artificial photosynthesis) is one of the
most active areas in contemporary materials and catalysis research. The development of low-cost,
efficient, and stable water oxidation catalysts (WOCs) remains crucial for artificial photosynthesis
applications, because WOC:s still represent a major economical and efficient bottleneck. In the
following, we summarize recent advances in water oxidation catalysts development, with selected
examples from 2016 onwards. This condensed survey demonstrates that the ongoing quest for new
materials and informed catalyst design is a dynamic and rapidly developing research area.

Keywords: water oxidation catalysts; oxide materials; oxygen evolution reaction; water splitting;
electrocatalysis

1. Introduction

Solar water splitting, namely the solar-driven splitting of water into molecular hydrogen and
oxygen is one of the most promising routes to sustainably solve the issue of energy storage and
transport, in the long term [1]. The overall water splitting process is schematically given as follows:

2H,0 + energy — 2H, + O, 1

Typical device setups for water splitting are based on electrolysis or electrochemical water splitting
cells. The involved half-cell reactions in the latter are referred to as the oxygen evolution reaction
(OER) at the anode of the cell and the hydrogen evolution reaction (HER) at the cathode, which, for
alkaline media, are defined as:

HER: 4H,0 + 4~ — 2H, + 4OH " @)

OER: 40H™ — O, + 2H,0 + e~ 6)

The minimum operational requirement for a water splitting system is the equilibrium voltage
of 1.23 V at room temperature [2,3]. Nevertheless, in real systems a higher voltage, compared to the
thermodynamic value, must be applied to expedite the electrochemical OER. This extra-potential is
called overpotential (1), and its minimization is a prerequisite for the development of highly active
and cost-effective electrocatalysts.
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In principle, there are two main technological pathways for energy capture to drive the water
splitting reaction. The first is the coupling of photovoltaics (PV) or any other grid-scale renewable
energy source with electrochemical water splitting devices, i.e., electrolyzers [4]. An alternative
route of solar to energy conversion are photoelectrochemical (PEC) devices [5-7]. Typically, the latter
technology integrates semiconductor materials into the electrode design to directly harvest solar
energy. Recently, research and development comparisons for both pathways have been subject to
intense scientific debates. The first category of devices is definitely closer to large-scale technical
implementations, whereas the PEC devices are at an early stage technological maturity, but provide
plenty of room for flexible and off-grid setups [8,9].

Given the demanding four electron transfer process involved in the water oxidation reaction,
the development of efficient WOCs remains a major step towards artificial photosynthesis [10]. The past
decade has witnessed great interest in the design of single and multi-metal materials and of their
underlying substrates as an efficient strategy to improve the overall catalytic activity and stability of
such OER catalysts [11]. Along these lines, the synergistic effects involving layered hydroxides, spinels,
amorphous oxides, and other tunable oxide-based materials have resulted in an exceptional enhancement
of the catalytic performance [11]. Currently, some noble metals and their oxides, such as Ru, Ir, RuO,,
and IrO; still remain the best catalysts for the OER, in both aqueous and acidic media. However, their high
cost and low abundance are major roadblocks for their industrial application [12,13].

This review does not intend to be exhaustive, but rather aims for an update on the recent
advancements in metal oxide-based OER catalysts. Hence, selected articles from 2016 to 2018 are
summarized in the following sections and are rounded-off with a brief outline of the unresolved
bottlenecks in this research area. The final section of the review further summarizes new research
directions towards innovative composite materials.

High performance metallic WOCs are sometimes scarce, costly, and sensitive towards chemical
changes, whilst many metal oxides are earth-abundant and exhibit superior durability. Metal oxides
are involved in a wide range of technical processes and represent the major part of industrially
applied catalyst families. Their rapid ascent traces back to the mid-1950s when they were found to
catalyze a variety of oxidation and acid-base reactions. The manifold properties of oxide materials,
such as electrical conductivity, lattice oxygen ion mobility, atomic or ionic diffusion among interfaces,
catalytic activity, and various optical and electronic properties, are frequently associated with the
presence of defects, in contrast to an ideal ionic crystal. Oxides contain different types of defects,
including electron-hole pairs, excitons, vacant lattice sites, interstitial atoms, impurity atoms at
interstitial or substitution locations, dislocations, and stacking faults [14]. Consequently, catalytic
reactions on metal oxides are favored, due to their surface flexibility under catalytic conditions. In the
following, we outline the quest for understanding and constructing new complex oxide materials
and related catalyst and composite types, which still remain to be fully explored in their infinite
structural variety.

2. Recent Developments of Metal Oxide-Based WOCs

2.1. Ru-, Ir-, and Cu-based Metal Oxides

In this section, the selected articles on Ru-, Ir-, and Cu-based metal oxides received immediate
recognition in the field and covered research conducted over the last three years [15-22]. Emphasis has
been placed on mechanistic insights and operando techniques, as well as on the proposed Cu-based
catalysts, as a possible alternative to the more costly Ru- and Ir-based WOCs. The selected studies
applied the stability and onset potential required during the OER as benchmarking parameters.
Generally, this focused review article places selective emphasis on progress in oxide WOC performance,
as a result of new synthetic strategies (for examples of reviews containing information on operando
methods [10,23,24]).
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All catalysts in this section are discussed and summarized below in Table 1. In the following
survey tables, “durability” refers to maintenance of the catalytic performance, at constant current
conditions, and “stability” refers to the resistivity of a given catalyst towards dissolution/leaching of
the active metal sites. Whenever possible, the descriptions of the catalysts’ stability, in the following
tables, represent the exact wording as given by the authors. Exceptions are stability assessments
marked with an asterisk sign (*); these were added by us after going through the data provided in
the corresponding publications. In this review, the various metal oxide families reported in the next
sections are summarized in tables according to the information on the durability and stability of
catalyst performance. Unless stated otherwise, the symbol “-* indicates that no such parameters were
reported in the cited study. The Tafel values in this review are generally cited as efficiency indicators
of the electrocatalytic performance. This criterion is particularly important in water electrolyzers,
for instance, where high current densities, at the lowest possible operational voltages, are vital for the
economic viability. Furthermore, Conway et al. clarified in a representative study, three decades ago,
that Tafel slope values can provide both quantitative and mechanistic insights into electrocatalytic
processes [25]. On a very fundamental level, the Tafel slope is characterized by the rate of increase of
the electrode potential or polarization with the log of the current density. From a more practical point
of view, along with the current density obtained at a certain overpotential, the rate of change of this
current density with the overpotential is also important. Hence, low Tafel slope values are generally
recognized as a key parameter indicating efficient electrocatalytic materials.

Weber et al. proposed that an exfoliation route in tetrabutylammonium hydroxide (TBAOH)
solution to convert bulk IrOOH to IrOOH nanosheets could open the doors to fundamental
studies and mechanistic insight. This approach might as well be of great interest for industrial
applications in heterogeneous catalysis [15]. This material outperformed the state-of-the-art rutile-IrO,,
under the same conditions. The IrOOH nanosheets were deposited on Ti electrodes and displayed an
overpotential of 344 mV and Tafel slope of 58 mV dec ™!, in 0.1 M HCIO,. Chronoamperometric and
XPS measurements revealed the long-lasting properties of this material. In particular, XPS showed
that the trivalent species of IrOOH remained, after the OER process. Techniques for heterostructured
and high quality growth of epitaxial complex oxide thin films have received increasing attention with
regard to their application as water oxidation catalysts.

Seitz et al. reported on the significance of leaching in the enhancement of stability and catalytic
activity [16]. In particular, they demonstrated that Sr leaching from SrTiO; thin films caused surface
rearrangement of IrOy films, which led to in situ formation of an IrOx/SrIrO3 catalyst with only
0.27 Vrug overpotential and high stability for a long operational time of 30 h. Figure 1 displays
atomic force microscopy (AFM) maps of a smooth as-prepared surface, before electrocatalytic activity,
and uniform small features after electrocatalytic tests, thus illustrating the surface rearrangement.
Further evidence is provided by the XPS data in Figure 2. The signal of the Sr 3d peak was attenuated,
after 30 min of electrocatalytic activity. The high stability and low overpotential values of 60 and
100 nm IrOy /SrIrO; electrocatalysts, respectively, after 0 and 10 min, as well as 2 and 30 h of catalytic
tests are displayed in Figure 3.
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Table 1. Comparison of the electrocatalytic activity of recently reported Ru-, Ir-, and Cu-based catalysts (“durability” refers to maintenance of the catalytic performance

at constant current conditions, while “stability” indicates the resistivity of a given catalyst towards dissolution/leaching of the active metal sites).

1 (at 10

Tafel Slope

Durability

Catalyst Preparation Method Onset Potential (V) mViem?) (V) (mV dec-1) ) Stability Electrolyte Ref.
. . Ru: 1.20 (both media), Ir: 1.27 & 1.43 . 0.1 M H,SO4 &
Ruand Ir Sputtering & evaporation (acidic & alkaline media, respectively) 30-40 025 Low 0.05 M NaOH (191
. . RuO;: 1.35 & 1.47 (acidic & alkaline media, B . 0.1 M HySO4 &
RuO; and IrO, Sputtering & evaporation respectively), IrO,: 147 (both media) 3040 0.25 Good 0.05 M NaOH [19]
IOy /StIrO; Pulsed lﬁfLrg)eP"sm"n 1.44 0.27 - 30 Reasonable 0.5 M H,SO, [16]
Cu & CupO: very
Cu, CuO, Cu(OH); and Electrodeposition - 0.417 60-66 22 good *, CuO & 0.1 M KOH [17]
CuO Cu(OH);: poor *
IrOOH nanosheets Exfoliation in TBAOH - 0.344 58 14 Extraordinary 0.1 M HCIO [15]
K;B4Os,
CupyO/ITO Electrodeposition <0.8 0.4 72 5 High CoyH3KO; & [20]
KH,PO,
Cu(OH),@CoCO3(OH),- Hydrothermal - 0.27 78 20 Superior 1M KOH [18]
nHzO
RuO, (001) Commercially available - - - 2 - 0.05 M H,SO4 [21]
IO/ ATO Electrodeposition - 0.28 61.7 15 High * 0.05 M H,SO4 [22]
. Spin-coating & pulsed
TiO,/CuO laser deposition - - - 0.166 Excellent 0.1 M NaOH [26]
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Figure 1. AFM images of 100 nm SrIrOj3 film before and after 30 h of oxygen evolution reaction (OER)
performance, showing the surface rearrangement. Reproduced from [16], with permission from the
American Association for the Advancement of Science, copyright 2016.
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Figure 2. XPS spectra of 100 nm SrIrOj3 film (before and after 30 min of OER), showing the attenuation of
the Sr 3d peak, due to leaching. Reproduced from [16], with permission from the American Association
for the Advancement of Science, copyright 2016.

Cu and Cu-oxide surfaces are widely known as catalysts of CO; reduction. However, Deng et al.
identified that Cu materials can be very promising, earth-abundant, efficient, and low-cost catalysts
for the OER, when subjected to careful designing of their morphology [17]. Their work provided new
progress on both Cu surfaces, with various oxidation states, as well as on operando monitoring
techniques. In situ Raman spectroscopy of Cu, CupO, Cu(OH);, and CuO on metallic copper
disks was employed to study the OER in alkaline media. Different morphologies were observed,
from small-pyramid-like structures to needle-shaped structures, as well as nanoparticles <20 nm,
as shown in SEM images (Figure 4).

The corresponding Tafel slope values were in the range of 60-66 mV dec™! and are comparable to
those of other metal oxides in the literature. Along with the morphology of the Cu samples, the role of
Cu(IlI) species was considered to play an important role in OER.

Cyclic voltammograms and Raman experiments were performed, showing a cathodic peak at
around 1.55 Vgyg (cf. Figure 5), which was attributed to Cu (III) species. A Raman peak at 603 cm !
appeared under the oxygen evolution potential and Cu(III) oxide formation was further demonstrated
by in situ XANES of the Cu K-edge. Given the aforementioned information, the authors drew the
conclusion that Cu(IIl) oxide species were responsible for the electrochemical water oxidation.
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Figure 3. Performance of the IrOy/SrIrO;3 catalyst: (A) Chronopotentiometry measurements of 60
and 100 nm electrocatalysts, respectively, at a potential required to reach 10 mA /cm? per geometric
area, for 30 h, in 0.5 M HSOy electrolyte. (B) Tafel plots of 60 and 100 nm electrocatalysts, after 0
and 10 min, as well as 2 and 30 h of catalytic tests, compared to references in 0.5 M H,SOj electrolyte.
Reproduced from [16], with permission from the American Association for the Advancement of Science,
copyright 2016.
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Figure 4. SEM images displaying morphology differences between as-synthesized (i) Cu, (ii) Cu,O/Cu,
(iii) Cu(OH); /Cu, and (iv) CuO/Cu samples, respectively. Reproduced from [17], with permission
from the American Chemical Society, copyright 2016.

Alternatively, a Cu(OH),@CoCO3(OH); nHO core-shell structure nanowire array was proposed
by Xie et al., as a catalyst for the oxygen evolution reaction [18]. The catalyst showed strong stability
and could be a promising candidate for other applications as well, such as methanol electro-oxidation.

A study of Amiri et al. significantly improved the onset potential for water oxidation at a value
below 0.8 Vryg, by using a CupO thin film on indium tin oxide (ITO) electrodes [20]. Another aspect
of their work is the facile electrodeposition method using copper perchlorate, various diamines,
and 1,4-bis(2-carboxyaldehyde phenoxy)butane precursors. The stability of the catalyst was high.
The electrode could be used for multiple OER experiments, without loss of its activity in various electrolytes

from potassium borate to potassium acetate and potassium phosphate, as observed by the authors.
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Figure 5. Performance evaluation of Cu-based OER-catalysts: (a) Cyclic voltammograms of Cu,
CuO/Cu, Cu(OH),/Cu, and CuyO/Cu, after chronoamperometry at 0.7 VRyg (scan rate 0.01 V/sin 0.1
M KOH); CVs were scanned cathodically, at first. (b) Plot of the current densities as a function of charge
of the reduction peaks at 1.55 Vryg (inset: enlarged view of Cu,O/Cu and Cu results). Reproduced
from [17], with permission from the American Chemical Society, copyright 2016.

The work of Roy et al. showed the importance of different facets of a catalyst, not only for the
OER activity, but also for corrosion [21]. The authors investigated how oxygen evolution and corrosion
levels arising from different sites influence future catalyst engineering. Evidence was provided that
there is no direct correlation between OER activity and stability of the various facets of the catalyst
and commercial nanoparticles. Well-defined, oriented, thin films of rutile RuO, (i.e., 001, 101, and
111) were studied in acidic solution and were found to be more active towards OER, compared to
(110) single crystalline and commercial RuO; particles. More precisely, potentiostatic experiments over
2 h on RuO; thin film (001) orientations showed steady state currents, at around 150 pA cm ™2, at the
applied potential of 1.6 Vryg, whilst the (101) and (111) orientations provided currents around 90 and
40 pA cm~2, respectively. Moreover, the RuO, (110) surface gave a higher steady state current density
at around 50 A cm~2, compared to the commercial RuO, particles, which showed the lowest steady
state current density, at approximately 20 pA cm 2. Spectrometric measurements revealed that higher
amounts of Ru on all of the aforementioned oriented thin films dissolved in the acidic electrolyte,
compared to the (110) single crystal and particle references, where the amounts of dissolved Ru were
found to be much smaller after 2 h of electrocatalytic tests. More precisely, 225 ng Ru cm~2 of the RuO,
(001) oriented thin films was dissolved after 2 h of electrocatalytic experiments, compared to 190, 150,
13, and 10 ng Ru cm 2 of the RuO, (101), (111), (110), and commercial particles, respectively.

In related lines, Suk Oh et al. studied the role of various electrode supports towards the
OER activity and electrochemical stability of pure IrOx nanoparticles, IrOy-supported on carbon
(IrOx/C), and IrOx-modified commercial and non-commercial antimony-doped tin oxide (IrOy/comm.
ATO and IrOx/ATO, respectively) [22]. The motivation of their study was based on the ability
of catalyst-supports to reduce the overall metal-loading, without lowering the durability of the
electrode. Outcomes of their study showed a much higher stability and corrosion-resistance of
the IrOx nanoparticles on the metal/metal oxide supports, compared to carbon, as well as high
charge-transfer kinetics. The faradaic efficiency of the IrOy/ATO catalysts was found to be 100%,
for OER, which showed their high selectivity towards water oxidation. Furthermore, the oxidation
state of the IrOy/ATO was reduced to 3.2+, compared to the unsupported IrOx nanoparticles
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(4+), after long-term electrochemical experiments revealing the metal/metal oxide support effects.
Furthermore, voltammetric characterizations were performed and it was found that the electroactive
species of IrOx-supported ATO nanoparticles were decreased by only 30% after electrocatalytic activity
of 15 h, whereas IrO loading on C decreased by 99.7%, under the same conditions.

2.2. Noble Metal-Free Oxide-Related WOCs

2.2.1. Layered Hydroxides and Related Ni-Fe-Based Materials

Layer double hydroxides (LDHs) are a class of layered materials, which are also known as
anionic clays. Their characteristic structural feature is the generic layer sequence [AcB Z AcB],,
where c represents layers of metal cations, A and B are layers of hydroxide (HO™) anions, and Z are
layers of other anions and neutral molecules [27]. Nowadays, LDHs find widespread application
in dye-sensitized solar cells, photocatalytic water oxidation, chemical sensors, and supercapacitors,
thanks to their open structures and chemical versatility [28]. Recently, several layer double hydroxide
catalysts have been developed for OER catalysis [29-33].

Presently, NiFe-LDH catalysts are among the leading LDH-based WOC materials. Even though
water oxidation on nickel hydroxide has been studied since the 1960s, the clear-cut assignment of
Ni as the active site remains under debate for mixed metal LDHs. Some recent studies proposed
that the incorporation of Fe into Ni-LDH structures provides more active sites as a potential for the
enhanced OER activity [34,35]. This behavior has been further supported by Nocera et al., who argued
that the enhanced OER activity is promoted by the Lewis acidity of Fe(IIl) [36]. The group of Duan
et al. demonstrated that a charge imbalance in the M(OH)g layers is caused by the redox-active
Fe(III) ions, which is then compensated by interlayer anions [37]. All of the representative layered
hydroxide OER catalysts discussed below and summarized in Table 2 covered research of the last three
years. The maximum performing NiFe-LDH-based catalyst to date is a NiFe-LDH array, which is also
specified in Table 2 [37]. The following selected studies contributed to new catalyst architectures and
designs with improved stability. Furthermore, considerable efforts were made over the past few years
to replace Fe with other transition metals.

Wau et al. reported on ultrathin CoNi double hydroxide/CoO nanosheets, via an in situ reduction
and interface-directed assembly method in air, as shown in the schematic illustration of Figure 6 [29].
Interfacial tension resulted in the strong extrusion of hydrated metal-oxide clusters, which led to
the formation of the CoNi LDH/CoO nanosheets. The current density for OER was determined as
150 mA cm~2 at 0.3 Vryg, i.e., 1.5 times greater than that for RuO,. The durability of the catalyst was
also tested and the current density remained stable for 10 h. The obtained CoNi LDH/CoO nanosheets
exhibited high turnover frequencies (TOFs) of 1.4 s 1 at the overpotential of 0.4 Vryg. The authors
argued that the performance of their catalysts was mainly related to the higher +3 valence of the Co
and Ni centers, as well as to the low crystallinity, which gave rise to a number of exposed defects and
active sites. Furthermore, the functionalization of the surface with OH™ groups and the OH™ /O,
adsorption and transport in the porous structure contributed to the high OER activity.

i I' e
- seor ) d}t *
ef‘?oft/,«/ Stirring at 45 C 7 "-!lg‘;! 48

Interface-directed

Op in air assembly

: 2+ @ Co-oxide clusters
[Nl(O/im)n] % CoNi LDH/CoO nanosheets
[Co(OAM) ]p ® Ni-oxide clusters

Figure 6. Formation scheme for CoNi-LDH/CoO nanosheets via an in situ reduction approach,
followed by assembly at the toluene/water interface. Reproduced from [29], with permission from
Springer Nature, copyright 2016.
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Table 2. Comparison of the electrocatalytic activity of noble metal-free LDH and related Ni-Fe catalysts (cf. Table 1 for definitions of “durability” and “stability”).

. Onset n (at10 Tafel Slope Durability -
Catalyst Preparation Method Potential (V) mV/em?) (V) (mV dec—1) ) Stability Electrolyte Ref.
CoNi-LDH/CoO . In situ reduction & = 1.48 03 123 10 Good IMKOH  [29]
nanosheets interface-directed assembly in air

CoAl & CoFe LDH Co-precipitation 1.58 0.36 & 0.37 39 & 49 50 Excellent 0.1 M KOH [30]

Co-Fe LDH nanosheets Electrodeposition - 0.42 131 50 Superior 0.1 M K,B4Og [31]

Nio75-Vo.25 LDH narrow Hydrothermal - 035 50 25 Considerable 1M KOH [32]

nanosheets

CoAl-LDH on 3D Hydrothermal - 0.28 36 30 Excellent 1M KOH [33]
graphene network

NiFe LDHS-MOOX Hydrothermal - 0.276 55 12 Good 1M KOH [38]

NiFe-LDH array Electrodeposition 143 0.224 52.5 50 Superior 1M KOH [37]

Fe-doped Ni(OH), films Precipitation - 0.25 t0 0.35 - 2 Good * 1M KOH [36]

Microwave-assisted autoclave
Ni-FeO(OH) synthesis under solvothermal - 0.29 40 >20 Good 0.1 M KOH [39]
conditions

Fe;O03-Ni(OH), to Hydrothermal & anodization - 0.24 55 1 High 1M KOH [40]
NiFe,04-NiOOH

Ni-Fe-OH@Ni;S, Two-step synthesis - 0.479 124 50 Excellent 1 M KOH [41]

Ni/NiFe-OH Multi-step electrodeposition - 0.205 53 12 Excellent 1M KOH [42]

NiFe-LDH nanosheets Pulsed laser ablation in liquids - 0.27-0.45 3.5 Remarkable 1M KOH [43]

NiFe LDH-NS@DG Co-precipitation 1.41 0.21 52 10 Robust 1M KOH [44]
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Ping et al. introduced a CoAl-LDH nanosheets catalyst on a 3D graphene network [33]. In their
study, a porous catalyst was prepared by self-assembly of the exfoliated single-layer CoAl nanosheets
onto 3D graphene, via electrostatic interaction as illustrated in Figure 7. Prior to the exfoliation,
the CoAl-LDH (CO3%~) was fabricated through a hydrothermal process, based on urea hydrolysis,
and subjected to anion exchange. The resulting catalyst outperformed an IrO, reference, by exhibiting
a very low overpotential of 0.28 Vryg and a Tafel slope value of 36 mV/dec. The TOF values of
the 3DGN/CoAl-NS were found to be ~0.6 s~ ! and ~1.2 s~ ! at overpotentials of 0.3 and 0.35 VRyg,
respectively. Furthermore, about 22.5 pmol of O, was produced at a constant current of 1 mA cm 2.
Chronoamperometry and chronopotentiometry experiments were carried out and indicated excellent
electrochemical stability for 30 h (Figure 8). The electrocatalytic efficiency of the catalyst was ascribed
to the fast electron/charge transfer, during the OER, and acceleration of the reaction kinetics thanks to
the uniform coating of the single layer CoAl nanosheets onto 3D graphene.

R | L ation 7 1L Selr-assembly @@
E _— e aaea® % —
= l‘ L) .~
o " —
i R rsro
"R R

CoAl-LDH (NO;") CoAl-NSs 3DGN 3DGN/CoAIl-NS

Figure 7. 3D graphene assisted formation of the porous electrocatalyst 3DGN/CoAIl-NS. Reproduced
from [33], with permission from John Wiley and Sons, copyright 2016.

30 : 0.40

T 287 gaimy : 3DGNMrO, i
E 3DGN/CoAI-NS s 36
: 2
< L. :
£ 7 s
2 124 032 g
§ 3DGN/CoAI-NS Jj=70.0 mA cm* -]
T 10- 7=250 mV 3DGN/CoAI-NS 5
8 L0.28 &

a ¥ 7=280 mV
3DGN/Ir0, ;
6 r r - : 0.24
0 6 12 18 24 30

Time (h)

Figure 8. Chronoamperometric measurements of 3DGN/CoAI-NS and 3DGN/IrO, in 1M KOH.
Left plot: 3DGN/CoAI-NS at 77 = 0.25 and 0.28 Vryg, and 3DGN/IrO; at 7 = 0.28 Vryg. Right plot:
3DGN/CoAI-NS at j = 70 mA cm 2, and 3DGN/IrO; at j = 11.4 mA cm 2. Reproduced from [33],
with permission from John Wiley and Sons, copyright 2016.

Yang et al. demonstrated the effect of Fe and Al contents in Co-Fe LDH catalysts on the OER
activity [30]. A co-precipitation method with AI>* or Fe3* ions in the range of 15 to 45 at % was applied.
The optimal Fe content was reported at 35 at %, which resulted in a synergistic effect on the Co-Fe
LDH catalyst. The role of both ions as trivalent species was essential for the stabilization of the LDH
structure. The OER activity was enhanced when the optimal Fe content was incorporated, whereas the
oxygen evolution was suppressed in the presence of Al** species. The onset potential and overpotential
of the optimized Coy g5Fe( 35(OH); catalyst were observed at 1.58 Vryg and 0.36 Vryg, respectively.
The catalyst showed a very good stability in aqueous alkaline electrolyte, for 48 h, with a small Tafel
slope of 49 mV dec™ 1.

An alternative LDH catalyst was introduced by You et al. [31]. An electrodeposition method
was employed to fabricate a CoFe-LDH nanosheet array coated with an ultrathin CoFe-borate layer
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supported on Ti mesh. The electrocatalytic performance of the 3D catalyst electrode was evaluated
in near neutral pH in 0.1 M K;B40Oy7 solution. The CoFe-B;@CoFe-LDH NA/TM displayed a high
catalytic OER activity, with a small overpotential of 0.42 Vryr. HRTEM images depicted the formation
of an ultrathin amorphous layer (CoFe-B;), with a thickness between 5 and 8 nm and a nanoarray
feature of the catalyst was, furthermore, observed during morphological characterizations (Figure 9)
and retained after electrocatalytic activity for 50 h. The TOF was calculated at 0.482 mol O, s~ ! at the
overpotential of 0.6 Vryg.

CoFe-LDH
(203)

(006)(009)

(003) CoFe-Bi@CoFe-LDH

1 (006) (009)
- .

10 20 30 40 50 60 70
26 (degree)

Intensity (a.u.) m

Figure 9. Structural and morphological characterization of CoFe-LDH and CoFe-B;@CoFe-LDH:
(a) XRD patterns, SEM images of (b) CoFe-LDH NA/TM and (c) CoFe-Bi@CoFe-LDH NA/TM.
TEM images of (d) CoFe-LDH, and (e) CoFe-B;@CoFe-LDH. HRTEM images of (f) CoFe-LDH and
(g) CoFe-Bj@CoFe-LDH. (h) Elemental mapping images of CoFe-B;@CoFe-LDH. Reproduced from [31],
with permission from the American Chemical Society, copyright 2018.

Xie et al. reduced MoO,42~ intercalated nickel-iron LDHs and obtained a NiFe-MoOy nanosheets
catalyst [38]. In terms of water oxidation, the authors obtained comparable results to RuO;.
These results were ascribed to the high surface area, porosity, and surface electronic structure of
the new LDH material. Their strategy led to an increase of active sites and an electronic modification
of the NiFe alloy surface. The TOF for this catalyst was estimated at 0.19 s~! at the overpotential of
0.3 Vryg and a faradaic efficiency around 95% for OER was determined.

Furthermore, a Ni-V monolayer double hydroxide was introduced by Fan and co-workers [32],
applying a hydrothermal method to synthesize the bulk LDHs. The performance of this material is
comparable to the best-performing NiFe-LDHs to date in the literature. In particular, the Ni 75—V 25
LDH gave a current density of 57 mA cm 2, at an overpotential of 0.35 Vryg, for the OER. Experimental
O, evolution was evaluated by gas chromatography, where the Nig 75—V 25 LDH exhibited a TOF
of 0.05 s~ at 0.35 Vrug overpotential. The abundance of the active sites in the LDH structure was
identified as the main reason for the high performance of Nij 75—V 25-LDH. Typical TEM images
of a-Ni(OH); and Nig 75-V(25 LDH show the 2D nanosheet nature of the former (Figure 10a,b),
whereas a three-dimensional morphology assembly of ultrathin nanosheets was observed upon
incorporation of vanadium (Figure 10c,d).

Li et al. reported a new view of the significance of iron doping in a Ni hydroxide catalyst,
which promoted the formation of Ni** and, therefore, played an important role in the water
oxidation [36]. The strong Lewis acidity of Fe3* was identified as a crucial factor to increase the Ni
valence and, thereby, to promote the oxyl character of the intermediates during the O-O bond formation.
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Figure 10. Morphological characterization of TEM images of «-Ni(OH),, compared to Nig 75—V .25
LDH: (a,b) a-Ni(OH); (scale bar = 1 pm for (a) and 200 nm for (b)), (c¢,d) Niy75—V.25 LDH (inset of (d):
SAED pattern (scale bar = 200 nm for (¢) and 100 nm for (d)). Reproduced from [32], with permission
from Nature Communications, copyright 2016.

Gorlin et al. discussed the importance of high-surface area conductive supports and of the
electrolyte pH [39]. A microwave-assisted autoclave synthesis under solvothermal conditions was
applied for the synthesis of a NiFeO(OH) catalyst. Catalyst support and pH > 13 resulted in enhanced
catalytic activity, and higher particle dispersion allowed more metal centers to be accessible and
to be electrochemically active. The highest TOFs were determined at 0.1 and 0.2 s~!, respectively,
in 0.1 M KOH. The O; levels were found to be close to 100% of the faradaic efficiency after online gas
chromatography-mass spectrometry (GC-MS) measurements. The role of Fe centers in the metal redox
activity was, furthermore, discussed in new detail, based on the UV-vis monitoring data.

A NiFe;O4-NiOOH catalyst was prepared through a simple anodization method by
Zhang et al. [40]. The catalyst afforded currents up to 30 mA cm~2 atan overpotential of 0.24 Vryg and
only required 0.41 Vgyg to achieve a very high current density of 3000 mA cm 2. The faradaic efficiency
of O, evolution was close to 100%. In this study, it was stated that the excellent OER performance arose
from the integration of amorphous NiFe,O4 and NiOOH. Finally, an ultrafast synthetic approach of
only 5 s was reported by Zou and co-workers for the fabrication of a Ni-Fe-OH@Ni35, /NF electrode
material [41]. A schematic illustration of this ultrafast method is displayed in Figure 11. The catalyst
gave currents up to 1000 mA cm 2 at 0.469 Vryg and displayed excellent catalytic stability for 50 h
at the applied potential of 1.6 Vgyg, at the current density of 1000 mA cm~?2 in alkaline media.
Furthermore, the faradaic yield of O, was found to be up to 95%.

Ni,S,/NF Ni-Fe-OH@Ni,S,/NF

Figure 11. Ultrafast Ni-Fe-OH@Ni3S, /NF preparation at 100 °C by a 5 sec immersion of NizS, /NF in
a preheated aqueous solution with Fe>*. Reproduced from [41], with permission from John Wiley and
Sons, copyright 2017.
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Wu et al. highlighted the importance of designing well-controlled and aligned structures to
enhance the catalytic capabilities of electrocatalysts for high-performance electrodes. Starting from this
main incentive, for the first time, they fabricated unique hierarchical hollow Ni/NiFe (oxy)hydroxide
heterostructured nanotubes radially aligned on a Ni foam, as seen in Figure 12 [42].

Figure 12. EM images of hierarchical hollow Ni/NiFe (oxy)hydroxide. (a) Scheme of radially aligned
heterostructured nanotubes on the Ni foam. (b,c) SEM and (d,e) TEM images of the nanotubes. Inset in
(d): corresponding SAED pattern. (f) HAADF scanning TEM image and elemental line scanning at the
wall-edge region, and (g-i) close-up TEM of NiFe (oxy)hydroxide, crystalline Ni, and the interface area.
Reproduced from [42], with permission from the American Chemical Society, copyright 2018.

The material was used in a home-made electrochemical cell driven by a single battery of 1.5 V and
showed excellent stability and overpotential at around 0.2 Vgyg, outperforming the state-of-the-art
noble metals Ru and Pt. Hunter et al. employed a pulsed laser ablation technique in liquid media and
prepared NiFe-LDH nanosheets with different interlayer anions (i.e., CO52-,5042~,0H ,F,Cl-
and I7) to probe their role in water oxidation catalysis [43]. The anion binding was evaluated by XPS
and DFT calculations. Outcomes of their study revealed a relationship of water oxidation activity with
the pK, value of the interlayer anions and suggested that Bronsted or Lewis basicity of the anions was
a key parameter for the water oxidation mechanism.

Furthermore, the authors found that nitrite species bound to edge-site Fe centers were correlated
with high water oxidation activity, thus, pointing out the active role of the latter in the water
oxidation process. The NiFe-LDH nanosheets showed remarkable stability for 3.5 h in 1 M KOH.
The overpotential values varied between 0.27 Vryyg and 0.45 Vryg, depending on the various interlayer
anions. Jia et al. synthesized a highly active heterostructured NiFe-LDH nanosheet on defective
graphene, via a co-precipitation method [44]. DFT calculations suggested that the high electrocatalytic
activity of the NiFe LDH-NS@DG catalyst towards water oxidation arose from the interaction of
exposed 3d-transition metal atoms with carbon defects. This synergism was also found to cause the
robust stability of the catalyst for 10 h, in 1 M KOH. The catalyst showed current densities above
50 mA cm~? at the applied potential of 1.5 Vryg. The overpotential at the current density of 10 mA
cm 2 was found to be 0.21 Vyyg. A small Tafel slope value of 52 mV dec~! was also found between
the range of 0.1 and 0.15 Vryg of applied potential. The onset potential of the NiFe LDH-NS@DG
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catalyst was observed at 1.41 Vyyg and the faradaic efficiency of O, levels was 97.5%, after 5 h of

chronoamperometric tests, at the current density of 100 mA cm 2.

2.2.2. Spinels

Complex spinel-type oxides have attracted a lot of research interest as water oxidation catalysts, over
the last years, due to their favorable structural properties, giving rise to tunability, high conductivity, and
robust operational stability. Spinel oxides adopt the general formula AB,X,, where A and B are cations
occupying the octahedral and tetrahedral sites in the anionic sublattice (with X representing anions,
typically oxygen or less often chalcogens/halogenides). Co304 is a well-known example of a binary,
spinel-type WOC. Ternary spinel-type cobaltites exhibit similar structural and electronic properties to
Co30;4 with the general composition MCo,04 (M = Zn, Ni, Cu, Mn, etc.).

The gold standard of Co-oxide WOCs, over the past years, has been the amorphous CoP; catalyst
introduced by Nocera et al. [5,45]. The selection of articles below was taken from the most cited and
hot papers in the field, reflecting the progress in WOC understanding and performance, over the last
three years. A comparison of the electrocatalytic performance of the selected WOC materials is given
in Table 3.

Recently, various synthetic strategies were employed to access Co3Oy spinels [46—49]. Wang and
co-workers used a sol-gel method to synthesize regular cobalt spinels, comprised of Co?* on the
tetrahedral site and two Co®* ions on the octahedral site [47]. Their work was focused on the
investigation of site-dependent OER activity, by substituting Co?** and Co®** with inactive Zn?*
(ZnCo,0y4, Co®* octahedral) and AI** (CoAl,O4, Co?* tetrahedral), respectively. The electrochemical
performance was tested by cyclic voltammetry, and interestingly the redox reaction was found to
occur only at the Co?* tetrahedral sites, as shown in the voltammogram in Figure 13. The Tafel slope
value was found to be smaller in the case of Co304, which suggested a different rate-determining step.
This study also pointed out the importance of operando investigations in such systems. From operando
extended X-ray absorption fine structure (EXAFS) and electrochemical impedance spectroscopy (EIS)
studies, the conclusion was drawn that cobalt oxyhydroxide (CoOOH) was formed and acted as a
reactive center for the oxygen evolution reaction. In contrast, the ZnCo,O4 catalyst was negatively
affected by the strongly bonded —OH groups on the surface, and so, its electrocatalytic activity was
limited compared to its counterparts. The larger Tafel slope supported the latter observation, where the
OER process is rate limited due to these strong -OH bonds.
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Figure 13. Electrochemical characterization of Co304, ZnCoy0Oy, and ZnAl,Oy: (a) Normalized cyclic
voltammograms and (b) corresponding Tafel slopes. Reproduced from [47], with permission from the
American Chemical Society, copyright 2016.
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Table 3. Comparison of the electrocatalytic activity of spinel catalysts (cf. Table 1 for definitions of “durability” and “stability”).
. Onset n (at 10 Tafel Slope Durability o1

Catalyst Preparation Method Potential (V) mV/em?) (V) (mV dec—1) ) Stability Electrolyte Ref.

Co304/N-graphene Hydrothermal 1.49 0.96 121.8 4 Good * 0.1 M KOH [50]

Co304 assembled Solvothermal & calcination 1.43 0.29 86 10 Prominent 1M KOH [46]

hollow spheres

Co304, ZnCoy04 & Sol-gel - - 69, 113 & 56 - - 0.1 M KOH [47]

COA1204
Pyrolysis in Hy atm. & "
Co@Co0304/N-CNT oxidative calcination 1.62 0.39 54.3 45 Good 0.1 M KOH [51]
Hollow Co304 Hydrothermal & 1.52 0.151 84 12 High 1M KOH [33]
microtube arrays electrochemical treatment
ZnCo,0, QDs/N-CNT Hydrothermal 1.56 0.43 70.6 10 High 0.1 M KOH [52]
Hydrothermal &

NiFe/Ni Co,O, electrodeposition 147 0.34 38.8 10 Excellent ~ 1MKOH  [53]

NiCo,0, NPs Two-step solution method 1.49 0.157 75 20 Excellent 1M KOH [54]

CoFeOy, CoFeNiOx & Electrodeposition 1.43 0.24 37 - - 1M KOH [55]
FeNiOx

CoFe,0,@Co-Fe-B; Hydrothermal - 0.46 127 20 Good 0.1 M K;B4Og [56]

Co30;4 Hydrothermal 143 0.35 69 - - 1M KOH [57]
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An electrochemical sacrificial strategy was applied by Zhu et al. for the fabrication of hollow
Co304 microtube arrays [48], which is schematically represented in Figure 14. More precisely,
the CoHPO4 microrods were immersed in 1 M NaOH and a constant potential was applied.
Upon the anodic bias application, the microrods’ surface became rough and nanoplates were formed.
The protonated CoHPO, was dissolved in the NaOH solution and Co?* species acted as source of
cobalt oxides to be generated. The nanoporous nature of the cobalt oxide shells provided transport
pathways for the OH~ and Co?* diffusion. The fully converted CoHPOy resulted in Co3Oy spinel.
These micro/nanostructures were found to be competitive with IrO, and Pt references as OER catalysts.
The authors proposed that such design and engineering of micro/nanostructures (Figure 15) can be an
efficient pathway for the enhancement of catalytic activity through the facilitation of mass transport by
exposing more electroactive sites. During the water oxidation reaction, the catalyst showed impressive
performance with current densities at around 300 mA cm~2, almost two times greater, compared to
IrO,. The Tafel slope value was found to be 84 mV dec™!, and the catalyst showed high stability
during an operational time of 12 h. The corresponding voltammograms and Tafel slopes are displayed
in Figure 16. The catalyst, furthermore, exhibited a high faradaic efficiency of 96.3% for OER.

.......................................

OH Co* i
ee—
CoHPO, Reaction Process Co,0,

Figure 14. Co304-MTA formation scheme from the CoHPOy precursor. Reproduced from [48],
with permission from John Wiley and Sons, copyright 2017.

Figure 15. Morphological features of Co304-MTA: (a,b) SEM and (c,d) TEM images. Reproduced
from [48], with permission from John Wiley and Sons, copyright 2017.
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Figure 16. Electrochemical characterization of Co3O4-MTA: (a) Linear sweep voltammograms
and (b) Tafel slopes, compared to IrO,/C and Co3z04-NW, respectively. Reproduced from [48],
with permission from John Wiley and Sons, copyright 2017.

Hollow spheres assembled by «-Co(OH), nanosheets were developed by Xie and co-workers
via a solvothermal method followed by further calcinations, which led to mesoporous CozO4
nanostructures [46]. By tuning the amount of polyvinylpyrrolidone (PVP) different samples were
synthesized as shown in Figure 17. The obtained monodisperse hierarchical structure exhibited a low
onset potential at around 1.44 Vryg, with low overpotential (0.29 Vryg) and relatively small Tafel
slopes, in the range of 86 and 97 mV dec™!. The samples indicated an excellent stability in alkaline
media which renders them promising for further energy conversion as well as storage applications.

50 nm

Figure 17. SEM images illustrating the strategy to hollow sphere assemblies of x-Co(OH), nanosheets:
(a,b) Precursor o-Co(OH),-PVP-Low, (c,d) precursor x-Co(OH),-PVP-High, (e,f) Co304-PVP-Low,
and (g,h) Coz04-PVP-High. Reproduced from [46], with permission from Elsevier, copyright 2018.

A subcategory of spinels are the above-mentioned cobaltites, which have been used as OER
catalysts due to their increased conductivity and versatile electrochemically active sites compared
to monometallic oxide catalysts. A two-step solution method was reported by Guan et al. as a way
of utilizing metal-organic frameworks (MOFs), for the development of hollow NiCo,O4 nanowall
arrays on carbon cloth, as shown in Figure 18 [54]. A uniform coverage of the Co-MOF on carbon
cloth and the Co-based nanowalls was first obtained, and after annealing in air in the final step,
the nanoarray structure of NiCo,O4 was maintained. The catalyst displayed high stability for 20 h
and low overpotential of around 0.16 Vryg in alkaline media, which was ascribed to its hollow nature.
The material was proposed for other applications besides water oxidation, such as in supercapacitors.
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Figure 18. Route to uniform hollow NiCo,O4 nanostructure from 2D Co-MOF solid nanowall
precursors. Reproduced from [54], with permission from John Wiley and Sons, copyright 2017.

Xiao et al. proposed a 3D hierarchical porous catalyst architecture consisting of NiFe/NiCo,04/Ni
foam [53]. The synthesis procedure of this material is displayed in Figure 19. The catalyst reached
very high current densities in the range of 1200 mA cm™~2 at an overpotential of 0.34 Vryg and onset
potential at 1.47 Vryg in 1 M KOH at pH 14. The stability and durability of this material was evaluated
through cyclic voltammetry and the current density remained stable, over an operational time of 10 h.

A Nifoam B Vertically aligned C D Mesoporous
NiCo,0, nanoflakes - NiFe nanosheets

Hydrothermal Thermal Potentiostatic
deposition annealing electrodeposition

Figure 19. Formation process of porous NiFe/NiCo0,0O4/NF composite electrodes: Scheme (A-D)
and corresponding photos (E-H). Reproduced from [53], with permission from John Wiley and Sons,
copyright 2016.

Morales-Guio et al. classified a variety of oxidatively electrodeposited thin films, according
to their electrocatalytic activity into the following three categories [55]. Single-metal oxides falling
into the first category, such as NiOy, MnOy, and FeOy, showed the lowest performance. The second
category included CoOy and CoNiOy, which showed a medium activity. Finally, the third category
consisted of the most active catalysts, namely FeNiOy, CoFeOy, and CoFeNiOy, which revealed high
electrocatalytic performance, due to their synergistic effects. Their efficiency towards water oxidation
reached currents up to 100 mA cm~?2, at overpotentials of around 0.24 Vryg in 1 M KOH, at pH 14.
The TOF values as a function of catalyst loading were also evaluated at the overpotential of 0.35 VRyE.
In particular, at the relatively low loading of 5 pg cm~2, the TOF values of the more active FeNiOy,
CoFeOy, and CoFeNiOx catalysts were found to be around 0.5, 5, and 4 s L respectively. The calculated
faradaic efficiency of O, was also close to 100%.

Ji et al., on the other hand, used a complex core-shell CoFe,O4@Co-Fe-B; nanoarray architecture
in a potassium borate (pH 9.2) electrolyte and the catalyst showed a superior long-term stability, for at
least 20 h, along with a high faradaic efficiency of 96% of O, evolution [56].

Regarding the operational behavior of cobalt oxides, Zhang et al. monitored the chemical
transformation of multiwall carbon nanotubes supported with hydrothermally prepared Co3;O4
nanoparticles (CozO4-MWCNTs) to CoO(OH), via ambient pressure X-ray photoelectron spectroscopy
(APXPS) [57]. The aforementioned transformation was only observed upon a potential application,
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during operando conditions. When the potential was removed, the catalyst was converted to its
as-synthesized form, namely CozOj. It was suggested that this rapid operando conversion was caused
by proton concentration gradients in the presence of water vapor in the local environment, close to
the solid /liquid interface. The electrocatalyst afforded current densities up to 100 mA cm~2, at an
applied potential of 1.65 Vryg, The overpotential at the current density of 10 mA cm ™2 was observed
at 0.35 Vryg in 1 M KOH. The onset potential was observed at 1.43 Vryg and the Tafel slope value
was calculated at 69 mV dec™!.

Recently, in one of our studies, we have synthesized cobalt oxide spinel (Co3O4) nanocrystals via a
hydrothermal method. Our work provided deeper insight into the control parameters of hydrothermal
WOC formation processes, through a combination of mechanistic in situ and ex situ analytical methods.
This comprehensive study provided guidelines about how the WOC performance of binary oxides can
be improved through an empirical understanding of their growth mechanisms [58].

2.2.3. Perovskite-Based WOCs

Perovskite oxides display the general formula ABO;, where the A-site ion on the corners
of the elemental cell is usually an alkaline earth or rare-earth element, with a coordination
number of 12. On the other hand, the octahedrally coordinated B-site ions in the center of the
elemental cell are mainly 3d, 4d, and 5d transition metals. Ever since pioneering works of the
1970s [59], numerous studies on the structure and properties of perovskites have been reported in the
literature. More recently, perovskite oxides were proposed as efficient electrocatalysts for the oxygen
evolution reaction [59-65]. The following studies contributed to the development of new perovskite
representatives, which significantly improved their activity and stability as water oxidation catalysts.
A comparison of the electrocatalytic performance of the materials of this category is summarized in
Table 4 and covers research of the last three years.

An electrospinning method was employed by Zhao et al. for the development of
PrBag 5519 5Co1 5Fe( 50545 nanofibers [61]. The intrinsic activity and mass activity of this material were
increased 4.7 and 20 times, respectively, compared to IrO,, while the diameter of the particles was reduced
to 20 nm. The aforementioned characteristics led to a high stability for 12 h, at a lower overpotential of 0.37
VRruE, compared to IrO,. The importance of the morphology and electronic properties of the structure
resulted in an enhanced water oxidation, showing the optimization potential of these parameters.
Furthermore, Zhu et al. used an electrospinning method to fabricate SrNbg 1Cog 7Fey,03_s perovskite
nanorods, which displayed an excellent stability and activity in alkaline media [64]. A representative
scheme of the synthesis protocol is shown in Figure 20. The results were compared with the-state-of
the-art IrO, and showed seven times higher current densities at 0.4 Vryg, combined with a lower
Tafel slope. The material displayed an excellent stability for 30 h. The structural properties led to an
increase of both charge transfer as well as of the electrochemically active surface, which boosted the
water oxidation performance.

Syringe with
precursor solution

-

Collecting Calcination

Y
Electrospinning J__ Polymer fibers SNCF-NR

Figure 20. Preparative route to SrNbg;Cog7Feq,03_5 perovskite nanorods by electrospinning.
Reproduced from [64], with permission from John Wiley and Sons, copyright 2017.
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Table 4. Comparison of the electrocatalytic activity of perovskite oxide catalysts (cf. Table 1 for definitions of “durability” and “stability”).

Catalyst Preparation Method Potggis:lt W) m‘?/c(;:zl)o(v) Zsﬁil dilco_l:)lc; Dura‘l;ility Stability Electrolyte Ref.

PrBa 5519 5Co1 5Feq 5055 Electrospinning - 0.37 52 12 High 0.1 M KOH [61]

StNby 1Cog7Fe 2055 nanorods Electrospinning 1.52 0.37 61 30 Remarkable 1 M KOH [60]

BaCog75n0303-5 & Ball milling-assisted solid-state reaction 1.53 0.45 68 2 Good 0.1 M KOH [63]
BaCog.7Fe15n0203-5

LagosFeOs_s Sol-gel 1.55 0.41 82 - - 0.IMKOH  [64]

Laj_SrxCoO5_3 Reverse-phase hydrolysis - 04 31 24 High 0.1 M KOH [65]

BaNiOj; & BaNig 302 5 Flux mediated crystal growth - - - 20 Very good* 0.1 M KOH [66]




Inorganics 2019, 7, 29 21 of 37

A ball-milling-assisted solid-state reaction was used by Xu and co-workers for the development of
BaCoy 751 303_5 and BaCog yFe( 1Sn203_5 perovskite oxides, respectively [63]. They demonstrated
that the electrocatalytic activity of the catalysts can be easily tuned by modifying the dopant
concentration. This example highlights the importance of doping strategies to enhance the conductivity
in a wide range of materials, which in turn, increases their electrocatalytic activity towards OER.
In parallel, the work of Zhu et al. focused on a sol-gel preparation method and by tuning the cation
deficiency enhanced OER activity was accomplished [60]. In particular, a Lag 9sFeO3_s perovskite was
developed; Figure 21 shows how the significant change in OER activity is related to the formation of
oxygen vacancies and Fe**, in the A-site of the perovskite.

A-site
deficiency

O vacancy

Fe3/4+

La* )
b _1.a deficiency

Figure 21. Formation of oxygen vacancies and Fe*" in enhancing the OER activity in A-site-deficient
Lag g5FeO3_ 5 perovskites. Reproduced from [60], with permission from the American Chemical Society,
copyright 2016.

Mefford et al. proposed a reverse-phase hydrolysis method for the synthesis of Laj _SrxCoO5_s [65].
Their mechanistic study provided further evidence of how oxygen vacancies become a crucial parameter
for improving the electrocatalytic activity of metal oxides. Briefly, it was stated that the controlled
substitution of Sr?* for La®*, across the full-phase width, while maintaining the perovskite structure,
allowed the effects of covalence, vacancy defects, and oxygen exchange to be probed. Lee et al. reported
for the first time a hexagonal perovskite, BaNiOj3, as water oxidation catalyst in alkaline media and
demonstrated that this new family of perovskites outperformed IrO,, by at least 19 mA cm~2 during
the first cycle of OER [66]. The study of Black et al., first investigated quaternary hafnium oxynitrides
with a reduced band gap and showed the potential of these compounds for photoelectrochemical
water splitting devices [67]. The new RHfO,;N perovskites, with R = La, Nd, and Sm, display
structures resembling the GdFeOs-type. The LaHfO,N and NdHfO,N compounds, in particular,
showed increased resistance towards photocorrosion, compared to the SmHfO,N photocatalyst.

2.2.4. Mixed Oxides

Mixed oxides frequently excel through their increased stability and synergistic effects, in a wide
range of properties and applications [55,56,68-73]. Table 5 summarizes progress in the performance of
mixed oxide water oxidation catalysts, over the last three years.

Gholamrezaei and co-workers proposed a new SrMnOj; nanostructure for chemical water
oxidation [74]. Various preparation methods were chosen and compared by the authors,
and sonochemical synthesis was found to afford the best results, with respect to morphology and
nanoparticle size. Electrocatalytic water oxidation was carried out in a (NH4)>Ce(NO3)4 solution,
where the effect of the Ce(IV) concentration was studied. O, evolution was increased with higher
amounts of cerium. The results suggested that changes in the synthesis method and reaction conditions
altered the morphology of the catalyst, as well as the size and the uniformity of the particles. The overall
efficiency of the catalyst was enhanced along with the high uniformity of the particles.
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Table 5. Comparison of the electrocatalytic activity of mixed oxide catalysts (cf. Table 1 for definitions of “durability” and “stability”).

. . n (at 10 Tafel Slope (mV Durability -
Catalyst Preparation Method Onset Potential (V) mV/em?) (V) dec—1) ) Stability Electrolyte Ref.
NiCeOy Electrodeposition - 0.27 - >24 Excellent 1M KOH [68]
Sn-Fe,03 NWs Hydrothermal 0.1 - - 10 Excellent 1M KOH [69]
Ni-FeOy & Impregnation 1F1.the B 0.2 ) 1 Good * 0.1 M KOH (70]
Ni-Fe-CoOx NPs presence of aniline
ikt 01M&1M
CoNiOy /1GO Precipitation - 0.28 45 20 Advanced KOH [71]
Fe,CoyO Precipitation - 0.35 36.8 2.5 Good 0.1 M KOH [72]
Fe304-CogSg Two solvothermal steps 1.48 0.34 82.8 6 High 01MKOH  [75]
NPs/rGO
Naj _NiyFe; O, Hydrothermal 1.35 0.26 44 12 Excellent 1M KOH [76]
CoNiO, MnNiO & Precipitfation reaction  CoNiO: 1.60,. MnNiO: } CoNiO: 39, MnNiO: ) ) 01 M KOH [77]
FeNiO with urea 1.61 & FeNiO: 1.54 43 & FeNiO: 18
Fey_CrxO3 Coprecipitation <1.3 0.45 - 15 Good * 100 mM PBS  [78]
MnVO,@N-rGO Hydrothermal 1.32 0.39 271 4 Excellent 0.1 M KOH [79]
Catalyst
MnOx/N-CNT Hydrothermal ca. 14 0.36 75 2 detachment 1M KOH [80]
Physical Vapor -
MnySb; _Ox Deposition (PVD) 15 0.3 75 25 High 1M H,SO, [81]
Varied according to . 025M
Ho,03/MnOx Hydrothermal calcination B ) 05 High (82]

LiClO4
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The study of Desmond-Ng et al. was focused on a theoretical model and experimental
considerations aiming for the engineering of catalytic systems that are competitive with the best
water oxidation electrocatalysts to date [68]. To this end, the authors synthesized a NiCeOx-Au
catalyst, with an outstanding OER activity in alkaline media. A highlight of this approach was the new
combination of electronic, geometric, and catalyst support effects. The TOF of NiCeOx-Au catalyst at
0.28 VRyg overpotential was determined as 0.08 s L.

Li et al. proposed Sn as a dopant in hematite nanowire photoanodes [69]. The morphology
was considered the key factor leading to the high performance of the Sn-doped hematite, which was
furthermore coated with a cobalt oxide catalyst for enhanced photocurrent densities. A schematic
illustration of the catalyst preparation is shown in Figure 22. In this paper, the importance of retaining
the concentration and uniformity of dopants along the nanowire growth was highlighted as another
crucial parameter that is essential for high catalyst activity. The authors applied a silica encapsulation
method, which retained the morphology of the hematite nanowire and further provided tuned
nanowire lengths for maximum light absorption.
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Figure 22. Synthetic protocol for Sn-Fe;O3 NWs and E-I-Sn-Fe,O3 NWs for further decoration with
cobalt oxides (not shown). Reproduced from [69], with permission from the American Chemical Society,
copyright 2017.

Bates et al. proposed a different way of increasing the electrocatalytic efficiency of a Ni-Fe—Co
mixed metal oxide (MMO) catalyst. The morphology was optimized by addition of aniline as a capping
agent, in order to generate a high surface area [70]. Charge-transfer effects contributed to a higher
conductivity among the Ni-Co sites and, therefore, increased their catalytic activity in water oxidation.

A promising strategy towards the development of OER electrocatalysts was proposed by Li et al.,
where a CoNiOx nanocomposite was deposited onto a reduced graphene oxide [71]. The exceptional
performance of this nanocomposite in water oxidation was ascribed to the hierarchical sheet-on-sheet
structure, affording a high surface area and high porosity. The catalyst showed a low overpotential
at 0.28 Vryg and a Tafel slope of 45 mV dec™!. Proposing that all metal sites are active during the
electrochemical reaction, the TOF value was estimated at 0.03 s~!, at the overpotential of 0.35 Vryg.
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Zhuang et al. fabricated a high surface area catalyst consisting of FexCoy-O nanosheets
(261.1 m? g~ 1), with an ultrathin thickness of 1.2 nm [72]. These features led to a superior activity,
compared to commercial RuO,, with an overpotential at 0.35 Vryp and a Tafel slope at 36.8 mV
dec~!. The TOF value at the overpotential of 0.35 Vryg was calculated at 0.02 s~1. This outstanding
performance of the catalyst was ascribed to the large number of oxygen vacancies in the sheets,
which further acted as active centers. The proposed OER mechanism of a Co®* active site, near an
oxygen vacancy, is illustrated in Figure 23.

4
OH-

51
H'+e
OH
&
. _ 2
H,O+e
OH
Figure 23. Proposed OER mechanism of a Co®" active site, near an oxygen vacancy in FexCoy-O

nanosheets. Reproduced from [72], with permission from John Wiley and Sons, copyright 2017.

Applying a two-step solvothermal method, Yang et al. fabricated Fe;O4-decorated CogSg
nanoparticles on reduced graphene oxide [75]. The composite catalyst gave an excellent stability and
catalytic activity. This was ascribed to electron transfer from the Fe species to CoySg, which promoted
the cleavage of the Co—O bond in the stable configuration of the Co-O-O superoxo group.

A layered Naj _«NiyFe; O, double oxide was reported by Weng and co-workers with excellent
stability and electrocatalytic activity, compared to the state-of-the-art RuO, and IrO; [74]. As a result of
Na extraction, the valence states of Ni and Fe were raised and the catalyst exhibited excellent OER
activity. This catalyst was also integrated in a perovskite solar cell, which delivered a solar-to-hydrogen
efficiency of around 11.2%.

A new catalytic material comprising Fe,_,Cr,Oj3 particles is under investigation by Kanazawa et al.
and is proposed for both photoelectrochemical and electrochemical water oxidation [78]. Findings of
their study revealed that Cr-substitution resulted in a five-fold enhancement of the electrochemical water
oxidation performance, compared to «-Fe,O3, as well as lowered charge transfer resistance, giving rise to
an improved OER activity, with nearly a 100% faradaic efficiency.

Mn oxides are cost-effective, environment-friendly, and redox active. The {CaMn4Os} oxygen
evolving center of photosystem Il is a constant source for bio-inspired approaches, in many fields of
catalysis. Due to their versatility, Mn oxides have even been referred to as “Swiss army knife” [83].
In the following, selected recent studies on mixed oxide catalysts, based on manganese are summarized.

Xing et al. proposed a new class of composite catalysts comprising MnVOy on N-doped reduced
graphene oxide [79]. A hydrothermal method was applied, starting from a [MngV,4017(0OAc)3]3~
polyoxometalate precursor. The authors showed that the precursor was successfully deposited
on carbon and then converted to WOCs, with recorded OER current densities of 80 mA cm~2,
at the applied potential of 1.67 Vryg. The overpotential of the MnVOy/N-rGO electrocatalyst

2 current density, with a Tafel slope of 271 mV dec™!.

was determined as 0.39 Vryg, at 10 mA cm™
The synthesis method provided nanoparticulate Mn—V oxides with excellent stability, which can be
further used for a variety of technological applications.

Antoni and co-workers employed high surface area N-functionalized CNTs for the oxidative

deposition of MnOy under reflux and mild hydrothermal conditions [80]. The synthesis was carried



Inorganics 2019, 7, 29 25 of 37

out in the presence of CsMnO, and KMnO, as manganese sources, which gave mainly rise to the
formation of crystalline birnessite manganese oxides. The MnOy-modified N-CNTs catalysts afforded
higher current densities, at around 20 mA cm~2, compared to the unmodified N-CNTs in alkaline
electrolyte. The overpotential of the catalyst was recorded as 0.36 Vgyg at 10 mA cm~2 current density
and the reported Tafel slope was 75 mV dec™ . The faradaic efficiency was also increased from 75% to
90% towards the OER, after 10 min of electrocatalytic tests, and this was attributed to the oxidation
of manganese.

A physical vapor deposition approach via reactive radio frequency magnetron co-sputtering of
Mn and Sb was employed by Zhou et al., for the synthesis of rutile-type solid solutions, Mn,Sb;_,Ox,
with OER activity in strong acidic conditions [81]. The mixed oxides showed current densities above
50 mA cm 2, at the applied potential of 1.79 Vryg. The overpotential at the current density of 10 mA
cm~2 was found to be 0.58 Vyyg, with a Tafel slope value of 75 mV dec™ 1. Notably, the fraction of
Mn3* increased with the overall amount of Mn in the mixed oxides. This was corroborated by XAS,
AP-XPS, and computational investigations and linked to the overall increase in OER activity. Likewise,
Morgan Chan et al. showed via spectroscopic and computational studies that the enhancement of
MnO, oxygen evolution catalyst is related to the introduction of Mn3* species, and the suppression of
Mn3* oxidation to Mn**, due to structural restrictions, was considered crucial for higher activity [84].

Najafpour and co-workers proposed and hydrothermally fabricated a new manganese oxide
supported on holmium oxide for OER [82]. Their catalyst was very stable, recoverable, and it could
be used for long operational OER. The observed self-healing properties were explained with the
presence of Ce(IV) species. O, was produced from water in the presence of Mn oxides and Ce(IV)
and water, and MnO,4~ was further formed from the oxidation of intermediate Mn(II) ions by Ce(IV).
These MnO, ™ ions were eventually converted back to Mn oxide, resulting in self repair of the catalyst.

2.2.5. Other Hydroxides and (Oxy)hydroxides

Commercial water electrolyzers require efficient electrocatalysts with high current densities,
usually above 500 mA cm~2, with long-term stability, at overpotentials below 0.3 Vgyg. To this end,
metal hydroxides and (oxy)hydroxides have attracted a lot of research attention as target structures,
to fabricate catalysts with the aforementioned characteristics [18,36,39—-41,85-92]. Table 6 summarizes
progress in the electrocatalytic activity of hydroxide and (oxy)hydroxide catalysts, over the last three
years. In addition to noble metal oxides, such as RuO, and IrO;, which have been established as the
best OER catalysts to date, Fe-doped NiOOH ranks among the best, noble metal-free catalysts.

Recently, Shin et al. investigated new dopants using a density functional theory approach, in order
to determine the atomistic mechanism for the OER of Ni;_,FexOOH [93]. In their study, 17 transition
metals were considered to replace Fe. They found out that the most promising materials were Co, Rh,
and Ir, and the resulting overpotentials were estimated to be 0.27, 0.15, and 0.02 Vgyg, respectively.
The authors concluded that Fe** and Ni** species played an essential role in the OER. The promotion
of a radical environment on the metal-oxo bond was also found to be a key prerequisite for high
OER activity.

Liang et al. used a PH3 plasma-assisted method developed by their group, to fully convert a NiFe
hydroxide into porous NiFeP, as shown in Figure 24 [85]. This method facilitated the rapid synthesis
of phosphides, at around 15 min, at low temperatures of approximately 200 °C. The catalyst showed
high geometric current densities of 300 mA cm ™2 at the corresponding overpotential of 0.2 Vryg, a
low overpotential of 0.258 Vryg at 10 mA cm 2, and a small Tafel slope of 39 mV dec™!. The low
overpotential of 0.25 Vryg corresponded to 0.036 s~! TOF, as calculated by the authors. The high
activity was ascribed to the morphological architecture and the electronic interaction between the
a-NiFe-OH and NiFeP, respectively.
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Table 6. Comparison of the electrocatalytic activity of hydroxide and (oxy)hydroxide catalysts (cf. Table 1 for definitions of “durability” and “stability”).
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. Onset n (at 10 Tafel Slope (mV Durability o1

Catalyst Preparation Method Potential (V) mV/em?) (V) dec—1) ®) Stability  Electrolyte Ref.

. . Hydrothermal & PHj3 plasma } -
NiFeOH/NiFeP treatment & electrodeposition 0.258 39 24 High 1M KOH [85]
NiFe-OH Stepwise electrodeposition - 0.24 38.9 5 Good * 1 M KOH [86]
Wo5Cop4Feq1 oxyhydroxide coralloids Hydrothermal 1.53 0.25 32 >500 Superior 1M KOH [87]
CoFe-H hydroxide & CoFe-H/BiVOy Electrodeposition 0.23 0.28 28 45 High * 1M KOH [88]
CeO,/FeOOH Electrodeposition 0.21 0.25 32 50 High 1M NaOH [89]
FeOOH/Co/FeOOH Electrodeposition 0.22 0.25 32 50 High 1 M NaOH [90]
FeCoW oxyhydroxides Modified sol-gel - 0.191 37 550 High 1IMKOH  [91]

Electrodeposition &
NiFe(OH)/NiFe:Pi phosphorylation 1.43 0.29 38 10 Excellent 1M KOH [92]
. . N 67-109 (depending on )
Ag-decorated Co(OH), Selective reduction-oxidation - 0.27 the amount of Ag) 10 Good 1M KOH [94]
. 0.01M
NiFeOOH/TiO, core-shell Hydrothermal 0.273 86.9 24 High * Na,SO, [95]
«-NiCo(OH), Electrodeposition 1.43 0.26 25-30 6 High * 1 M KOH [96]
) ) Chemical vapor transport &

NiPS;@NiOOH liquid exfoliation 1.48 0.35 80 >160 Excellent 0.1 M KOH [97]
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Figure 24. Plasma-assisted strategy to hierarchical «-NiFe-OH/NiFeP/NF electrocatalysts for water
oxidation: (a) Ni foam substrate, (b) NiFe-DH nanoplates hydrothermally grown on Ni foam,
(c) conversion of NiFe-DH to porous NiFeP nanoplates, using PH3 plasma, and (d) electrodeposition of
amorphous NiFe-OH nanosheet layer onto NiFeP. Reproduced from [85], with permission from John

Wiley and Sons, copyright 2017.

Electrodeposition was employed by many groups, in order to synthesize catalysts using
FeOH or FeOOH-coupled with other co-catalyst metals or metal oxides, such as Ni, CeO,,
and BiVOy [86,87,89,90,92]. Of note is the work by Li et al., which dealt with the surface wettability [92];
the authors employed electrodeposition and phosphorylation methods to deposit an «-NiFe-OH
nanosheet layer onto a NiFe:P; 3D hierarchical nanostructure. From the results, the authors concluded
that surface wettability is a key parameter for controlling the morphology, while it is also capable of
modifying the chemical properties of a catalyst. The catalyst showed a low overpotential of 0.29 Vryg
at 10 mA cm~2 and an excellent stability in the aqueous media. The faradaic efficiency was found
to be 98.2%, which suggested that the main product evolved on the catalyst was O,. Furthermore,
the phosphorylation assisted the enhancement of the surface area, which provided more catalytic
active sites for water adsorption and oxidation.

A trimetallic W 5Cog 4Fep 1 oxyhydroxide corraloid was introduced by Pi et al.; this exhibited
a superior stability and durability in alkaline media, for 21 days [87]. Their catalyst outperformed
most of the reported Co-based nanomaterials and showed continuous electrolysis currents with
imperceptible decay after more than 500 h. The authors followed a wet-chemical method to synthesize
corraloid-like trimetallic oxyhydroxides on nickel foam and carbon nanotubes. The preparative route
and the electron microscopy characterization of the catalyst are displayed in Figure 25. The images
showed disintegrated and twisted nanosheets and the selected area electron diffraction data revealed
the high crystallinity of the oxyhydroxides. The special structure of this catalyst went hand-in-hand
with a low overpotential of 0.25 Vryg, at the current density of 10 mA cm~2 and a small Tafel slope
of 32 mV dec™!. XPS data showed that an optimized amount of Fe went hand in hand with the
optimization of the binding energy of oxygen intermediates, which led to a high OER activity.

A similar trimetallic catalyst consisting of FeCoW oxyhydroxides was synthesized via a modified
sol-gel method by Zhang and co-workers [91]. These gelled FeCoW oxyhydroxides exhibited superior
durability for 550 h, i.e., approximately 23 days, with a very low overpotential of 0.191 Vryg at 10
mA cm~2, in alkaline media. The intrinsic activity of gelled-FeCoW oxyhydroxides was quantified
by determining the TOF value, which was found to be 0.46 s!, at an overpotential of 0.3 VRye.
The faradaic efficiency of O, evolution recorded on the catalyst was calculated to be close to 100%.
The synergistic effects between the three metals produced a favorable local coordination environment,
which, along with their electronic interaction, significantly enhanced the OER activity.
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metal chloride

% nickel foam ~~"® butylamine
solution

Figure 25. Preparative route (a) and morphological characterization of oxyhydroxides on nickel
foam (NF): (b,c) SEM, (d) TEM and (eq,e;) HRTEM images of oxyhydroxide W 5Cog4Feq1/NF
(inset: corresponding SAED pattern). (f) HAADF-STEM image and STEM-EDS mapping of
W .5Cog.4Fep1/NF (Co = green, Fe = yellow, O = red). Reproduced from [87], with permission from
John Wiley and Sons, copyright 2017.

Electrodeposited amorphous a-phase Ni-Co(OH), nanodendrite forests were synthesized on a
stainless steel foil by Balram and co-workers [96]. The key parameter for the formation of nanodendritic
structures was the addition of small amounts of water to the deposition bath. A limited water
electrolysis and hydrogen bubble production occurred near the electrode interface with the electrolyte,
which caused highly localized pH gradients, resulting in the aforementioned three-dimensional
structure. The electrocatalyst afforded current densities higher than 50 mA cm~2, at the applied
potential of 1.6 Vryg, The overpotential at the current density of 10 mA cm 2 was found at 0.25 Vryg
and the Ni-Co(OH), material showed an excellent stability during the operational time of 6 h.

Konkena and co-workers employed a chemical vapor transport and liquid exfoliation method, in
order to fabricate an NiPS3@NiOOH core-shell structure [97]. Ni(Ill)-based (NiOOH) species of the shell
structure enhanced the overall OER, as shown by a combination of spectroscopic and computational
analyses. Additionally, the high OER activity was attributed to the highly active metal-edge sites.
The catalyst excelled through a low-onset potential at 1.48 Vryg, as well as an overpotential value of
0.35 Vgyg at the current density of 10 mA cm 2. The Tafel slope was recorded as 80 mV dec! and the
catalyst showed a high stability after 6 h of electrocatalytic tests.

3. Brief Discussion of the Unresolved Bottlenecks

The development of a highly efficient and low-cost water oxidation catalysts remains of utmost
importance for commercial artificial photosynthesis applications. Notwithstanding the recent advances
in this field, fundamental improvement strategies and issues need to be further addressed. Focusing
efforts on mechanistic studies is essential for a deeper understanding of how a more efficient and
long-lasting water oxidation catalyst can be engineered. Furthermore, these advanced engineering
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efforts for a promising oxidation catalyst need to be coupled with convenient and applicable
benchmarking protocols. These protocols will allow us to easily compare our systems on all levels
and to unambiguously identify candidates for a technological scale-up. Given that such generally
accepted standard test procedures are still pending, here, we refrained from further performance
comparisons between the different material types. The wide variation of preparative and experimental
parameters between the selected studies still renders such comparisons far from unambiguous.
Another unresolved bottleneck in the field is the need for widely available in situ/operando
monitoring techniques, under real catalytic conditions. Monitoring structural changes during catalysis,
under various concentrations, pH, and temperature parameters, provides indispensable first-hand
information for selecting the most efficient optimization parameters.

4. Directions to New Composite Materials

In this section, an outlook is given on new composite materials for OER catalysis. Kuang et al.
introduced a superior carbon material as a booster additive for water oxidation catalysts, namely
graphdiyne (GDY), which comprises assembled layers of sp and sp? hybridized carbon atoms [98].
Graphdiyne has been proposed as a new and the most stable carbon allotrope, with a high
m-connectivity, uniformly distributed triangular pores, and tunable electronic properties [99].
The geometrical structure of this material is illustrated in Figure 26. More specifically, Kuang and
co-workers fabricated a GDY /NiFe-LDH electrocatalysts, via a hydrothermal method. Morphological
characterizations of the material, as well as elemental mapping data are displayed in Figure 27.
The electrocatalyst exhibited outstanding catalytic activity towards water oxidation, at a low
overpotential of 260 mV in an alkaline electrolyte. Density functional theory calculations were also
performed and demonstrated strong interactions between -C=C-C=C- and the transition metal atoms,
which further contributed to the fast electron transfer and long operational stability.

"
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two-dimensional ove® three-dimensional
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Figure 26. Structural features of graphdiyne (GDY). Reproduced from [98], with permission from the
Royal Society of Chemistry, copyright 2018.

Chen and co-workers synthesized an emerging type of carbon, the giant carbon tubes (GCTs),
with outstanding water oxidation properties, and a unique physicochemical structure [100]. Regarding
the formation protocol, quartz wool was employed as a template for the CVD growth of the giant
carbon tubes. The material was placed in a quartz tube and heated to different temperatures—between
950 and 1050 °C—in a mixed H; and CH4 gas stream.

The nitridation of the GNTs (N-GNTs) was also carried out by further heating of the sample in a
furnace, under an NHj flow. SEM and TEM images of the material are shown in Figure 28. The GNTs
and N-GNTs showed an overpotential of 0.44 Vryg, at the current density of 10 mA cm 2 and Tafel
slope values of 46 and 48 mV dec ™!, respectively, which were significantly lower than those of other
carbon-based WOCs. The authors also ran chronoamperometric studies of the catalyst for almost
30 min, and the current densities showed a time-dependent upward trend.
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Figure 27. Morphological features and composition of GDY /NiFe-LDH composite: (a) SEM image,
(b) ACTEM image, (c,d) HRTEM images, and (e-i) HAADF and EDS mapping. Reproduced from [98],
with permission from the Royal Society of Chemistry, copyright 2018.

Figure 28. FESEM images of (a) quartz wires (b) quartz wire@carbon, (c) giant carbon tubes (GCTs),
and (d-h) TEM and HRTEM characterizations of GCTs. Optical images of carbon tubes growing on
quartz wire (125 um in wire diameter) of (i) 10 cm and (j) ultralong 1 m species. (k) An Infinite Focus
Microscopy (IFM) image of a GCT, with an inner diameter up to 125 pm. Reproduced from [100],
with permission from the Royal Society of Chemistry, copyright 2018.

Heterojunction structures are of current interest for solar water splitting, as proposed recently by
Wei et al. [101]. In particular, the authors employed a hydrothermal method to synthesize SrTiO3/TiO,
heterogeneous hollow multi-shelled structures (HoMSs), via a hydrothermal crystallization of SrTiO3
on the surface of the TiO;. The preparation route towards the SrTiO3 / TiO; heterojunctions is illustrated
in Figure 29. Morphological characterizations (cf. Figure 30) showed the full coverage of the TiO,
surface with SrTiO3. The heterogeneous hollow multi-shelled structures increased the ability of the
SrTiO3 /TiO; photocatalyst to absorb light and subsequently augmented their charge carrier separation
efficiency. The SrTiO3/TiO, photocatalyst retained its catalytic activity, without any evident decrease,
after 20 h of overall water splitting reaction.
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Figure 29. Preparative route of the SrTiO3-TiO, hollow multi-shelled structures (HoMSs), via
a hydrothermal method. Reproduced from [101], with permission from John Wiley and Sons,
copyright 2019.

Figure 30. Morphological characterization of hollow multi-shelled structures (HoMSs): TEM images
of (a) single (1S-), (b) double (25-), and (c) triple (3S-) shelled structures. (d) SEM image of 35-HoMSs
(inset: broken sphere). (e) HRTEM image of SAED of S-HoMSs (S-HoMSs). (f) Elemental mapping of a
slice of S-HoMSs, after 12 h of hydrothermal reaction. Reproduced from [101], with permission from
John Wiley and Sons, copyright 2019.

5. Conclusions and Perspectives

Water splitting as means of a clean and sustainable hydrogen energy production is of utmost
importance, in order to meet our worldwide present and future energy needs. Electrochemical
processes involving the oxygen evolution reaction are an essential part of this technology. As a result,
the development of efficient electrocatalysts has become critical and, as a consequence, this research
field has attracted increasing attention over the past years. To this end, an electrocatalyst for commercial
electrolyzers should generally reach current densities of at least 500 mA cm ™2, with long-term stability,
as well as overpotentials below 0.3 Vryg.

It is important to point out that different lines of research emerge from electrolyzer optimization
for photovoltaic-driven electrolysis devices (PV-PEC) and from photoelectrochemical systems (PEC).
Concerning PV-PEC, increased production levels in the electrolyzer industry require comparable
cost levels to the PV sector, to couple these technologies both economically and operationally.
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Therefore, the optimization of porous transport layers in electrolyzers is an essential task, with
regard to costs, stability, and efficiency. Furthermore, improvements of the performance and stability
of catalyst layers and membranes are indispensable. On the mass production scale, the use of
earth-abundant electrocatalysts with similar characteristics to that of noble-metal electrocatalysts,
will become inevitable. In addition, membrane-free systems are highly desirable, due to their
low upfront capital costs. Another low-cost strategy will be the reduction of the ionic resistance
of the membrane to significantly enhance the electrocatalyst activity and to minimize the mass
transport limitations. In addition to the need for earth-abundant and low cost materials, the interfacial
interactions between the absorbers, electrocatalysts, and electrolytes need to be further and more
deeply understood.

While the technology readiness for the PV-PEC devices is at an advanced level, the technological
maturity of PEC devices is at a rather early stage, with an estimated time horizon for applications of
approximately 10 years. Consequently, progress in PEC technology is of high scientific significance to
(and complements) PV-driven electrolysis devices with flexible setups.

Keeping the present situation in mind, this review presents an overview on the recent advances in
water oxidation catalysts, focusing on highly visible studies in the field, between 2016 and 2018, to set
research directions for the future. The selected works identify a wide range of influential parameters,
such as morphology control, choice of operational media, catalyst stability and mechanisms, as well
as synthesis methods, including doping strategies, which are just beginning to be fully explored for
performance optimization. The complexity of these parameter interactions, furthermore, increases the
need for fundamental mechanistic understanding, going hand in hand with the development of new in
situ/operando monitoring techniques. In addition, computational studies provide valuable guidelines
for the informed use of such new analytical and synthetic techniques. The quest for true catalysts
is more important than ever, given the increasing number of yet unexplored new oxide materials,
let alone the manifold emerging oxide clusters. The need for new and more efficient materials is
pressing to both enhance the performance and commercialization of electrolyzers and to leverage the
full potential of complementary and direct, off-grid photoelectrochemical devices.
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