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Abstract: The lowest-energy isomer of C2Si2H4 is determined by high-accuracy ab initio calculations
to be the bridged four-membered ring 1,2-didehydro-1,3-disilabicyclo[1.1.0]butane (1), contrary to
prior theoretical and experimental studies favoring the three-member ring silylsilacyclopropenylidene
(2). These and eight other low-lying minima on the potential energy surface are characterized
and ordered by energy using the CCSD(T) method with complete basis set extrapolation, and the
resulting benchmark-quality set of relative isomer energies is used to evaluate the performance of
several comparatively inexpensive approaches based on many-body perturbation theory and density
functional theory (DFT). Double-hybrid DFT methods are found to provide an exceptional balance of
accuracy and efficiency for energy-ordering isomers. Free energy profiles are developed to reason
the relatively large abundance of isomer 2 observed in previous measurements. Infrared spectra and
photolysis reaction mechanisms are modeled for isomers 1 and 2, providing additional insight about
previously reported spectra and photoisomerization channels.

Keywords: thermoisomerization; photoisomerization; organosilicon molecules; density functional
theory; coupled cluster methods; Gibbs free energy; intrinsic reaction coordinate

1. Introduction

The C2Si2H4 molecule has been the subject of very few literature studies, despite being a
bicyclobutane/butadiene analog of fundamental interest. Holme et al. [1] predicted the existence
of over a dozen cyclic C2Si2H4 stationary points at the Hartree-Fock (HF) level, assigning the
lowest-energy isomer as the three-membered ring silylsilacyclopropenylidene. Inclusion of correlation
energy using third-order many-body perturbation theory (MBPT(3)) left the isomer ordering
unchanged, though it is worth noting that a modest 6-31G(d) basis set was employed. Holme
remarked that a three-membered-ring isomer seemed an “unlikely choice” due to the enhanced strain
destabilization as compared with competing four-membered-ring structures. Structural compression
is energetically favorable when electron-correlation stabilization dominates over strain destabilization.
If this is the case for C2Si2H4, one might expect that the maximally compressed isomer, a bridged
bicyclobutane analog, should be the global minimum. One such isomer was considered by Holme et
al., but it was predicted to be over 10 kcal/mol higher in energy than silylsilacyclopropenylidene.

In the first experimental study on C2Si2H4, Maier et al. reported infrared (IR) measurements
supplemented by density functional theory (DFT) vibrational simulations [2]. In their workup a
mixture of silane structures was thermalized by pulsed flash pyrolysis at 1500 K, and the resulting
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mixture was rapidly frozen out in an Ar matrix at 10 K before IR characterization. Signatures of
silylsilacyclopropenylidene were detected and upon further irradiation the corresponding ring-opening
photolysis products were observed (i.e., (silylethynyl)silylene and ethynylsilylsilylene). Accompanying
calculations were performed using the BLYP generalized-gradient approximation (GGA) exchange
correlation functional (XCF) and assigned silylsilacyclopropenylidene as the global minimum, in
agreement with the prediction of Holme et al. Due to this apparent agreement between theory and
experiment, this assignment of the lowest-energy isomer of C2Si2H4 has stood for over 20 years.

The purpose of the current study is to apply more sophisticated computational methods to
investigate the delicate balance between electron-correlation stabilization and strain destabilization
in C2Si2H4. Ground-state DFT methods, and their extension to excited states via time-dependent
(TD) DFT [3–5], are the most widely-used approaches for describing electron correlation in atoms,
molecules, and solids [6]. While superior to the HF self-consistent field (SCF) theory, the popular
BLYP and B3LYP approaches have major shortcomings, which often result in qualitatively incorrect
predictions [7]. In light of recent advancements, the default choice of XCF needs to be augmented,
updated, or supplanted entirely [8]. Since it is unclear which of the hundreds of existing functionals
perform best overall, several popular functionals were chosen from the BLYP [9,10], PBE [11,12], and
Minnesota functional families [13–16] for evaluation in the context of the current application.

The quality of XCFs can be ranked as being on one of five rungs of Jacob’s ladder, with the fifth
rung approaching the “heaven” of chemical accuracy [17]. Here the term “chemical accuracy” takes
the colloquial meaning that a method is predictive to within 1 kcal/mol. Functionals including only
a local density approximation to the correlation functional [18] represent the first rung, while those
incorporating GGA correlation represent the second rung. After density gradients, Laplacians can
be included in the mix, resulting in meta-GGA functionals, or the third rung of Jacob’s ladder [19].
Hybrid functionals are on the fourth rung of Jacob’s ladder, often referred to as hyper-GGAs, while the
fifth rung of Jacob’s ladder is represented here by double-hybrid (DH) DFT methods [20,21], which
semiempirically blend DFT and wave-function theory. Only functionals from the highest three rungs
will be considered here.

Electron correlation can be treated within a more hierarchical framework by using wave-function
methods, which, unlike DFT, are systematically improvable to the exact solution of the Schrödinger
equation. In the ground state, approximations based on the coupled-cluster (CC) hierarchy [22–27]
are among the most rapidly convergent approaches, with the CCSD(T) method often referred to
as the “gold standard” of quantum chemistry. While expensive, CCSD(T) energies extrapolated
to the complete basis set (CBS) limit are widely considered benchmark-quality for molecules near
their equilibrium geometries. In situations where degeneracy is commonly encountered (e.g., when
crossing transition states, when accessing excited states, or when breaking or forming bonds), CCSD(T)
can fail [28], and in these cases one can instead turn to new generations of CC methods, such
as the left-eigenstate completely renormalized (CR) CC method [29–32] called CR-CC(2,3). The
CR-CC(2,3) approach provides an accurate description of single-bond-breaking processes [33,34],
biradical and magnetic molecules [35,36], and transition states [37,38]. Excited states can be accessed
in a straightforward manner using the equation of motion (EOM) CC formalism [39–42], resulting
in the CR-EOMCC(2,3) approximation and its size-intensive variant δ-CR-EOMCC(2,3) [31,43–46].
Experience shows that reliable energetics are produced for ring-opening [47] and bond-rearrangement
processes [48] when CR-CC(2,3) is applied on top of appropriate complete-active-space (CAS) SCF
geometries. The steep O(n7) scalings of CCSD(T) and CR-CC methods prohibit their use for all but the
smallest systems, but fortunately they are readily applicable to the title molecule.

The motivation for this work spans several fields. Mapping interstellar silicon reaction networks
is one application [49], as C2Si2H4 may result from bimolecular collisions between the highly-abundant
acetylene and its silicon-based analog disilyne. This bimolecular reaction and subsequent isomerization
can also be considered as a model system for understanding preferred bonding configurations in
coordinate complexes [50], bulk silicon surface-adsorption [51], and defect-inclusion processes [52].
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Many of the present modeling decisions were guided by prior benchmarking work on the structure and
spectroscopy of hydrogen-free silicon carbide clusters [53,54]. This study continues along these lines,
investigating the performance of various modern DFT methods by comparing against spectroscopic
values and high-level computational results. The structure of the paper is as follows. The methods
employed are detailed in Section 2, the results and discussion are covered in Section 3, while concluding
remarks and final recommendations for density functional usage are offered in Section 4.

2. Computational Methods

Electronic structure calculations were performed using the GAMESS [55,56] and Gaussian16 [57]
packages on the AFRL DSRC SGI Ice X Thunder and a local workstation. Visualizations were performed
using the GaussView V6 [58] and MacMolPlt V7.3 [59] software packages. All DFT gradient calculations
employed the tight JANS = 2 grid in GAMESS and the ultrafine grid in Gaussian. Grimme’s D3(BJ)
empirical dispersion correction was also employed [60–63].

We employed the basis sets DZP [64], Def2-TZVP, and Def2-QZVP [65]. Ahlrichs’ triple-ζ (n = 3)
and quadruple-ζ (n = 4) basis sets were used in conjunction with the formula of Helgaker et al. [66],
E = Ecbs + An−3, for CBS extrapolation of the correlation energy, with the SCF component of CBS
energies approximated at the HF/cc-pV5Z level. Geometry optimizations were performed at the level of
theory indicated by the conventional double-forward slash notation (e.g., CCSD(T)//MBPT(2)) [67,68].
All MBPT(4) calculations correspond to the MBPT(4)-SDQ approximation, and all CR-CC(2,3) and
CR-EOMCC(2,3) triples corrections correspond to the most complete “D” variant, which employs the
exact Epstein-Nesbet-like denominator [69]. Core orbitals were frozen in all wave-function calculations.

3. Results

3.1. Energy-Ordering C2Si2H4 Isomers

The full potential energy surface of C2Si2H4 includes many energetically-similar local minima
involving strained three- and four-membered heterocyclic rings. Dozens of unique cyclic species can
be imagined, with some resembling cyclobutane or methylcyclopropane, but, unlike their hydrocarbon
analogs, C2Si2H4 isomers differing by a transannular hydrogen migration are often separated by only
a few kcal/mol. Due to the diversity of possible bonding configurations, ranking such structures by
energy demands a high-level treatment of the correlation energy and a large basis set.

Figure 1 collects structures and dipole moments for 10 low-lying C2Si2H4 isomers characterized
as PES minima using B3LYP/Def2-QZVP. Dipole moments are also provided, as derived from
B2PLYP/Def2-QZVP electronic densities. Saddle-point structures of any order were discarded.
Isomer 2 was previously characterized as the global minimum and isomer 6 is reported here for
the first time. Isomers 1 and 2 are the focal point of this work, and they have IUPAC names
1,2-didehydro-1,3-disilabicyclo[1.1.0]butane and silylsilacyclopropenylidene, respectively [70].

Optimizations were performed with no symmetry imposed, unlike in previous studies,
and consequently many of the four-membered ring structures adopted puckered configurations.
This puckering caused insignificant reductions in relative isomer energies accompanied by significant
increases in dipole moments. Dipole moments computed using other levels were found to be within
∼5% of the B2PLYP/Def2-QZVP values reported in Figure 1. Cartesian coordinates and cartesian
decompositions of dipole moments corresponding to the B3LYP/Def2-QZVP optimized structures are
available in the Supplementary Materials.



Inorganics 2019, 7, 51 4 of 14

Figure 1. Low-lying C2Si2H4 isomers optimized with B3LYP/Def2-QZVP and B2-PLYP/Def2-QZVP-
level dipole moments.

Table 1 demonstrates the basis set dependence of the relative energies of isomers 1 and 2.
The small-basis MBPT(3) calculations reported by Holme et al. predicted a value of 11.6 kcal/mol,
while the energy difference calculated at the CCSD(T)//MBPT(2)/Def2-TZVP level was found to be
0.0 kcal/mol. When diffuse functions were added the energy difference reduced by 1.8 kcal/mol, and
it reduced 1.0 kcal/mol further in going from Def2-TZVPD to Def2-QZVP. A value of −3.4 kcal/mol
was obtained after CBS extrapolation, differing by 15.0 kcal/mol from the best value reported by
Holme et al. Recognizing the sensitivity of the relative energies to basis set size, the Def2-QZVP basis
set was employed for all isomer-ordering geometry optimizations.

Table 1. Energy differences between isomers 1 and 2 in kcal/mol, calculated as ∆E = E(1)− E(2) for
consistency with Ref. [1]. Optimizations and ZPVE calculations were performed at the MBPT(2) level
using the basis set indicated.

Ref. [1]
CCSD(T)

Def2-TZVP Def2-TZVPD Def2-QZVP CBS 1

11.6 0.0 −1.8 −2.8 −3.4
1 CBS extrapolated value; for the details of how this was computed, see the text.

Table 2 collects relative isomer energies for the 10 structures in Figure 1 using the Def2-QZVP basis
set and wave-function methods including MBPT at second-, third-, and fourth-orders, as well as CCSD
and CCSD(T). All calculations were performed on structures optimized at the MBPT(2)/Def2-QZVP
level, with MBPT(2)/Def2-QZVP-level zero-point vibrational energy (ZPVE) corrections included.
Benchmark-quality values computed at the CCSD(T)/CBS//MBPT(2)/Def2-QZVP level, are provided
in the final column of Table 2, were used to generate mean signed errors (MSE) and mean unsigned
errors (MUE) for each method. Only MBPT(2) failed to achieve chemical accuracy, i.e., a MUE under
1.0 kcal/mol.

Table 3 focuses on DFT-based methods, with pure GGAs, hybrid GGAs, and double-hybrid
methods based on BLYP, PBE, and Minnesota XCFs represented. At the BLYP and B3LYP levels,
isomer 2 was predicted as the global minimum, consistent with the small-basis BLYP results in Ref. [2].
All other methods tested here ordered isomer 1 below 2. The M06-2X and B2-PLYP+D3 approaches
ordered all ten energies correctly, while DSDPBEP86 was also very close, erring by only 0.1 kcal/mol
in ordering isomers 8 and 9. Only the DH-DFT methods methods produced MUEs within chemical
accuracy, on average.
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Table 2. Statistical evaluation of wave-function methods for determination of the relative energies of
low-lying isomers of C2Si2H4. Isomer energies were computed as ∆E = E(2)− E(1). All values are
in kcal/mol.

Isomer Ref. [1] MBPT(2) MBPT(3) MBPT(4) CCSD CCSD(T) Benchmark 1

2 −11.6 4.4 1.9 0.4 0.1 2.8 3.4
3 −2.3 10.6 7.7 6.7 6.5 7.5 7.9
4 17.0 14.7 10.6 9.7 9.3 11.2 11.3
5 20.0 13.3 13.3 12.1 12.0 13.7 14.0
6 - 16.3 16.4 16.2 16.4 15.1 15.4
7 26.7 20.3 20.1 19.0 19.2 19.2 19.5
8 - 25.8 24.4 23.4 23.5 23.5 23.6
9 31.1 22.0 23.3 23.5 23.4 24.4 23.9
10 38.1 31.1 29.2 28.4 28.5 28.7 28.8

MSE 2 - 1.1 0.1 −0.6 −0.6 −0.1 0.0
MUE 3 - 1.7 0.5 0.8 0.8 0.2 0.0
1 Computed at the CCSD(T)/CBS//MBPT(2)/Def2-QZVP level of theory. 2 Mean signed errors computed
with respect to reference CCSD(T)/CBS//MBPT(2)/Def2-QZVP values. 3 Mean unsigned errors computed
with respect to reference CCSD(T)/CBS//MBPT(2)/Def2-QZVP values.

Table 3. Statistical evaluation of density functional theory methods for determination of relative
energies of the 10 lowest-lying isomers of C2Si2H4.

Functional MSE MUE

BLYP 2.6 3.3
B3LYP −0.9 1.2

B3LYP+D3 −0.8 1.4
B2-PLYP+D3 0.2 0.6

PBE0 −1.0 1.0
PBE0+D3 −1.1 1.1

DSDPBEP86 −0.1 0.4

M06L −2.3 3.6
MN15L −1.3 3.0
M06-2X −1.2 1.3
MN15 −0.1 1.3

Figure 2 collects temperature-dependent free-energy profiles computed using MBPT(2), B3LYP,
and M06-2X in conjunction with the Def2-QZVP basis set. The study by Maier et al. described
sample preparation by flash pyrolysis at 1500 K, and at this temperature all three methods place
isomer 2 lowest in energy. It is thus likely that thermodynamic equilibrium of the structures was
not achieved within the 10K Ar matrix preceding the IR measurements. Taking into consideration
their temperature-independent enthalpic energy displacements, the free-energy profiles for each of
the higher-lying isomers in Figure 2 are qualitatively very similar. The notable exception is isomer 4,
which has a positive gradient when computed with MBPT(2) and a negative gradient when computed
with B3LYP and M06-2X.
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Figure 2. Relative free energies of the ten isomers in Figure 1 computed using the (a) MBPT(2),
(b) B3LYP, and (c) M06-2X methods. The flash pyrolysis temperature reported in Ref. [2] is marked
with a vertical dotted line.

3.2. Infrared Spectroscopy of Low-Lying C2Si2H4 Isomers

In Section 3.1, high-accuracy ab initio methods were employed to determine isomer 1 as the
zero-temperature global PES minimum, while free-energy simulations flipped the order of the
two lowest-lying isomers at the pyrolysis temperature reported by Maier et al. Assuming that a
non-equilibrium mixture of isomers was present during the IR characterization performed at 10K,
traces of isomer 1 may have been overlapped with peaks attributed to the dominant species, isomer
2. Broad bands of this type were noted by Maier et al. occurring at 2190 cm−1 and 919 cm−1.
If these peaks are attributable to isomer 1, this is supporting evidence that both isomers were
measured in the non-equilibrium mixture, and helps further reconcile the past and present global
minimum assignments.

Figure 3 compares simulated IR spectra with peaks reported in measurements by Maier et al.
Simulated spectra were computed for isomer 1 using the CASSCF(6,6), MBPT(2), and B3LYP levels of
theory with the Def2-TZVP basis set. All theoretical spectra exhibit large-intensity frequencies in good
agreement with the positions of the measured broad features. Vibrational simulations are known to be
insensitive to both basis-set size and correlation effects, so higher-level results were not pursued. Thus,
the theoretical vibrational characterizations of isomer 1 qualitatively match the broad peaks at 2190
and 920 cm−1, and this warrants further analysis.

Table 4 presents a quantitative comparison of the strongest IR peaks of isomers 1 and 2. Of the
three methods tested, B3LYP produces the most accurate frequencies as compared to the measured IR
peaks, with all values being within 50 cm−1 of an observed frequency. Indeed, the spectral fingerprints
of the two isomers are quantitatively very similar, supporting the hypothesis that both isomers were
present in the original measurements.
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Figure 3. Simulated IR spectra for isomer 1 overlaid upon measured broad features from Reference [2]
assigned arbitrary intensities. Frequencies are in cm−1 and intensities have arbitrary units.

Table 4. Vibrational frequencies (in cm−1) as computed for isomers 1 and 2 at various levels of theory.
Values for protonated species are reported above and deuterated species below. Intensities relative to
the strongest band are provided in parentheses. Measured spectroscopic data are listed for comparison.

Isomer 1 Isomer 2

Exp. (Ref. [2])Computational Method Computational Method

CASSCF(6,6) MBPT(2) B3LYP CASSCF(6,6) MBPT(2) B3LYP

2300 (1.0) 2230 (1.0) 2140 (1.0) 2300 (0.4) 2280 (0.3) 2210 (0.4) 2190 1

1010 (0.1) 960 (0.3) 980 (0.3) 1030 (0.3) 970 (0.3) 950 (0.4) 950 (0.2)
1000 (0.2) 950 (0.3) 950 (0.2) 1020 (1.0) 950 (1.0) 930 (1.0) 920 (1.0)
860 (0.1) 820 (0.1) 810 (0.1) 880 (0.2) 860 (0.1) 840 (0.2) 840 (0.2)
780 (0.1) 790 (0.1) 750 (0.1) 820 (0.2) 770 (0.1) 750 (0.1) 720 (0.1)
690 (0.1) 760 (0.1) 670 (0.1) 720 (0.2) 680 (0.2) 670 (0.1) 670 (0.1)
660 (0.1) 650 (0.1) 650 (0.1) 700 (0.1) 670 (0.1) 650 (0.1) 650 (0.2)

1660 (1.0) 1600 (1.0) 1550 (1.0) 1650 (0.5) 1630 (0.4) 1580 (0.5) 1600 1

850 (0.8) 820 (0.5) 830 (0.5) 850 (1.0) 820 (0.6) 810 (0.8) 800 (0.6)
780 (0.3) 710 (0.3) 720 (0.2) 760 (1.0) 710 (1.0) 700 (1.0) 690 (1.0)
620 (0.1) 550 (0.2) 540 (0.1) 560 (0.3) 530 (0.2) 520 (0.3) 520 (0.1)

1 Broad band from several overlapping species; intensity not reported in Ref. [2].

3.3. Photoisomerization of Low-Lying C2Si2H4 Isomers

The experimental analysis by Maier et al. also inferred the presence of isomer 2 by monitoring
photolysis products via IR spectroscopy. Irradiation with 313 or 366 nm light was found to isomerize 2
via ring-opening to form (silylethynyl)silylene (H3SiCCSiH) and ethynylsilylsilylene (H3SiSiCCH).
Explicit mapping of isomerization mechanisms can be performed using intrinsic reaction coordinate
(IRC) calculations to connect key stationary points on the PES. Photoisomerization mechanisms can be
explored by performing vertical excitation energy (VEE) calculations on the ground-state IRC structures,
though we note that this does not provide definitive proof of the mechanism since, in general, none of
the considered structures are well-defined stationary points on the excited-state surfaces.

Figure 4 compares potential energy cuts for the ring-opening of isomer 2, as generated using a
variety of wave-function and DFT methods. The underlying ground-state structures were generated
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from IRC calculations connecting isomer 2 to the observed non-cyclic product H3SiCCSiH. IRC
calculations were performed using the CASSCF(6,6), B3LYP and M06-2X methods, in Figure 4a–c,
respectively. Within each frame, other methods were applied on top of these underlying geometries.

Reaction coordinate
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gy

 (e
V)

(a) CASSCF(6,6)
EOM-CCSD
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Reaction coordinate
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B3LYP
CAMB3LYP
B2PLYP

Reaction coordinate

(c) M06-L
M06-2X
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MN15

Figure 4. Reaction profiles for the ring-opening of silylsilacyclopropenylidene (isomer 2) to
(silylethynyl)silylene, as computed using (a) wave-function methods, (b) BLYP-based DFT methods,
and (c) Minnesota DFT methods. Solid (s), dashed (t), and dotted (©) lines (symbols) correspond to
the ground, first-excited, and second-excited states, respectively.

Experimental evidence suggests that irradiation of the reactant structure leads to photoconversion,
implying a negative gradient on the excited-state surface at the equilibrium geometry. All theories
generated potential cuts consistent with this mechanism. Evidently the second excited state is accessed
by absorption of an incident photon and the reaction proceeds by adiabatic relaxation along a negative
potential gradient, eventually transitioning through a cascade of avoided crossings to form the product
isomer. The wave-function and DFT results differ significantly only in the placement of the avoided
crossing between the first- and second-excited states, with the EOMCC methods placing it near the
reactant geometry and TDDFT methods placing it near the transition state geometry.

Figure 5 collects stationary points characterized using B3LYP/DZP and carefully connected
by IRC calculations. Corresponding relative energies are also provided, though, due to the basis
set size, discussion is reserved to qualitative aspects of the surface. Isomer 1 was found to be
connected to isomer 2 via several transition states and intermediates involving transannular hydrogen
migration and bond rearrangements. The largest barrier height separating isomers 1 and 2 is shown
to be within 1–2 kcal/mol of that separating isomer 2 and the second observed photolysis product,
ethynylsilylsilylene. Thus, the activation energy required to surmount barriers separating isomer 2
and products will also drive the reaction converting isomer 1 to products. The magnitude of the barrier
heights excludes the possibility of thermal isomerization in normal laboratory conditions.
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Figure 5. The stationary points connecting isomers 1, 2, 3, 6 and ethynylsilylsilylene products, as
optimized using B3LYP/DZP Relative energies are provided in parentheses in kcal/mol.

Maier et al. reported photoisomerization after irradiation at 313 or 366 nm, resulting in the
observed non-cyclic photolysis products H3SiCCSiH and H3SiSiCCH. To confirm that these frequencies
will drive photoconversion of both 1 and 2, VEEs were computed at each stationary point shown in
Figure 5. Table 5 collects the computed relative ground-state energies and VEEs for each stationary
point structure, with labeling preserved from Figure 1. The previously reported irradiation frequencies,
converted to 91.3 and 78.1 kcal/mol, are within 10% of the predicted VEEs for isomers 1, 6, and 3.
A spectrally broadened light source may photoexcite and interconvert between each of the considered
cyclic isomers 1, 2, 3, and 6, eventually driving the photolysis to the observed non-cyclic products
H3SiCCSiH and H3SiSiCCH.

Table 5. Relative energies (above) and excitation energies (below) for the C2Si2H4 stationary points
appearing in Figure 5. All values are reported in kcal/mol.

Method
Structures

1 TS-a 6 TS-b 3 TS-c 2 TS-d Prod

B3LYP 0.0 67.1 16.7 31.3 4.9 71.5 2.9 69.8 26.8
CCSD 0.0 70.4 14.1 70.2 2.7 71.3 −0.3 65.8 23.8

CR-CC(2,3) 0.0 66.9 14.8 69.4 3.1 71.0 1.1 67.3 25.4

EOM-CCSD 71.6 20.3 85.9 32.1 62.6 51.4 90.8 47.7 43.6
CR-EOMCC(2,3) 78.9 28.0 93.9 38.3 71.1 60.4 98.0 56.4 51.6

δ-CR-EOMCC(2,3) 64.3 9.9 80.0 22.9 56.9 45.5 84.8 43.4 38.7

4. Conclusions

Ten C2Si2H4 isomers were characterized as PES minima and energy-ordered using high-level
coupled-cluster calculations. Isomer 1, or 1,2-didehydro-1,3-disilabicyclo[1.1.0]butane, was assigned
as the global minimum, in contrast to all existing literature on this system which favored isomer 2,
or silylsilacyclopropenylidene. High-level coupled-cluster isomer energies were used to benchmark
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DFT methods, and BLYP and B3LYP incorrectly predicted isomer 2 as the global minimum, even when
very large basis sets were employed. Many DFT methods struggled to order all ten isomer energies
correctly with respect to benchmarks. Only the B2-PLYP+D3 DH-DFT method energy-ordered all
isomers similarly to the benchmarks, while also producing an MUE within chemical accuracy. Among
the pure and hybrid functionals tested, only M06-2X predicted the same energy ordering with respect
to the benchmarks but its MUE was slightly above the chemical accuracy threshold.

Assignment of isomer 1 as the global minimum required a reinterpretation of prior experimental
data to reconcile with past assignments of isomer 2 as the global minimum. Computations helped show
that the frequencies of isomers 1 and 2 overlap, which likely contributed to the broad bands previously
observed in the IR difference spectrum. Some PES mapping was also performed to provided insight
into the mechanism of photolysis of isomers 1 and 2 to form the observed products H3SiCCSiH and
H3SiSiCCH. These simulations suggested that the ultraviolet frequencies used to irradiate the sample
may initiate photolysis in both isomers 1 and 2, leading to the observed products.

Taken together, these simulations provide compelling evidence that the energetically similar
isomers 1 and 2 were likely both present as reactants in the measurements reported in Ref. [2]. In light
of the present analysis, there exists no contradictory evidence in the literature to dismiss assignment of
isomer 1 as the global minimum. In closing, isomer 1 has been identified as a prominent configuration
on the global PES of a barrierless acetylene-disilyne collision, and its dipole moment is strong enough
for electron binding. Thus, it may be of significance in interstellar silicon carbide reaction networks.
This prospect will be investigated in a future study.
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DFT Density functional theory
KS Kohn-Sham
SCF Self-consistent field
HF Hartree-Fock
XCF Exchange-correlation functional
LYP Lee Yang Parr
PBE Perdew Berke Ernzerhof
DH Double-hybrid
MBPT Many-body perturbation theory
DSD Dispersion corrected, Spin-component scaled, Double-hybrid
TD Time-dependent
CC Coupled-cluster
CCSD Coupled-cluster with singles and doubles
CR Completely renormalized
EOM Equation-of-motion
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IR Infrared
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CAS Complete active space
ZPVE Zero-point vibrational energy
MSE Mean signed error
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IRC Internal reaction coordinate
VEE Vertical excitation energies
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