Supplementary Materials: Impact of the Subunit Arrangement on the Nonlinear Absorption Properties of Organometallic Complexes with Ruthenium(II) σ-Acetylide and Benzothiadiazole as Building Units

Eleonora Garoni, Alessia Colombo, Kenji Kamada, Claudia Dragonetti and Dominique Roberto

Figure S1. Open-aperture Z-scan traces at different incident powers (0.19, 0.23, 0.32, 0.42 mW from top to bottom) of **Ru-1** in dichloromethane excited at 800 nm. Solid curves are theoretical fits.

Figure S2. Open-aperture Z-scan traces at different incident powers (0.18, 0.22, 0.29, 0.39 mW from top to bottom) of **Ru-1** in dichloromethane excited at 840 nm. Solid curves are theoretical fits.

Figure S3. Open-aperture Z-scan traces at different incident powers (0.22, 0.25, 0.34, 0.44 mW from top to bottom) of **Ru-1** in dichloromethane excited at 960 nm. Solid curves are theoretical fits.

Figure S4. Open-aperture Z-scan traces at different incident powers (0.25, 0.29, 0.39, 0.50 mW from top to bottom) of **Ru-1** in dichloromethane excited at 970 nm. Solid curves are theoretical fits.

Figure S5. Open-aperture Z-scan traces at different incident powers (0.19, 0.22, 0.31, 0.42 mW from top to bottom) of **Ru-2** in dichloromethane excited at 800 nm. Solid curves are theoretical fits assuming the saturable absorption.

Figure S6. Open-aperture Z-scan traces at different incident powers (0.11, 0.28, 0.29, 0.39 mW from top to bottom) of **Ru-2** in dichloromethane excited at 840 nm. Solid curves are theoretical fits assuming the saturable absorption.

Figure S7. Open-aperture Z-scan traces at different incident powers (0.12, 0.22, 0.38, 0.44 mW from top to bottom) of **Ru-2** in dichloromethane excited at 960 nm. Solid curves are theoretical fits.

Figure S8. Open-aperture Z-scan traces at different incident powers (0.25, 0.29, 0.39, 0.50 mW from top to bottom) of **Ru-2** in dichloromethane excited at 970 nm. Solid curves are theoretical fits.

Ru-1 (HOMO: orbita	al 383; LUMO: orbital 384)
Excited State 1	1.7217 eV 720.11 nm <i>f</i> =0.8670
	$382 \rightarrow 385$ -0.11458
	$383 \rightarrow 384$ 0.68509
	$383 \rightarrow 385$ 0.11653
Excited State 2	1.7979 eV 689.60 nm $f=0.0465$
	$383 \rightarrow 384 \qquad -0.11921$
	$383 \rightarrow 385$ 0.69191
Excited State 3	2.0192 eV 614.03 nm <i>f</i> =0.0776
	$382 \rightarrow 384$ 0.67523
	$382 \to 385$ -0.16890
Excited State 4	2.0321 eV 610.14 nm <i>f</i> =0.1895
	$382 \rightarrow 384$ 0.17403
	$382 \rightarrow 385$ 0.66917
Excited State 5	2.4556 eV 504.91 nm <i>f</i> =0.0118
	$381 \rightarrow 384$ 0.69470
Excited State 6	2.4867 eV 498.59 nm <i>f</i> =0.0133
	$381 \rightarrow 385$ 0.69298
Excited State 7	2.6025 eV 476.40 nm <i>f</i> =0.0004
	$380 \rightarrow 386 \qquad \qquad 0.16191$
	$383 \rightarrow 386 \qquad \qquad 0.66606$
Excited State 8	2.7333 eV 453.61 nm <i>f</i> =0.0092
	$379 \rightarrow 385$ 0.14558
	$380 \rightarrow 384 \qquad \qquad 0.67217$
Excited State 9	2.7618 eV 448.93 nm $f=0.0201$
	$379 \rightarrow 384 \qquad \qquad 0.15514$
	$380 \rightarrow 385 \qquad \qquad 0.67070$
Excited State 10	2.9157 eV 425.23 nm f=0.0010
	$381 \rightarrow 386 \qquad 0.36859$
	$382 \rightarrow 386 \qquad 0.57089$
Excited State 11	3.0374 eV 408.19 nm $f=1.2070$
	$382 \rightarrow 388 \qquad -0.15883$
	$383 \rightarrow 387$ 0.66262
Excited State 12	3.1037 eV 399.47 nm $f=0.0227$
	$3/8 \to 384$ 0.10993
	$5/\delta \rightarrow 5\delta5$ -0.15095
	$5/9 \rightarrow 384 \qquad 0.03483$
	$300 \rightarrow 303 \qquad -0.12978$
	363 → 368 -0.11123

Table S1. Summary of the TD-DFT calculations of transition energy, wavelength, oscillator strength, electronic configuration and the contribution of the 12 lowest excited states of Ru-1 and Ru-2 calculated at the B3LYP/6-31G(d) (lanl2DZ for Ru) level.

 Table S1. (continued)

Ru-2 (HOMO: orbit	tal 577; LUMO: orbital 578)	
Excited State 1	1.6468 eV 752.86 nm <i>f</i> =0.8802	
	$577 \rightarrow 578$ 0.70356	
Excited State 2	2.1033 eV 589.46 nm <i>f</i> =0.0318	
	$575 \to 578 -0.11271$	
	$576 \rightarrow 578 \qquad \qquad 0.69293$	
Excited State 3	2.1631 eV 573.19 nm <i>f</i> =0.0151	
	$575 \to 578$ 0.69108	
	$576 \rightarrow 578$ 0.11265	
Excited State 4	2.3624 eV 524.83 nm <i>f</i> =0.0004	
	$574 \rightarrow 578$ 0.69978	
Excited State 5	2.5364 eV 488.83 nm <i>f</i> =0.0003	
	$573 \rightarrow 578$ 0.23534	
	$575 \rightarrow 580$ 0.12445	
	$576 \to 580$ 0.30107	
	$577 \rightarrow 580 \qquad \qquad 0.55134$	
Excited State 6	2.5435 eV 487.46 nm <i>f</i> =0.0044	
	$573 \rightarrow 578$ 0.65459	
	$576 \to 580$ -0.10929	
	$577 \to 580$ -0.19261	
Excited State 7	2.5987 eV 477.09 nm <i>f</i> =0.0002	
	$573 \rightarrow 579$ 0.13038	
	$576 \to 579$ -0.38141	
	$577 \rightarrow 579 \qquad 0.54917$	
Excited State 8	2.7338 eV 453.52 nm <i>f</i> =0.0003	
	$573 \rightarrow 579 \qquad -0.10552$	
	$575 \rightarrow 579$ 0.61281	
	$575 \rightarrow 617 \qquad -0.11202$	
	$576 \to 579$ -0.17899	
	$577 \to 579$ -0.18236	
Excited State 9	2.8537 eV 434.47 nm <i>f</i> =0.0942	
	$572 \rightarrow 578 \qquad \qquad 0.66408$	
	$577 \to 581 -0.20256$	
Excited State 10	2.9065 eV 426.58 nm <i>f</i> =1.3085	
	$572 \rightarrow 578 \qquad \qquad 0.20280$	
	$577 \to 581$ 0.65108	
Excited State 11	2.9266 eV 423.65 nm <i>f</i> =0.0087	
	$574 \rightarrow 580 \qquad \qquad 0.66474$	
	$574 \rightarrow 618 \qquad \qquad 0.13483$	
Excited State 12	3.0571 eV 405.57 nm <i>f</i> =0.0171	
	$571 \rightarrow 578 \qquad \qquad 0.68731$	

D 66