
inorganics

Article

Determination of pKa Values via ab initio Molecular
Dynamics and its Application to Transition
Metal-Based Water Oxidation Catalysts

Mauro Schilling and Sandra Luber *

Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland;
mauro.schilling@chem.uzh.ch
* Correspondence: sandra.luber@chem.uzh.ch; Tel.: +41-44-63-544-64

Received: 11 May 2019; Accepted: 6 June 2019; Published: 12 June 2019
����������
�������

Abstract: The pKa values are important for the in-depth elucidation of catalytic processes,
the computational determination of which has been challenging. The first simulation protocols
employing ab initio molecular dynamics simulations to calculate pKa values appeared almost two
decades ago. Since then several slightly different methods have been proposed. We compare the
performance of various evaluation methods in order to determine the most reliable protocol when
it comes to simulate pKa values of transition metal-based complexes, such as the here investigated
Ru-based water oxidation catalysts. The latter are of high interest for sustainable solar-light
driven water splitting, and understanding of the underlying reaction mechanism is crucial for
their further development.
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1. Introduction

Nowadays, transition metal-based catalysts are employed for a broad range of applications
including pharmaceuticals, industrial scale synthesis and the development of renewable energy
sources. Among the latter is the class of water-splitting catalysts that is subdivided into water
oxidation catalysts which oxidize water and evolve molecular oxygen, and water reduction catalysts,
which reduce protons in order to release molecular hydrogen. Analogously to nature’s photosynthesis
process, the goal of those catalysts is either to oxidize water to molecular oxygen thereby generating
reduction equivalents or to use the latter to form energy rich chemical bonds, for example in the form
of molecular hydrogen.

An in-depth understanding of the underlying reaction mechanisms for those processes is crucial
in order to further improve or rationally design novel catalysts. A prerequisite for mechanistic studies
is the knowledge of the chemical speciation of the transition metal complex under catalytic conditions.
When working under aqueous conditions, special attention has to be given to functional groups which
might undergo protonation/deprotonation reactions. Unfortunately it is often difficult to determine
physical properties such as acidity constants (pKa) of catalytic intermediates due to their elusive nature.
In this study we apply density functional theory (DFT)-based molecular dynamics, so-called ab initio
molecular dynamics (AIMD), to reliably determine pKa values of transition metal complexes used as
catalysts for water oxidation. The here discussed methodologies have been successfully applied to a
variety of compounds up to now, among them are organic molecules [1–3], amino acids and peptides [4,5]
as well as aqua complexes of transition metals [6].

While all the studies mentioned above are based on the same protocol, namely the Bluemoon
methodology, there are significant differences when it comes to the post-processing. In the following
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we will shortly introduce the general protocol, as well as the different flavors of post-processing.
Then we compare those approaches for a set of benchmarking molecules, as well as for the
system of interest—a ruthenium-based water oxidation catalyst [Ru(II)Py5OMe(OH2)]2+ (where
Py5OMe = 6,6′′-(methoxy(pyridin-2-yl)methylene)di-2,2′-bipyridine) [7]. The said system, and in
particular the thermodynamics and kinetics of the water oxidation process, were already investigated
in-depth by Luber and co-workers employing DFT simulations [7,8]. Those studies gave important
insights with respect to the water oxidation mechanism and further helped to come up with some
design guidelines on how to further improve those catalysts. However, the limitations imposed by the
implicit solvation led to the desire for a more sophisticated description of the solvation shell. In this
context, also this study serves as a mini-review and benchmark study to validate the methodology for
pKa determination to be applied to the same or similar systems in the future.

2. Methodology

The calculation of pKa values is a common task in computational chemistry—it is therefore not
surprising that there are many protocols available for various levels of theory [9]. The most common
approach used for small molecules is based on the calculation of the difference in free energy between
the protonated and the deprotonated species using a thermodynamic cycle scheme, whereby the
interaction between the solvent and solute was approximated by an electrostatic potential by means
of an implicit solvation model [10,11]. Alternatively, the electrostatic contribution of solvation can
be obtained in a two-step procedure. In the first step, the point charge distribution was generated
by the restricted electrostatic potential (RESP) procedure [12]. Then the Poisson equation is solved
in order to obtain the electrostatic energies of solvation [13,14]. In combination with sampling of the
conformational space, the second approach is in particular useful for large systems such as proteins
which possess multiple protonation sides [15,16]. Even though many protocols are able to reliably
reproduce experimental pKa values, their performance is still strongly system dependent. For example,
large, flexible or highly charged species species stand in conflict with the underlying approximations
of some of those protocols. There are numerous protocols and correction schemes depending on
the system of interest which can be used to account for such shortcomings. A full review of them
is beyond the scope of the current work, and we refer the interested reader to a number of selected
articles [17–25].

An obvious approach to improve the previously presented protocol was to describe the solvent at an
atomistic level. However, if both the solute and the solvent are treated explicitly using AIMD not only the
computational cost rises drastically but also the simulation protocols become more elaborated [26–32].

Among those protocols was the so-called Bluemoon ensemble, where the free energy difference
∆F between the protonated and deprotonated state is calculated by a thermodynamic integration
scheme. In this case the integrand is the average force ( fξ ′ ) acting on a system to impose the constraint
(ξ), while the discrete values of the constraint (ξ ′) define the range of the integration:

∆F = −
∫ ξ1

ξ0

fξ ′dξ ′. (1)

The latter is also referred to as potential of mean force (PMF). The average force fξ ′ is derived
from the Lagrange multiplier λ according to

fξ ′ =
〈Z−1/2[λ− kBTG]〉ξ ′

〈Z−1/2〉ξ ′
, (2)

where kB is the Boltzmann constant, T the temperature, and Z and G are correction factors associated
with the transformation from generalized to Cartesian coordinates. In the case of distance constraint
(d(A – H)) Equation (2) simplifies to 〈λ〉ξ ′ = fξ ′ .

A detailed derivation of the Bluemoon methodology and in particular Equation (2) can be found
in the corresponding original literature by Sprik and Ciccotti [33–35].
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The application of the Bluemoon methodology to determine pKa values is in principle straight
forward, however certain aspects deserve attention.

2.1. Choice of Constraint

From a chemical point of view the two states of interest, i.e., the protonated and deprotonated
species, are well defined. Either the proton is bound to the acidic functional group (A) or it is (infinitely)
far away from the latter stabilized by an extensive hydrogen bonding network. Simulating the
deprotonation state in a chemical sense is restricted due to the limitations with regard to the size of the
simulation cell. There are sophisticated proton insertion schemes which avoid this problem [3,26–29].
However their high demand in terms of computational resources renders this approach unsuitable for
complex systems.

A crucial choice within the Bluemoon methodology is the nature of the constraint that describes the
two states. The most simple one is the A – H distance (d(A – H)). While it is often applicable, it suffers
from some intrinsic problems. First, this constraint does not prevent the re-protonation of the acidic
group. Secondly, upon deprotonation, proton hopping might take place from the proton accepting
molecule to other solvent molecules according to the Grotthuss mechanism. This is problematic since
for large distances, in principle the intermolecular distance between the acidic group and a water
molecule somewhere in solution is constraint. The latter is different from simulating a hydronium ion at
infinite separation from the acidic group. Besides that, the important question arises at which distance
is a covalent O – H bond broken, respectively, which distances have to be sampled in order to reach the
deprotonated state. In particular proton hopping makes this decision ambiguous. Nevertheless there
are several systems known for which the simple distance constrained turned out to work reasonably
well [2,5,36].

Those issues might be circumvented by not only constraining a single A – H bond but the
coordination number (CN) of all the protons to the acidic group [37]. The coordination number
is commonly represented as the sum over sigmoid functions such as a Fermi–Dirac distribution.
The latter has been successfully applied to several systems [1,3,31,32,38].

While a CN prevents the reprotonation of the acidic group it still does not prevent proton hopping.
De Meyer et al. resolved this problem by constraining the difference in the CN of all the protons
(index i, total number of protons: N) to the acidic group (index j) and a selected solvent molecule
(index k) in its proximity:

CN(rij, rik) =
∑N

i
(
1− (

rij
r0
)n)

∑N
i
(
1− (

rij
r0
)m
) − ∑N

i
(
1− ( rik

r0
)n)

∑N
i
(
1− ( rik

r0
)m
) , (3)

where rij is the length of the vector −→rij , describing the distance of proton i to the acidic group j,
analogously rik is the distance of proton i to the solvent molecule k. The inflection point is defined by
r0, and exponential factors n and m define the overall shape of the switch function. This constraint
in principle guaranties a smooth transition from the protonated acid to a solvent molecule without
further proton hopping [3]. However, the said constraint introduces an additional empirical parameter,
namely the choice of the proton accepting solvent molecule. Nonetheless, similar pKa values were
obtained when the accepting molecule was either part of the first or second solvation shell [3].

2.2. Estimation of pKa Values from the Free Energy Differences

Independent of the constraint used for the simulation, the free energy differences obtained from
the Bluemoon ensemble might be interpreted as equilibrium constants from which pKa values can be
determined. There are several proposed ways, all of which have been shown to be able to reproduce
experimental results reasonably well. However, to the best of our knowledge, those approaches have
not be directly compared for the very same system. In the following we will present the different
techniques, highlight their requirements in terms of simulations protocols and the necessary empiric
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parameters for the evaluation. For the detailed derivation of those methods, we refer the reader to the
indicated references.

2.2.1. Absolute pKa

The most straight forward approach is to use the relation between the equilibrium constant pKa

and the difference in free energy (∆F):

pKa =
β∆F

ln(10)
, (4)

with β = 1/kBT.
In order to reproduce experimental pKa values one has to assure that the difference in free

energy sufficiently describes the two states. This boils down to the nature of the constraint as
well as to the range of sampling the corresponding phase space. In any case a key requirement
is the convergence of ∆F(ξ) to a constant value towards the limits of the sampled range (ξmin
to ξmax), i.e., lim

ξ→ξmax
∆F(ξ) = constant. Further, in order to obtain meaningful results from the

thermodynamic integration the free energy at the bound state F(ξ0) has to be set to unity. This method
has been successfully applied to several systems using either the d(A – H)−d(O – H), the CN(A – H) or
CN(A – H)−CN(O – H) (see Equation (3)) constraints [2,3,39].

Whether the calculated free energy difference ∆F can directly be related to the equilibrium
constant is disputed in literature [4,6,31]. Authors who disagree with the previously discussed method
commonly refer to Chandler’s derivations of the equilibrium constant based on a classical statistical
mechanical description. The basic principle described there is the relation of the free energy difference
∆F and the radial distribution function (RDF) according to the reversible work theorem [40]. The RDF
itself might be interpreted as the probability to find a proton within a certain radius of the acidic group.
The probability distribution is related to the (inverse) acidity constant according to [31]:

K−1
a = c0

∫ ∞

0
exp[−β∆F(r)]4πr2 dr, (5)

where c0 is the standard concentration. Note the difference in free energy ∆F(r) is a function of radius
of a sphere around the acidic group and not of the constraint ξ. The latter are only equal in case of
the distance constraint d(A – H). In principle ∆F(r) has to be known for infinite separation, in practice
however only a finite separation Rmax ≤ L/2 (L is the length of the cubic cell simulation) is accessible.
Since ∆F(r) asymptotically approaches a constant value, one often defines Rc ≤ Rmax, where Rc is
the radius which distinguishes A – H from A– + H+, i.e., the distance at which the covalent bond is
broken [31]. The limitations with respect to the simulation cell result in an uncertainty in the pKa value
which Davies et al. quantified as ∆F(Rmax)/(2.3kBT) [31].

Based on the RDF there are two common approaches to derive pKa values, both of which require
an additional set of simulations in order to reduce the potential errors describe above.

2.2.2. Relative pKa

The approach presented by Ivanov et al.—in the later referred to as “relative pKa”—takes
advantage of error-cancellation upon reporting the pKa value relative to a pKa value of a reference
system (REF):

KHA
a

KREF
a

=

∫ Rc
0 exp[−β∆FREF(r)]r2 dr∫ Rc
0 exp[−β∆FHA(r)]r2 dr

. (6)

Compared to Equation (5) the integration is from 0 to Rc (Rc ≤ Rmax) in order to account for the
fact that lim

r→Rmax
pKa(r) asymptotically approaches pKa(Rmax), i.e., pKa(r) quickly becomes a constant

value [4]. Further, the lower bound of the integral can be approximated by the value slightly smaller
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than the average A – H bond length, since the contributions of large values of −∆F(r) in the exponent
are negligible [4]. The reference system (see Equation (6)) has to be calculated within the same
computational framework, which in fact doubles the cost of the approach compared to the previously
described method. However, the reference system might be used for the determination of pKa values
of multiple species. Further in order to equate Equation (6), ∆F(Rmax) is set to unity for both the acid
and the reference system [4,5].

This method has been successfully applied to several isomers of histidine as well as a
histidine-tryptophan dimer employing a simple d(A – H) constraint [4,5].

2.2.3. Probabilistic pKa

The second approach was introduced by Davies et al., later referred to as “probabilistic pKa” [31].
The main idea is to define the acid dissociation constant Ka by the probabilities to find protons within
a certain volume of the acidic group. Then the normalized probability to find a proton within a cutoff
radius Rc is

P(Rc) =

∫ Rc
0 exp[−β∆F(r)]r2 dr∫ Rmax

0 exp[−β∆F(r)]r2 dr
, (7)

where Rc is the cutoff radius defining the protonated and the deprotonated state and Rmax the limit for
infinite separation.

In the limit for weak acids the Ka value then becomes

Ka(Rc) =
(1− P(Rc))2

P(Rc)

N
c0V

, (8)

where c0 is the standard concentration, V the volume of the simulation cell and N the number of acidic
sides—here N = 1. The latter is converted to mol by dividing it by the Avogadro constant.

Here again the choice of the cutoff radius Rc is crucial. However, unlike the relative pKa scheme,
there is no obvious asymptotic behavior within the range of the deprotonation. This led Davies et al.
to calculate the pKw of liquid water using the following relation:

Kw(Rc) =

(
(1− P(Rc))

2 Nw

c0V

)
, (9)

where Nw is the number of water molecules in the simulation cell. Rc is the radius at which
pKw(r) = 14 is true [31]. The relation between the Equation (8) and (9) is that the activity of
the undissociated reactant is set to unity [31].

As for the previous methods, the current one has been successfully applied to several systems
employing either a simple d(A – H) constraint or more commonly a CN constraint [1,6,31,32,38].

By introducing the three approaches named ”absolute”, ”relative” and ”probabilistic” pKa we
have laid the foundation for the following study.

3. Computational Settings

AIMD simulations were performed employing the CP2K program package [41]. All atoms were
described by the DZVP-MOLOPT-SR-GTH basis sets [42] as well as the corresponding GTH-BLYP
pseudo potentials [43]. In order to enlarge the time step the mass of all hydrogen atoms was set
to 2 a.m.u. in accordance with literature [3]. The influence of the latter is discussed in Section 4.
The BLYP [44,45] exchange-correlation functional together with Grimme’s D3 dispersion correction [46],
and a cutoff of 800 Ry for the auxiliary plane wave basis set were used.

In order to simulate liquid water, we used a cubic simulation cell with a side-length of
15.6404 Å containing 128 water molecules. This box size corresponds to liquid water at 1 bar and
300 K using the TIP5P force field [47]. The same simulation cell was used for solvated molecules,
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by deleting several water molecules we assured that the pressure remained approximately the same
as the one of clean liquid water. For some model systems a larger simulation cell with side-length
19.7340 Å containing 256 water molecules was employed.

The simulations were performed in the NVT ensemble with a time-step of 0.5 fs. The temperature
was kept constant at 320 K by a Nosé-Hoover chain thermostat [48,49]. The slightly elevated
temperature is required in order to avoid the glassy behavior of BLYP water [50].

The general settings mentioned above closely resemble the protocols that have been employed
previously by other groups in order to determine pKa values [3–5].

Each model system was equilibrated in the protonated state for 5–10 ps without any constraint.
Starting from those simulations, constrained AIMD runs were performed each for an additional
15–20 ps (30,000–40,000 steps (see Supplementary Materials Tables S11 and S12)). The first 5 ps
(10,000 steps) of each individual run were neglected in order to give the system time to equilibrate e.g.,
adopt to the imposed constraint. The convergence of each model system with respect to simulation
time is given in the supporting information (see Supplementary Materials Tables S3–S5).

3.1. Model Systems

Simulations were conducted for the systems given in Table 1. pKa values were not only calculated
for transition metal complexes, but also for two small organic molecules with pKa values in the same
range as the molecules of interest. Thereby phenol serves as an internal standard which allows for
direct comparison with pKa values obtained by the same methodology [3].

Table 1. Model systems used in this study. Nw stands for the number of water molecules in the simulation
cell. The calculated pKa value is only given if the simulations found in the literature were obtained
employing the Bluemoon methodology. The Ru complex bears a pentapyridine (Py5) ligand that is
composed of two bipyridyl fragments linked to a fifth pyridyl via an sp3 carbon. The fourth fragment
connected to the latter is either a methyl (Me) or methoxy (OMe) group resulting in Py5Me or Py5OMe
(see [7,8,51] for more details). Experimental pKa values denoted with “*” were only available for the Py5Me
ligand framework (see Supplementary Materials Figure S1 for a graphical representation of the catalysts).

Molecule Nw Side-Length [Å] pKa (exp.) pKa (calc.)

H2O 128 15.6 14.0 –
H2O 256 19.7 14.0 –

HCOOH 126 15.6 3.8 [52] –
PhOH 123 15.6 10.0 [52] 9.7 [3]

[Ru(II)Py5Me(H2O)]2+ 112 15.6 ∼11 [7] –
[Ru(II)Py5OMe(H2O)]2+ 112 15.6 ∼11 [7] * –
[Ru(II)Py5OMe(H2O)]2+ 234 19.7 ∼11 [7] * –
[Ru(II)Py5OMe(H2O)]3+ 112 15.6 ∼3 [7] * –
[Ru(II)Py5OMe(H2O)]3+ 234 19.7 ∼3 [7] * –

In our previous study we have investigated the mechanism of the water oxidation reaction
catalyzed by [Ru(II)Py5Me(H2O)]2+ and [Ru(II)Py5OMe(H2O)]2+ listed in Table 1, from a kinetic and
thermodynamic point of view employing state of the art DFT simulations [7,8]. We found that both
ligand frameworks Py5OMe and Py5Me were virtually identical in terms of their thermodynamics
and kinetics of the water-oxidation reaction, which is a not too surprising a result as the replacement
of a methyl-group by a methoxy-group at an sp3 carbon is not expected to remarkably alter electronics
or sterics at the metal center. However, experimentally, the catalytic activity between the two ligands
was found to be rather different, which was attributed to a rapid halide substitution at the catalyst
bearing a Py5Me ligand. The latter leads to a deactivation of the catalyst [7]. As mechanistic studies for
the more active catalyst Py5OMe are still underway, we decided to choose it as a model system even
though no experimental pKa values are currently available. Based on our previous study we would
not expect the thermodynamics of the two ligands and related pKa values to differ significantly [7,53].
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Therefore comparing the calculated pKa value of the Py5OMe and Py5Me systems serves as a further
validation of the method.

3.2. Error Analysis

The standard deviation of the average forces used to calculated the free energy difference
according to Equation (1) is calculated by block averaging methods [54]. An upper limit for the
standard deviation (σ) of the pKa is obtained by calculating the free energy ∆F of both, the average
force (〈λ〉) and the average force plus its standard deviation i.e., (〈λ〉+ σλ) [36].

4. Results and Discussion

4.1. Convergence of the AIMD Simulations

For our comparison of the post-processing methods we ran constrained AIMDs for the systems
described in Section 3.1. As a constraint we chose the distance of the acidic proton from the acidic
group (d(A – H)), which we scanned in steps of 0.1 Å over a range from 0.9 Å to 1.6 Å. The constraint
was primarily chosen for its simplicity, which avoids additional parameters, i.e., the explicit definition
of the proton accepting molecule. Further, Equation (1) holds only for the distance constraint, otherwise
correction terms are necessary (see Equation (2)) [33]. For most of the systems, proton hopping is
observed for d(A – H) distances larger than 1.5 Å, which made the scanning of distances larger than
1.6 Å obsolete. In particular since large values of d(A – H) do not necessarily describe the distance
between the acidic group and the initially formed hydronium, since the latter potentially loses its one
of its proton to other solvent molecules.

An exemplary PMF profile of PhOH is shown in Figure 1. Error bars on the average forces were
obtained by block averaging methods. The absolute value of those standard deviations is in the range
of 0.5 to 1.3 kcal/mol, which corresponds to 0.3 to 0.9 pKa units. The PMF profiles of all the other
model systems can be found in the Supplementary Materials Figures S2–S9.

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

40

20

0

Av
er

ag
e 

Fo
rc

e 
(k

ca
l /

 m
ol

 Å
) Average Force

Cubic Spline Interpolation

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Constraint (Å)

5.0

2.5

0.0

2.5

5.0

7.5

Po
te

nt
ia

l o
f M

ea
n 

Fo
rc

e 
(k

ca
l /

 m
ol

)

PMF
PMF (upper and lower bound)

Figure 1. (top): Average force (〈λ〉) acting on the constraint for the PhOH model system, constraining the
A–H bond. (bottom): Potential of mean force, i.e., free energy obtained by integrating the average forces.

The convergence of the force acting on the constraint can be seen in Figure 2. Each of the traces
represents a single point in the top part of Figure 1. Towards larger values of the constraint the
fluctuations start to oscillate around zero, highlighting the fact that the A – H bond has been broken.
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Figure 2. Force (λ) acting on the constraint—here for PhOH at a constrained d(A – H). The vertical line
at 5.0 ps marks the equilibration time in relation to the production run.

The autocorrelation function of the force acting on the constraint is used to determine the optimal
block size for the average which is in the range of 0.5 to 1 ps (see Figure 3). The force appears to be
heavily correlated for the constraints ≤ 1.3 Å which corresponds to the region where the A – H bond
is broken (see Figure 2). Ivanov et al. further analyzed those autocorrelation functions in order to
elucidate the bond breaking process [4]. Since the thermostat modulates the autocorrelation function,
simulations in the micro-canonical ensemble (NVE) would be required which are beyond the scope of
the current work.

Figure 3. Autocorrelation function of the force acting on the constraint. From top to bottom the
constraint increases by 0.1 Å, starting from 0.9 Å.

4.2. Reference System

In order to calculate the pKa value according to the “relative” or “probabilistic” method,
the simulation of water is required. We determined a cutoff radius Rc of 1.24 Å according to
Equation (9) (see Figure 4). The same value was obtained for the two simulation cells containing either
128, or 256 water molecule (see Supplementary Materials Figure S17), which is in good agreement with
1.22 Å, respectively, 1.28 Å reported in literature [6,31,32]. As already reported by others, strong bases
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such as OH– tend to be reprotonated by the solvent. This is also the case in our simulations. Starting
from a d(O – H) of 1.5 Å, we were able to observe the reprotonation of the OH– moiety (see Figure 5).
As discussed earlier, choosing a different collective variable could circumvent this issue.
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Figure 4. Determination of Rc from simulation of water, by fitting to the experimental value.
The simulations were carried out in a cubic box with a side length of 15.6406 Å.
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Figure 5. Autodissociation of H2O (top): Average force acting on the constraint. (bottom): Free energy
obtained by integrating the average forces. Note the drop in free energy at 1.5 Å is caused by the
reprotonation of OH– .

In the following we will present the pKa values calculated based on the protocol
described beforehand.

4.3. Overview of Calculated pKa Values

In Table 2 the pKa values obtained with the three simulation protocols are given. In general we
find that the “absolute” protocol (see Equation (5)) underestimates the pKa values compared to the
experiment by about 1–2 pKa units. pKa values obtained by the relative protocol on the other hand
are an overestimation by about two pKa units. The best agreement is achieved with the probabilistic
protocol where in particular pKa values in the range of 10–11 are accurately reproduced. Hereby
[Ru(III)Py5OMe(H2O)]3+ is somewhat of an outliner with the largest difference compared to the
experiment by about two pKa units. As the only difference between [Ru(II)Py5OMe(H2O)]2+ and
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[Ru(III)Py5OMe(H2O)]3+ is the charge of the system, we reasoned that the simulation cell might be
too small for such highly charged species. The latter was verified by a set of simulations in a bigger
simulation cell (see Table 3).

Table 2. All results presented here are calculated at 320 K, for a cubic box with side length of
15.6406 Å and a cutoff RC = 1.24 Å, over a trajectory of about 20 ps (where the first 5 ps were not
included in the evaluation). The standard deviation is calculated using the block average method with
a block size of 1 ps; (a) absolute, (b) relative, (c) probabilistic protocols.

Molecule pKa (exp.) pK(a)
a pK(b)

a pK(c)
a

H2O 14.0 – –
HCOOH 3.8 [52] 2.7± 0.5 6.7± 0.5 4.2± 0.6

PhOH 10.0 [52] 8.7± 0.3 12.5± 0.5 10.7± 0.4
[Ru(II)Py5Me(H2O)]2+ ∼11 [51] 9.8± 0.4 13.7± 0.3 11.2± 0.4

[Ru(II)Py5OMe(H2O)]2+ ∼11 [51] 9.3± 0.4 13.3± 0.6 11.1± 0.4
[Ru(III)Py5OMe(H2O)]3+ ∼2.5 [51] 3.1± 0.4 7.1± 0.4 4.5± 0.5

The larger simulation cell slightly improves the agreement between the calculated pKa values
using the relative protocol and the experiment. However, there is no systematic improvement of the
pKa values with the system size, independent of the overall charge. Due to the significantly higher
computational cost, we could not obtain the same level of convergence as compared to the smaller
system. This can been seen from the shorter trajectories (see Supplementary Materials Tables S7 and S8).

Table 3. All results presented here are calculated at 320 K, for a cubic box with a side length of
19.7340 Å and a cutoff RC = 1.24 Å over a trajectory of 10–15 ps (where the first 5 ps were not included
in the evaluation). The standard deviation is calculated using the block average method with a block
size of 1 ps; (a) absolute, (b) relative, (c) probability protocols.

Molecule pKa (exp.) pK(a)
a pK(b)

a pK(c)
a

H2O 14.0 – –
[Ru(II)Py5OMe(H2O)]2+ ∼11 [51] 10.1± 0.5 11.5± 0.5 12.7± 0.7
[Ru(III)Py5OMe(H2O)]3+ ∼2.5 [51] 3.1± 0.3 4.6± 0.3 4.3± 0.4

4.4. Deuterated Solvent

The use of deuterated solute and solvent i.e., setting the mass of hydrogen atoms to 2 a.m.u may
have a profound impact on calculated pKa values. In principle all values presented in Tables 2 and 3
are pKD

a values, i.e., pKa values in D2O instead of pKH
a values, i.e., pKa values in H2O. Based on

experiments, a correlation between pKD
a and pKH

a was reported already decades ago [55]. At first,
the correlation was suspected to be linear only for pKa values > 7 and constant for more acidic
species [55]. Later, Delgado et al. experimentally determined a linear relation between pKD

a and pKH
a

over the whole range of pKa values [56]:

pKD
a = 1.044pKH

a + 0.32. (10)

In a more recent study a detailed derivation of the linear relation between pKD
a and pKH

a has been
presented by Krȩżel and Bal [57]:

pKH
a = 0.929pKH∗

a + 0.41, (11)

where pKH∗
a is the pKa value determined in a D2O solution by a pH-meter which was calibrated by

H2O. Conversion to pKD
a is achieved by adding the empirically determined constant of 0.4 to pKH∗

a [57]:

pKD
a = pKH∗

a + 0.4. (12)



Inorganics 2019, 7, 73 11 of 17

Combining Equations (11) and (12) and solving for pKD
a results in:

pKD
a = 1.076pKH

a − 0.041, (13)

which is of the same mathematical form as Equation (10).
Before employing either Equation (10) or (13) to convert pKD

a to pKH
a values, some additional

alterations to the post-processing procedure have to be made, since some of them include an explicit
reference to H2O respectively its pKw value.

For the probabilistic method, the cut-off radius Rc has to be redetermined since the pKD
w of D2O is

14.951 (25 ◦C) [58]. The obtained values for Rc are 1.26 Å, respectively 1.25 Å for the two simulation
cells (see Supplementary Materials Figures S18 and S19). The pKD

a values obtained with the cut-off Rc

determined for D2O were converted to pKH
a values (see Tables 4 and 5).

Table 4. All results presented here are calculated at 320 K, for a cubic box with a side length of 15.6406 Å,
over a trajectory of about 20 ps (where the first 5 ps were not included in the evaluation). The pKa

values were calculated using the probabilistic method for a Rc value of 1.26 Å determined for D2O.
The pKH

a (a) was obtained referencing the calculations to H2O i.e., a Rc of 1.24 Å. The pKD
a values were

converted to pKH
a values according to Equation (10) (b), respectively Equation (13) (c).

Molecule pKa (exp.) pKH
a (a) pKD

a pKH
a (b) pKH

a (c)

H2O 14.0 – – – –
HCOOH 3.8 [52] 4.2 4.3 3.8 4.0

PhOH 10.0 [52] 10.7 11.2 10.4 10.5
[Ru(II)Py5Me(H2O)]2+ ∼11 [51] 11.2 12.0 11.2 11.2

[Ru(II)Py5OMe(H2O)]2+ ∼11 [51] 11.1 11.8 11.0 11.0
[Ru(III)Py5OMe(H2O)]3+ ∼2.5 [51] 4.5 4.6 4.1 4.3

Table 5. All results presented here are calculated at 320 K, for a cubic box with a side length of
19.7340 Å, over a trajectory of about 20 ps (where the first 5 ps were not included in the evaluation).
The pKa values were calculated using the probabilistic method for a Rc value of 1.25 Å determined for
D2O. The pKH

a (a) was obtained referencing the calculations to H2O i.e., a Rc of 1.24 Å. The pKD
a values

were converted to pKH
a values according to Equation 10 (b), respectively Equation (13) (c).

Molecule pKa (exp.) pKH
a (a) pKD

a pKH
a (b) pKH

a (c)

H2O 14.0 - - - -
[Ru(II)Py5OMe(H2O)]2+ ∼11 [51] 12.7 13.1 12.2 12.2
[Ru(III)Py5OMe(H2O)]3+ ∼2.5 [51] 4.3 4.4 3.9 4.1

The probabilistic pKH
a values obtained by applying the conversion schemes discussed above

are very similar to pKa values determined by referencing our calculations to H2O instead of D2O.
The difference when converting the pKD

a values either according to Equation (10) or Equation (13)
is negligible.

For pKD
a values, respectively pKH

a values derived from the latter, calculated either by the
absolute or relative method see Supplementary Materials Tables S7–S10. For the relative protocol,
the overestimation pKH

a values is reduced by about 1–2 units. However, no systematic improvement is
achieved as in particular the pKH

a values for the acidic compounds were still significantly overestimated.
Further, the results for the large simulation cell deteriorate. The agreement between the experimental
and calculated pKH

a values using the absolute protocol decreased by 0.1 to 0.6 units upon converting
pKD

a to pKH
a values.

Taking into account the multitude of empirical factors required to convert the pKD
a values led to

the conclusion that the referencing pKa values to H2O is acceptable. This is in particular true for the
probabilistic method. The validity of this conclusion could in principle be checked by repeating all the
simulations with H2O instead of D2O. With a large enough test set, it would also be possible to adjust
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equation of the linear relation to the employed methodology. However this is beyond the scope of the
current work.

In the following we are going to highlight the dependence of the three methods on the cut-off
radius (Rc).

4.5. Absolute and Probabilistic pKa—Dependence on Rc

In Figure 6 both the absolute as well as the probabilistic pKa values are shown as a function of
the constraint (see Supplementary Materials Figures S11–S17 for plots for the other model systems).
The choice of Rc is obviously crucial (see Figure 6). In order to illustrate the influence of Rc, pKa

values were also calculated with Rc values reported in literature (see Supplementary Materials
Tables S1 and S2). Some systems are remarkably independent of Rc while for others they spread
over a range of almost 3 pKa units. This suggests that it is crucial to determine Rc with exactly the
same settings as the systems of interest, rather than to rely on an previously published value.

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Constraint (Å)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

pK
a

pKa(absolute)
pKa(probabilistic)
pKa(Rc = 1.24Å)
pKw = 14(H2O)
Rc

Figure 6. pKa values calculated for PhOH using the absolute and probabilistic method. The latter
is strongly dependent on the choice of Rc, even a change by 0.01 Å might result in change of up to
0.5 pKa unit.

4.6. Relative pKa

As for the probabilistic protocol, the dependency of the relative pKa on Rc was investigated.
As expected, the pKa values calculated by Equation (6) show an asymptotic behavior towards larger
values of Rc [4] (see Figure 7). The latter suggests that large values of Rc might be neglected in the
evaluation. Indeed the results can be tuned i.e., lowered by 1 pKa unit, if only constraints between 0.9
and 1.4 Å are considered (see Supplementary Materials Table S6). Nonetheless the results for the acidic
compounds are still overestimated with 5.8 and 6.2 for HCOOH, respectively [Ru(III)Py5OMe(H2O)]3+.
Similar inconsistencies when applying the relative pKa protocol to lumiflavins have also been reported
by Kiliç et al. [2].
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Figure 7. Relative pKa as a function of d(A – H) according to Equation (6), the value asymptotically
approaches a constant value.

5. Summary and Conclusions

In summary, we have investigated the Bluemoon methodology and its various post-processing
methods in order to determine pKa values previously only applied to small organic molecules and
transition metal aqua complexes. Our simulation cells with 128 respectively 256 water molecules were
considerably larger than the ones previously presented in literature. This highlights the robustness
and applicability of said protocol to larger chemically interesting systems, in particular in the context
of water oxidation catalysts such as the here presented Ru(Py5Me) and Ru(Py5OMe) catalysts, for
which we found, as expected, both qualitative and quantitative similar pKa values independent of the
applied post-processing method.

When comparing the three post-processing methods suggested in literature (1) absolute,
(2) relative and (3) probabilistic pKa (all referenced to H2O), we find that method 1 and 3 are able to
quantitatively reproduce experimental values with an accuracy of about 1 pKa unit. In case of method
1 this is rather surprising as there is no guarantee that the free energy levels off within the scanned
range of the constraint. Method 2 appears to at least qualitatively reproduce experimental pKa values,
however there seems to be no necessity to use said approach, as it requires exactly the same set of
calculations as method 3 which preformed the best within our test set. This conclusion also holds if
one assumes that pKD

a instead of pKH
a values were calculated. For the sake of consistency we have

only applied a very simple constraint i.e., the A – H distance. While this choice was fine for our test-set,
there might be cases where more complex constraints are necessary, in particular if the conjugated base
is very strong.

The overall accuracy of pKa values calculated by the Bluemoon methodology using a simple
distance constraint lies between 1–3 pKa units. However if the computational settings are tailored in
order to reproduce relevant experimental reference values, the accuracy might be increased. Overall it
appears that both methods 2 and 3 slightly overestimate small pKa values while large pKa values are
reproduced with high fidelity. This issue should be addressed in an extended benchmark study before
one attempts to accurately predict low absolute pKa values.

Further we want to highlight the importance of a sufficiently large simulation cell when
investigating highly charged systems such as water oxidation catalysts with different oxidation
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states. While the influence on the calculated pKa values was found to be minor, only a large enough
simulation cell can guarantee that there are no spurious interactions between the solute and its mirror
image in the neighboring simulation cells.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/7/6/73/s1,
Manuscript.pdf (Figures S1 (Lewis structure of [Ru(II)Py5R(H2O)]2+), Figures S2–S9 (Potentials of mean force as a
function of the constraint - for all systems), Figures S10–S19 (Absolute and probabilistic pKa values as a function of the
constraint - for all systems), Tables S1–S5 (Convergence of pKa with respect to simulation time), Tables S7–S10 (pKD

a
values converted to pKH

a values for the absolute and relative protocol), Tables S11 and S12 (Summary of simulation
times per system/constraint), the following CP2K files: .inp, .ener, .xyz (only start structure), .LagrangeMultLog
(forces) are available for each calculation.
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