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Abstract: InrS (internal nickel-responsive sensor) is a transcriptional regulator found in cyanobacteria
that represses the transcription of the nickel exporter NrsD in the apo form and de-represses expression
of the exporter upon Ni(Il) binding. Although a crystal structure of apo-InrS from Synechocystis PCC
6803 has been reported, no structure of the protein with metal ions bound is available. Here we report
the results of a computational study aimed to reconstruct the metal binding site by taking advantage
of recent X-ray absorption spectroscopy (XAS) data and to envisage the structural rearrangements
occurring upon Ni(II) binding. The modelled Ni(Il) binding site shows a square planar geometry
consistent with experimental data. The structural details of the conformational changes occurring
upon metal binding are also discussed in the framework of trying to rationalize the different affinity
of the apo- and holo-forms of the protein for DNA.
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1. Introduction

Nickel is an essential element for the metabolism of various pathogenic bacteria and is also
used by plants, fungi, plants, and single-cell eukaryotic organisms, but not by higher animals such
as humans [1]. This peculiarity can be exploited against the phenomenon of antibiotic resistance in
pathogenic bacteria. Indeed, eight out of 12 dangerous microorganisms recently identified by the
World Health Organization use nickel for their survival [2]. Consequently, the understanding of
the molecular mechanisms underlying the use of this metal and regulating the genic expression of
nickel-metabolism-related proteins is of fundamental importance.

In cyanobacteria, nickel ions are directly bound to urease and hydrogenases or through the
tetrapyrrole ring of coenzyme Fj39; several other nickel-binding proteins are deputed to nickel
import, trafficking and export [3]. Among these proteins, the internal nickel-responsive sensor
(InrS) is a transcriptional regulator exclusively found in cyanobacteria [4-6]. It belongs to the
resistance to cobalt and nickel repressor (RcnR)/copper-sensitive operon repressor (CsoR) family
of transcriptional regulators [7], consisting in disc-shaped all «-helical homo dimer («f3) of dimers
(op/o’B’) formed by three-helix bundles monomers (Figure S1) [4,8-10]. With the exception of the
formaldehyde-sensing transcriptional regulator (FrmR) [11,12] and of the CsoR-like sulphur transferase
repressor (CstR, where the binding to the operator is inhibited by the oxidation of an inter-subunit
cysteine pair by sulphite) [13,14], all the characterized members of this family are metal-ion sensors
(Figure 1 and Table S1) [5,7,10].

In the case of InrS, the function of the protein is to repress the expression of a nickel exporter
(NrsD) and to enhance the expression of proteins involved in nickel import when the concentration
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of intracellular Ni(I) is too low by forming a stable protein-DNA complex [5,6,15]. Competition
experiments conducted on InrS from Synechocystis PCC 6803 (SyInrS), using the Ni(II) chelating ligands
NTA, EGTA and EDTA, estimated a dissociation constant of SyInrS for Ni(Il) in the sub-picomolar
range (Kq = 2 x 10714 M) [4]. Calorimetric experiments conducted on the same protein, but in the
absence of possible artefacts due to the presence of the exogenous competitors, revealed instead
dissociation constants for Ni(Il) in the nanomolar/micromolar range. In particular, a 2 + 2 binding
mode for SyInrS was observed, with the two binding events featuring dissociation constants of 70 nM
and 4.5 mM, respectively [6]. The formation of a Ni(II)-SyInrS complex decreases the DNA affinity
of the protein and consequently de-represses the expression of the nrsD gene [16]. However, in the
absence of a structural comparison involving the apo- and holo-forms of InrS, a rationalization for the
function of this Ni-sensor cannot be achieved.

An initial study of the Ni(Il)-binding site in SyInrS performed by using electronic absorption
spectroscopy revealed that Ni(Il) ions bind in a four-coordinate planar geometry comprising at least
one cysteine ligand [4]. The alignment between the SyInrS sequence and the other CsoR/RcnR family
members revealed that the canonical W-X-Y-Z fingerprint, used to characterize the first coordination
shell residues [8,9], corresponds to His21, Cys53, His78, and Cys82 in SyInrS (Figure 1). A subsequent
mutagenesis study confirmed the roles of the latter three residues in Ni(Il) binding [16], while His21 has
been recently confirmed as the fourth Ni(II) ligand both through mutagenesis [17] and X-ray absorption
spectroscopy (XAS) data [18]. The latter study, which investigated both Ni(Il) and Cu(Il) bound
SyInrS, also confirmed the presence of a planar four-coordinate [Ni(His),(Cys);] site and provided
Ni(Il)-ligands interatomic distances [18].
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Figure 1. PROMALS3D [19] multiple sequence alignment of the known members of the RenR/CsoR
family. Synechocystis PCC 6803 InrS, SyInrS; Thermosynechococcus sp. NK55a InrS, ThinrS; Escherichia
coli RenR, EcRenR; Mycobacterium tuberculosis CsoR, MtCsoR; Thermus thermophilus CsoR, TtCsoR;
Corynebacterium glutamicum CsoR, CgCsoR; Streptomyces lividans CsoR, SICsoR; Bacillus subtilis
CsoR, BsCsoR; Geobacillus thermodenitrificans CsoR, GtCsoR; Listeria monocytogenes CsoR, LmCsoR;
Staphylococcus aureus CsoR, SaCsoR; Leptospirillum ferriphilum NcrB, LfNerB; Mycobacterium tuberculosis
RicR, MtRicR; Escherichia coli FrmR, EcFrmR; Salmonella typhimurium (strain SL1344) FrmR, StFrmR;
Staphylococcus aureus NCTC 8325, SaCsrT. The CsoR/RenR W=X-Y-Z fingerprint residues have been
highlighted by black boxes.
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The recently solved crystal structure of apo-SyInrS (Figure 2a) showed the typical fold of the
RcnR/CsoR family and the proximity of Cys53, His78, and Cys82, strengthening the hypothesis of
their role in the Ni(II) binding site [17]. The metal binding site (Figure 2b) should thus be formed by
Cysb3, located at the beginning of helix «2 from one monomer and located in the vicinity of His78 and
Cys82 (at the C-term of helix «2) from the adjacent monomer. On the other hand, His21 is located
on an unstructured region at the beginning of helix «1, apparently far from the other three residues,
but it can be envisioned that it can complement them through a conformational rearrangement of the
N-terminal region.

Figure 2. (a) Ribbon diagram of SyIntS crystal structure (PDB id: 5FMN [17]). Chains «, 3, &, and
" are coloured in orange, green, yellow, and light blue, respectively. (b) Detail of the putative metal
binding region [black square in panel (a)]. Proposed Ni(II) binding residues are reported as sticks
coloured accordingly to the atom type.

In addition to a lack of structural information for the Ni(II) bound SyInrS, the structural details
of the protein-DNA interaction of proteins belonging to the CsoR/RcnR family are also missing.
Nevertheless, Streptomyces lividans CsoR (SICsoR) binds the cognate DNA operator with a 2 SICsoR: 1
DNA stoichiometry [20] and indirect structural models for CsoR:DNA operator binding have been
proposed in the last few years in the case of Bacillus subtilis CsoR (BsCroR) [21] and SICsoR [20].
Of all the members of this family, both CsoR and FrmR have been crystalized in both the ligand-free
and -bound forms (see Figure S1 in Supplementary Materials). A comparison between the apo- and
holo-FrmR structures revealed a conformational rearrangement in response to formaldehyde binding,
which involves a translational movement of x-helices «1 and «2 of one monomer, which slide across
the equivalent helices on the other monomer by ca. 1.5 x-helical turns [12]. Similar conformational
changes, involving a-helix movement and rotation within the homo-tetramer assembly, were also
observed in the case of SICsoR [22] and Geobacillus thermodenitrificans (GtCsoR) [23]. This rearrangement
causes the structure to compact and a rearrangement of the charges on the surface of the tetramers.
Therefore, a similar behaviour can also be inferred for SyInrS. The aim of the present work is to gain
structural information on the Ni(II)-bound SyInrS through the use of molecular modelling techniques
guided by all the available experimental data.

2. Results and Discussion

2.1. Reconstruction of Apo-SylnrS N-terminal Region and Modelling of Holo-SyInrS

In principle, Ni(II) binding to SyInrS could induce a conformational rearrangement similar to that
observed for FrmR [12], even though it is not possible to exclude that only a negligible structural effect
could be induced by metal binding. Thus we performed the modelling of the nickel binding site by starting
from two SyInrS structures: (i) The crystal structure of tetrameric apo-SyInrS (PDB id: 5SFMN [17]) and
(ii) the model structure of tetrameric SyInrS in the putative Ni(Il)-bound conformation. In the first case, the
crystal structure of apo-SyInrS was used after the addition of three residues at the N-terminal of chains «
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and of (namely His19, Val20 and the putative metal binding residue His21) that are missing in the crystal
structure probably because of disorder. This reconstruction was carried out through homology modelling,
using the atomic positions of the corresponding residues in chains 3 and 3/, which are instead structurally
well-defined in the same PDB file. For the model of apo-SyInrS in the holo conformation, the homology
modelling technique was also used, but in this case the available crystal structures of Cu(I)-bound CsoR
from Mycobacterium tuberculosis and Geobacillus thermodenitrificans NG80-2 were used as templates (Figure S1,
PDB id: 2HHY7 [7] and 4M1P [8], respectively).

Figure 3 reports the results of the reconstruction of the missing protein portions of SyInrS in the
apo conformation and of the modelling in the holo conformation (apo-SyInrS and holo-SyInrS hereafter,
respectively, uniquely to the conformation of the protein and not referred to the metalation state). In the
model of holo-SyInrS it was possible to include residues 13-18 at the N-terminal of each monomer.
These residues were not present in the crystal structure of apo-SyInrS. In both cases the model structures
were analysed by using the software PROCHECK [24] and QMEAN [25], with very satisfactory results
(297.5% most favoured regions and <2.5% additional allowed regions). The general fold of the protein
is the same regardless of the conformation, with each monomer made of three x-helices and each dimer
being formed by the interaction of the N-terminal portion of helix x2 from each monomer. The dimer
of dimers is then formed by the interaction of the C-terminal portion of a-helix «2 and the entire
a-helix «3 from each monomer. In both conformations, the protein quaternary structure is disc-shaped
with some subtle differences. The axis of inertia ellipsoid inscribing the structure of apo-SyInrS results
in axes of 77.0 A, 60.2 A and 29.2 A; similarly, values of 76.8 A, 65.8 A and 28.8 A were determined
for holo-SyInrS (Figure S2). This indicates a significant increase (by ca. 6 A), upon nickel binding,
of the medium axis. This is caused by a movement of x-helix «1 of each monomer, which slides
along the facing helix on the interacting monomer by ca. 1.5 «-helical turns (coherently with the same
conformational change observed in the case of FrmR [12]). Moreover, o-helices «1 and &2 rotate by
ca. 21 and 13 degrees around the tetramer vertical axis, respectively (Figure S3). The rearrangement of
each dimer causes a consequent re-organisation of the interactions between «-helices «3 at the dimer
of dimers interface and a narrowing of the cavity at the centre of the structure. Finally, holo-SyInrS
loses the biconcave shape observed in the apo form (see Figure 3, lower panels) and assumes the shape
of a convex disk.
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Figure 3. Ribbon diagram and molecular surface of apo-SyInrS (a) and holo-SyInrS (b). Chains «, 3, &/,
and (3’ are coloured as in Figure 1. In panel (a), the reconstructed residues of chains « and «” are in
red. Proposed Ni(Il) binding residues are reported as sticks coloured accordingly to the atom type.
The orientations in the bottom panels are rotated by 90° around the horizontal axis with respect to the
orientations in the top panels.
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The molecular surface of the SyInrS tetramer is characterized by two positively charged regions
on each side of the disk-shaped protein (Figure 4). The presence of such regions is due to the presence
of residues Lys29, Arg32, and Arg35 (c-helix «1) and Arg69 and Arg71 («2) on the protein surface.
The conformational change occurring upon transition from the apo to the holo form of SylrnS causes a
displacement of these positively charged regions toward the center of x-helices x1-2. Moreover, in the
holo conformation there are two negatively charged regions on each side of the disk formed by the
SyInrS tetramer that are much more reduced in the apo form.

Figure 4. Molecular surface of apo-SyIntS (a) and holo-SyInrS (b). The surface is coloured according to
the surface electrostatic potential calculated with APBS software [26]. The orientations in the bottom
panels are rotated by 90° around the horizontal axis with respect to the orientations in the top panels.

The intermolecular interactions occurring among the four monomers that make up the protein
structure were analysed by using the PDBsum server [27,28] and the results are reported in Table 1. From
the data, it appears that the apo-to-holo transition significantly increases the number of non-bonded
contacts both in the «-f3 dimer and at the dimer of dimers (x-f) interface. On the other hand, the
interaction surface, as well as the number of involved residues, increases at the dimer interface and
decreases at the dimer of dimers interface. The significance of the changes observed in the case of
hydrogen bonds and salt bridges are difficult to interpret due to the intrinsic errors involved in the
homology modelling procedure.

Table 1. PDBsum analysis of the interaction between the SyInrS protein chains.

Conformation Interacting Interface Interface Non-Bonded  Hydrogen Salt
° Monomers Residues Surface (A?) Contacts Bonds Bridges
Apo o-p («'-p7) 22 1490 87 8 6
a-B («’-B) 17 952 55 5 2
Holo o-f («'-p7) 30 1950 133 2 4
-3 («’-B) 13 670 78 0 2
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2.2. Modelling of Ni(II) Bound Forms of SylnrS

The inclusion of four Ni(II) ions (one per monomer) was performed through the application of
a well-established protocol, already successfully used on another member of the RenR/CsoR family:
RenR from Escherichia coli [29], and on UreG from Helicobacter pylori, a protein involved in the activation
of the nickel-dependent enzyme urease [30]. In principle, each Ni(II) ion was constrained to the
residues identified in previous studies [16] and by using the interatomic distances derived from the
analysis of EXAFS data [18]. Additional angle and torsional restraints were added in order to ensure
the correct orientation of the interacting residue with the Ni(II) ion (Table 2).

Table 2. Distances, angles, and dihedral constraints used in the modelling of Ni(II)-bound SyInrS.
All constraints in the form mean + 1 standard deviation.

Constrained Atoms Distance (A)
Ni(II)-His21(Nd/¢) 1.9+ 0.05
Ni(IT)-His78(Nb/e) 1.9 +0.05
Ni(IT)-Cys53(Sy) 2.2+0.05
Ni(II)-His82(Sy) 2.2 +0.05
Bonded Atoms Constrained Atoms Angle (Degrees)
Ni(II)-Cys(Sy) Ni(IT)-Cys(Sy)-Cys(Cp) 109 £5
Ni(IT)-His(N©) Ni(II)-His(N6)-His(Cy) 120 £ 10
Ni(II)-His(N5)-His(Ce) 120 + 10
Ni(IT)-His(Ne) Ni(IT)-His(Ne)-His(C5) 120 + 10
Ni(IT)-His(Ne)-His(Ce) 120 £ 10
Bonded Atoms Constrained Atoms Dihedral (Degrees)

Ni(II)-His(Ns)  Ni(II)-His(N&)-His(Ce)-His(Ne) 180 + 10
Ni(IT)-His(N5)-His(Cy)-His(C5) 180 + 10
Ni(I)-His(Ne)  Ni(II)-His(Ne)-His(Ce)-His(N&) 180 + 10
Ni(IT)—His(Ne)-His(C5)-His(Cy) 180 + 10

Considering that two of the four involved residues are histidines (His21 and His78) and that it
is not possible to evince from the fitting of the EXAFS data which imidazole N atom interacts with
nickel, four modelling calculations were carried out by starting from each protein conformation and
involving all the possible combinations: H21(Ne)-H78(N5), H21(Ns)-H78(N¢), H21(N5)-H78(N),
and H21(Ne)-H78(Ne). Most importantly, no restraints were added to constrain the coordination
geometry around the metal ions. This was done in order to verify the possibility of the two possible
conformations to bind nickel ions without further conformational rearrangements.

Tables 3 and 4 report the analysis conducted on the obtained models. First, the coordination
geometry of the four Ni(Il) ions was inspected by using the tool Metal Geometry included in the
software UCSF Chimera [31] (Table 3). In particular, the root mean square deviation (RMSD) of the
ligation set and metal ion with respect to their idealized positions was analysed when four ligands
are considered. In the case of the metal bound models generated starting from apo-SyInrS, none of
the resulting metal binding sites were in the experimentally determined square planar coordination
geometry (see Figure S4). However, a distorted tetrahedral geometry was found when four ligands
were considered in the analysis. Moreover, in order to satisfy the constraints included for the modelling
of the metal site, in two cases the imidazole ring of His78 resulted in a highly distorted geometry.
Also, in the case of the H21(N$)-H78(Ne) and H21(N5)-H78(N5) models generated starting from
holo-SyInrS, the resulting coordination geometry was tetrahedral with different degrees of distortion
(Figure S5). Of the two remaining models generated starting from holo-SyInrS, the most probable
four-ligands coordination geometry was square planar and the distortion of the metal binding site from
the ideal geometry was nearly identical [0.29 and 0.27 A for H21(N¢)-H78(N6) and H21(Ne)-H78(Ne),
respectively] (Table 3 and Figure S5).
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Table 3. Analysis of the metal binding sites in the SyInrS Ni(II) bound models.

Initial
Conformation Apo-SyInrS Holo-SyInrS
Model Best Coordination RMSD (A) Best Conformation RMSD (A)
Geometry Geometry

H21(Ne)-H78(Nb) Tetrahedral 0.54 Square planar 0.29
H21(N©5)-H78(Ne) Tetrahedral 0.23 Tetrahedral 0.53
H21(N©5)-H78(Nb) Tetrahedral 0.65 Tetrahedral 0.36
H21(Ne)-H78(Ne) Tetrahedral 0.39 Square planar 0.27

In order to possibly discriminate between the two models resulting in a square planar metal
binding site, the model structures were inspected by using the software PROCHECK [24] (Table 4).
The parameters selected for this analysis were the number of residues localized in the four regions of
the Ramachandran plot and the G-factor, a measure of how “normal” the stereochemical properties
of the residues composing the protein were. The standards of “normality” have been derived from
an analysis of 163 non-homologous, high-resolution protein chains chosen from structures solved
by X-ray crystallography to a resolution of 2.0 A or better [24]. A low or a negative value of the
G-factor indicates that the protein chain has some residues in a low-probability conformation. From
this analysis, the H21(N¢)-H78(IN6) model appears to have the best structural parameters.

Table 4. Structural analysis of the models of SyInrS binding nickel in square planar coordination
geometry (see Table 3, see Tables S2 and S3 for the same analysis on all the models).

Holo-SyInrS Ni(II) Bound Model

Ramachandran Plot Region

H21(N$8)-H78(N¢) H21(N¢)-H78(Ne¢)
Most favoured 94.2% 90.7%
Additionally allowed 5.8% 9.3%
Generously allowed - -
Disallowed - -
G-factor 0.09 0.00

Taken together, the analysis of the nickel coordination geometry and of the structural parameters
suggests that the best model is that obtained starting from holo-SyInrS and including H21(Ne)
and H78(Nd) as nickel ligands (Figure 5). This results suggest that, as observed for FrmR [12],
a conformational transition is necessary to achieve the correct Ni(Il)-induced crosslink between two
SyIrnS monomers at the interface between the C-terminal of «-helix a1 of one monomer and Cys53
located at the N-terminal of x-helix &3 of the interacting monomer.

Figure 5. Results for the H21(Ne¢)-H78(INo) modelling of Ni(II) bound SyIntS starting from the protein
in the holo conformation. The SyInrS backbone is reported as ribbons coloured by polypeptide chains,
with chain « in orange and chain {3 in green. Putative metal binding residues are reported as sticks
coloured according to atom types. The Ni(II) ion is shown as a green sphere.
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3. Materials and Methods

The three missing residues (His19, Val20 and His21) at the N-terminal in chain o and o of
apo-SylInrS crystal structure (PDB id: 5SFMN [17]) were modelled using Modeller v9.18 [32] and chains
3 and (3" of the same structure as template. The model structure of tetrameric apo-SyInrS in the putative
Ni(II)-bound conformation was generated using the same procedure and considering the available
crystal structures of Cu(I)-bound CsoR from Geobacillus thermodenitrificans NG80-2 and Mycobacterium
tuberculosis as templates (Figure S1, PDB id: 4M1P [8] and 2HHY [7], respectively). See Figure 1 for the
PROMALS3D [19] multiple sequence alignment used in the latter modelling. In both cases, 100 models
were generated [32]. Symmetry restraints were also applied in the calculation in order to obtain four
symmetrically identical monomers. The best model was selected on the basis of the lowest value
of the DOPE score in Modeller v9.18 [33] and the analysis performed with PROCHECK [24] and
QMEAN [25].

The Ni(II) bound form of both models was generated in a subsequent modelling stage by including
four Ni(I) ions in the model (one per subunit), in agreement with the metal content analyses carried out
in previous studies [6]. The van der Waals parameters for Ni(II) were derived from the Zn(II) parameters
included in the CHARMM22 force field [34] implemented in the Modeller v9.18 package by applying
a scale factor of 1.12 calculated on the basis of the Ni(Il) ionic radius. In all modelling calculations
that included Ni(II) ions, constraints were imposed using a Gaussian-shaped energy potential for
distances, angles, and dihedrals in order to correctly position the Ni(II) ions with respect to the
experimentally identified ligated residues (see Table 2). As in the previous modelling stage, symmetry
restraints were applied, and the best model was selected on the basis of the lowest value of the DOPE
score. A loop optimization routine was used to refine the regions that showed higher than average
energy as calculated using the DOPE score. The molecular surfaces and graphics of SyInrS structures,
together with analysis of the Ni(Il) sites, were performed using the UCSF Chimera package [31]
(see Supplementary Material for additional details). The study of the inter-chain interactions was
performed by using PDBsum [27,28].

4. Conclusions

The results obtained in this study indicate that is it possible to successfully model a SyInrS
structure able to bind Ni(Il) ions in a square planar geometry, and that the structure of apo-SyInrS
is not sufficient for such modelling. Thus, a quaternary structure rearrangement is necessary for
metal binding upon shifting from the apo- to the holo-form of the protein. This result agrees with
what has been proposed for other members of the RenR/CsoR family [8,9,12,20,22,35]. The cross-link
between two monomer chains occurring at the dimer interface appears to stabilize a specific protein
conformation, interfering with the capability of SyInrS to bind the DNA. In particular, a rearrangement
of surface charges upon metal binding appears to disfavour the DNA binding conformer in the case of
CsoR [20,22] and FrmR [12]. It could be envisaged that also nickel sensors belonging to the RenR/CsoR
family are able to adopt an analogue strategy. The mechanism by which the Ni(II) ion interacts with
SyInrS, which in principle can occur through an induced fit mechanism, a conformation selection in
solution, or a combination of both, is far from being fully understood. To this aim, InrS and the other
members of the RenR/CsoR family can be interesting targets for further computational studies aimed to
the exploration of the conformational space of these proteins through molecular dynamics techniques,
as recently proposed by some of us [36]. On the other hand, the study of the Ni(Il) bound form of
SyInrS requires the development of specific force field parameters able to model a Ni(I) ion in the
square planar coordination. In recent years the improvement of the computational capabilities and
the development of accelerated sampling techniques for molecular simulations [37,38] have made
available the tools for the exploration of large conformational changes at the atomistic level [39-41].
In the case of metalloproteins, the use of accelerated sampling techniques requires the use of ad hoc
designed force field parameters for the metal ions, able to reproduce structural, thermodynamic, and
kinetic observables [42].
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Finally, the modelling of the apo-SyInrS/DNA complex and the characterization of the
sensor-nucleic acid interface can also be useful for the development of new molecules able to
interfere with the formation of the protein/DNA complex. This requires the identification of the
nrsD operator region and can be done for instance through the use of hydroxyl radical foot-printing
essays and opportune knowledge-based docking protocols [43—45]. Some of us already applied this
technique in the case of two other metal-dependent transcriptional regulators from the human pathogen
H. pylori: Fur, a sensor able to repress the transcription of both Fe(II)-repressible and Fe(II)-inducible
promoters [46], and NikR, a Ni(II)-responsive sensor repressing or activating genes that code for Ni(II)
enzymes and for proteins involved in nickel homeostasis [47].

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/7/6/76/s1.
Figure S1: RenR/CsoR family solved structures. Figure S2: Ribbon diagram and inertia ellipsoid of SyInrS in the
apo and holo conformations. Figure S3: Detail of the a-helices «1 and o2 rotation occurring during the apo to
holo conformational transition. Figures S4 and S5: Results for the modelling of Ni(IT) bound SyInrS starting from
the protein in the apo and holo conformation, respectively. Table S1: CsoR/RcnR family representative sequences.
Tables S2 and S3: Structural analysis of the models of Ni(I) bound SyInrS generated starting from the protein in
the apo and holo conformation, respectively.
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