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Abstract: The mononuclear copper complexes [Cu{NH=C(OR)NC(OR)=NH}2] with alkoxy-1,3,5-
triazapentadiene ligands that have different substituents (R = Me (1), Et (2), nPr (3), iPr (4),
CH2CH2OCH3 (5)) were prepared, characterized (including the single crystal X-ray analysis of
3) and studied as catalysts in the mild oxidation of alkanes with H2O2 as an oxidant, pyridine as
a promoting agent and cyclohexane as a main model substrate. The complex 4 showed the highest
activity with a yield of products up to 18.5% and turnover frequency (TOF) up to 41 h−1. Cyclohexyl
hydroperoxide was the main reaction product in all cases. Selectivity parameters in the oxidation of
substituted cyclohexanes and adamantane disclosed a dominant free radical reaction mechanism with
hydroxyl radicals as C–H-attacking species. The main overoxidation product was 6-hydroxyhexanoic
acid, suggesting the presence of a secondary reaction mechanism of a different type. All complexes
undergo gradual alteration of their structures in acetonitrile solutions to produce catalytically-active
intermediates, as evidenced by UV/Vis spectroscopy and kinetic studies. Complex 4, having tertiary
C–H bonds in its iPr substituents, showed the fastest alteration rate, which can be significantly
suppressed by using the CD3CN solvent instead of CH3CN one. The observed process was associated
to an autocatalytic oxidation of the alkoxy-1,3,5-triazapentadiene ligand. The deuterated complex
4-d32 was prepared and showed higher stability under the same conditions. The complexes 1 and 4
showed different reactivity in the formation of H2

18O from 18O2 in acetonitrile solutions.

Keywords: copper alkoxy-1,3,5-triazapentadiene complexes; alkane functionalization; protection by
deuteration; 18O isotopic labelling

1. Introduction

Selective transformation of inactive C–H bonds into functional groups is a challenging class of
reactions with great potential for fine organic synthesis, late stage drug functionalization and other
fields [1–5]. Due to the high inertness of C–H bonds, especially sp3 ones, their activation often requires
harsh conditions and/or strong oxidizing agents [6]. The stability of coordination compounds (catalysts)
under the catalytic conditions is a critical parameter for achieving high efficiency of the catalytic
system [7]. In the case of alkane functionalization, C–H-attacking species may be active enough to
react with a catalyst causing its degradation and limiting the turnover numbers (TONs). Nature found
a solution to this problem by continuous regeneration of the catalysts (enzymes). However, such an
approach could be hardly implemented in the artificial catalytic systems, thus leaving the preparation
of stable and robust catalysts as an obvious alternative.

One of the principal approaches is the use of all-inorganic compounds with no organic ligands
and no groups that can be easily oxidized [8–11]. However, in most cases, the use of organic ligand is
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unavoidable as it is required for the creation of a certain coordination environment around the metal
centre and stabilization of the reactive intermediates. For instance, selective oxidation of C–H bonds
with FeIV/V=O high-valent metal-oxo (HVMO) species requires a special geometry around the metal
centre [12,13]. The ligands (typically polydentate N-donor ones) should provide free cis-cites favouring
the coordination of the oxidant and stabilization of HVMO intermediates [14]. Also, ligands must show
pronounced stability towards oxidation [13,14]. If some groups within the ligand structure compete
with a substrate, this could become a limiting factor towards reaching high TON values. For example,
earlier we described the heterometallic complex [Co4Fe2O(L)8] (H2L = salicylidene-2-ethanolamine)
which showed an impressive turnover number of 3.6 × 103 and turnover frequency of 1.1 × 104 h−1 in
the oxidation of cyclohexane with hydrogen peroxide, but underwent rapid degradation of its Schiff
base ligand under the catalytic conditions [15].

The 1,3,5-triazapentadienes ligands are N-donor isoelectronic analogues of β-diketones [16].
In contrast to rich catalytic chemistry of diketone complexes [17,18], the catalytic features
of triazapentadiene complexes are much less explored. Some transition metal complexes of
triazapentadienes were applied as catalysts for oxidation of alcohols with air or peroxides and
for Henry reaction [19–22]. The complexes of copper with 2,4-alkoxy-1,3,5-triazapentadienato ligand
having various substituents demonstrated a pronounced stability under the conditions of oxidative
catalysis, particularly towards the attack of tBuO· radical [23]. The knowledge about the C–H activation
catalytic properties of triazapentadiene complexes is limited, although the 1,3,5-triazapentadiene
moiety allows bidentate N2-donor coordination resembling many catalytically recognized ligands used
for selective C–H functionalization [13]. This contrasts with the recognized catalytic activity of copper
complexes in various C–H functionalization reactions [6,24–26], including alkane oxidation [27,28],
amidation [29,30] and related processes [31–33]. In pursuit of our interest in alkane oxidation,
we prepared the complexes [CuII{NH=C(OR)NC(OR)=NH}2] (R = Me (1), Et (2), nPr (3), iPr (4),
CH2CH2OCH3 (5)) and investigated their catalytic activity in mild cyclohexane oxidation using H2O2

as a terminal oxidant and pyridine as a promoter. Hydrogen peroxide is a cheap and environmentally
friendly oxidant broadly used in fine chemistry as well as industry [34,35]. It is widely applied in
the metal-catalysed C–H bonds activation reactions [6,24,36,37] due to its high efficiency and highest
atom economy among the peroxides family. However, H2O2 is prone to forming highly reactive
radical species, such as HO· radicals [6], which may easily attack the catalyst causing its degradation.
Therefore, we investigated the stability of the complexes under the catalytic conditions for better
understanding of the influence of the substituent R of the ligand on the stability of the catalysts and
their catalytic activity.

2. Results

2.1. Synthesis of the Complexes

The copper complexes [CuII{NH=C(OR)NC(OR)=NH}2] (R = Me (1), Et (2), nPr (3), iPr (4),
CH2CH2OCH3 (5)) were synthesized as described earlier [23] by mixing copper acetate with sodium
dicyanamide in alcohol (ROH) at reflux and heating for approximately 12 h (Scheme 1). The reaction
proceeds via the formation of dicyanamide copper complexes as intermediates [23]. The reaction
utilizes cheap and readily-available reagents and affords the complexes 1–5 in high yield. All the
compounds are soluble in the reaction solvents (alcohols) as well as in acetonitrile. The authenticity of
the obtained complexes 1, 2, 4 and 5 was confirmed by comparison of their elemental analyses with the
reference data [23], while compound 3, for the first time, was characterized by single X-ray analysis.
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The single crystal X-ray analysis reveals three features of the mononuclear structure where the 
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triazapentadienato species acting as N,N-chelators and forming two six-membered Cu metallacycles 
(Figure 1). The Cu–N bond distances are almost equal (from 1.929(5) to 1.935(5) Å) and the cis N–Cu–
N angles are close to 90° varying from 87.8(2)° to 96.0(2)° (Table 1). In contrast to the structures of 
complexes 1, 2, 4 and 5 [23], the N4 environment around the copper atom is not completely planar 
with two ligands rotated at 24.2° to each other. 

The complex molecules are joined together by a set of N–H···O and N–H···N hydrogen bonds, 
involving the nitrogen atoms from C=NH imine groups and the n-propoxy oxygen atoms of the 
ligands, thus forming 2D supramolecular sheets (Figure 2) (N1–H1···O4i [i: x, 0.5 − y, 0.5 + z; D···A = 
3.588(6) Å, D–H···A = 118(4)°], N6–H6···O1ii [ii: x, 0.5 − y, –0.5 + z; D···A = 3.511(7) Å, D–H···A = 164(5)°], 
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y, 0.5 + z; D···A = 3.516(7) Å, D–H···A = 157(5)°]). The location of the protruding n-propoxy groups of 
the 1,3,5-triazapentadienato ligands into the intersheet space prevents the increasing of the 
dimensionality of the H-bonded polymer to an infinite three-dimensional framework and keeps the 
supramolecular layers apart (Figure 3). The shortest Cu···Cu separation within the 2D polymeric sheet 
is 6.1598(9) Å. 
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Scheme 1. Synthesis of complexes 1–5.

2.2. Crystal Structure of 3

The single crystal X-ray analysis reveals three features of the mononuclear structure where
the Cu(II) atom is in a distorted square-planar coordination environment with two monoanionic
1,3,5-triazapentadienato species acting as N,N-chelators and forming two six-membered Cu
metallacycles (Figure 1). The Cu–N bond distances are almost equal (from 1.929(5) to 1.935(5) Å) and
the cis N–Cu–N angles are close to 90◦ varying from 87.8(2)◦ to 96.0(2)◦ (Table 1). In contrast to the
structures of complexes 1, 2, 4 and 5 [23], the N4 environment around the copper atom is not completely
planar with two ligands rotated at 24.2◦ to each other.

The complex molecules are joined together by a set of N–H···O and N–H···N hydrogen bonds,
involving the nitrogen atoms from C=NH imine groups and the n-propoxy oxygen atoms of the
ligands, thus forming 2D supramolecular sheets (Figure 2) (N1–H1···O4i [i: x, 0.5 − y, 0.5 + z; D···A
= 3.588(6) Å, D–H···A = 118(4)◦], N6–H6···O1ii [ii: x, 0.5 − y, –0.5 + z; D···A = 3.511(7) Å, D–H···A =

164(5)◦], N3–H3···N5iii [iii: x, 1.5 − y, 0.5 + z; D···A = 3.764(6) Å, D–H···A = 150(4)◦] and N4–H4··· N5iv

[iv: x, 1.5 − y, 0.5 + z; D···A = 3.516(7) Å, D–H···A = 157(5)◦]). The location of the protruding n-propoxy
groups of the 1,3,5-triazapentadienato ligands into the intersheet space prevents the increasing of the
dimensionality of the H-bonded polymer to an infinite three-dimensional framework and keeps the
supramolecular layers apart (Figure 3). The shortest Cu···Cu separation within the 2D polymeric sheet
is 6.1598(9) Å.
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Table 1. Selected geometrical parameters (distances/Å and angles/◦) for 3.

Cu1–N1 1.929(5)
Cu1–N3 1.933(4)
Cu1–N4 1.931(5)
Cu1–N6 1.935(5)

N1–Cu1–N3 87.8(2)
N1–Cu1–N4 160.6(2)
N1–Cu1–N6 93.1(2)
N3–Cu1–N4 96.0(2)
N3–Cu1–N6 165.5(2)
N4–Cu1–N6 87.9(2)
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2.3. Catalytic Oxidation of Cyclohexane with H2O2

Cyclohexane is a widely used model substrate for C–H oxidation studies due to its suitable bond
dissociation energy, easy identification and quantification of reaction products and importance of this
process in industry. Thus, we investigated the potential of 1–5 for the mild oxidation of cyclohexane
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with hydrogen peroxide (Scheme 2). Along with the catalyst, we applied 10 equiv. of pyridine
promoter, which is known to enhance the activity of transition metal catalysts, among them copper
complexes [6,38,39].
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Scheme 2. Main model reaction: oxidation of cyclohexane with H2O2.

Accumulations of oxygenates (cyclohexanol and cyclohexanone) with time in the cyclohexane
oxidation using 1 and 2.5 eq. of H2O2, catalysed by 1–5 (0.5 mol %), in the presence of pyridine
(5 mol %) are depicted in Figure 4. The curves for complexes 1, 2 and 5 exhibit linear dependences at
the initial period (Figure 4a). These complexes are least-active, showing equal initial reaction rates W0

of 1.8 × 10−7 M s−1 (for 2.5 eq. of H2O2). After 30 min, the reaction rates slightly increase until 1.2 ×
10−6 M s−1 at 1 h (for 5, Figure 4a). After this period, all the accumulations undergo sharp accelerations,
reaching a plateau after 2 h (Figure S5). Complex 3 shows the higher W0 of 1.7 × 10−6 M s−1 (for 2.5 eq.
of H2O2). In contrast to 1, 2 and 5, complex 3 exhibits a rather short lag period of 20 min, then reaching
the reaction rate of ca. 1 × 10−5 M s−1 at 30 min time (Figure 4a).

The catalytic behaviour of complex 4 was found to be dependent on the time between dissolution
of the complex and initiation of the reaction (addition of H2O2). With this time minimized, the
accumulation curve is linear in the 20-min period (W0 = 1.1 × 10−5 M s−1), then showing a gradual
decay of the reaction rate with the maximum concentration of oxygenates of 0.021 M which corresponds
to the yield of 10.4% based on cyclohexane (Figure 4a). When complex 4 was kept for 2 min in
acetonitrile (at 50 ◦C) prior to the addition of the oxidant, the accumulation curve appeared to be of
non-linear character (Figure 4a) with the initial reaction rate (W0 = 9.9 × 10−6 M s−1) very close to that
for the catalytic system without pre-treatment of the complex 4 in acetonitrile.

For comparative purpose, the catalytic properties of copper nitrate were tested using similar
conditions with 0.5 mol % loading of Cu(NO3)2. The choice of copper nitrate was governed due to
its solubility in acetonitrile and stability in solution, while the commonly-used copper chloride is
known to have complex behaviour, forming polynuclear Cl-bridged species in solution [40] (the same
observation can be made for iron chloride also, basing on its non-linear W0 vs. [FeCl3]0 dependence) [41].
The accumulation of the reaction products for Cu(NO3)2 is linear in the first 40 min time with W0 = 1.9
× 10−6 M s−1, then reaching a plateau (Figure 4a). Hence, the initial reaction rate exhibited by Cu(NO3)2

is considerably lower than that for complex 4, but higher than for all other complexes.
The accumulations for a 2.5 times lower amount of H2O2 (0.2 M; 1 eq.) discloses the drastic

difference between complexes 3, 4 and 1, 2, 5 (Figure 4b). While the latter show the negligible activity
(W0 from 5 × 10−8 to 8.5 × 10−8 M s−1) with slow acceleration, becoming notable only after 1 h, catalysts
3 and 4 demonstrate a rapid increase of their reaction rates with the time (Figure 4b).

The dependences of the initial reaction rates on the oxidant concentration for 1–5 are depicted at
Figure 5. The initial rates W0 for catalysts 1, 2 and 5 are only slightly influenced by the H2O2 excess.
However, the higher H2O2 concentration causes rapid acceleration of the reactions shortly after their
beginnings (Figure S6). Under these conditions, all the complexes show similar yields (18.5% for 4) and
the highest turnover frequency (moles of product produced per mol of catalyst per a certain period) of
41 h−1 (for 4). The W0 vs. [H2O2]0 dependences for complexes 3 and 4 (Figure 5, red and purple lines,
respectively) are of nearly linear behaviours, with complex 4 exhibiting saturation when [H2O2]0 >

0.5 M.
For complex 4, a notable lag period is observed only for the lowest studied [H2O2]0 of 0.2 M

(Figure 4b). The initial reaction rate W0 was found to be 5 × 10−7 M s−1, while the reaction rate at the
quasi-linear period Wlin is ca. five times higher (2.7 × 10−6 M s−1). Considering the absence of the
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lag period for [H2O2]0 > 0.2 M (Figure 4b, Figures S6 and S7), one may conclude that the observed
initial reaction rates when [H2O2]0 > 0.2 M correspond to the Wlin, but not to W0 (i.e., for complex 4 it
is not possible to estimate true W0 values for [H2O2]0 > 0.2 M). This assumption is in accord with the
nearly linear Wlin vs. [H2O2]0 dependence in the 0 < [H2O2]0 < 0.5 M region (Figure 5) when using
Wlin value for [H2O2]0 = 0.2 M point.
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(1 × 10−3 M) and by Cu(NO3)2 (1 × 10−3 M) in the presence of pyridine (0.01 M) in acetonitrile at 50 ◦C.

Inorganics 2019, 7, x FOR PEER REVIEW 
 6 of 19 

 

 

Figure 4. Accumulations of the reaction products (sum of cyclohexanol and cyclohexanone) in the 
oxidation of cyclohexane (0.2 M) with H2O2 ((a): 0.5 M, 2.5 equiv.; (b): 0.2 M, 1 equiv.) catalysed by 1–
5 (1 × 10−3 M) and by Cu(NO3)2 (1 × 10−3 M) in the presence of pyridine (0.01 M) in acetonitrile at 50 °C. 

The dependences of the initial reaction rates on the oxidant concentration for 1–5 are depicted at 
Figure 5. The initial rates W0 for catalysts 1, 2 and 5 are only slightly influenced by the H2O2 excess. 
However, the higher H2O2 concentration causes rapid acceleration of the reactions shortly after their 
beginnings (Figure S6). Under these conditions, all the complexes show similar yields (18.5% for 4) 
and the highest turnover frequency (moles of product produced per mol of catalyst per a certain 
period) of 41 h−1 (for 4). The W0 vs. [H2O2]0 dependences for complexes 3 and 4 (Figure 5, red and 
purple lines, respectively) are of nearly linear behaviours, with complex 4 exhibiting saturation when 
[H2O2]0 > 0.5 M. 

 

Figure 5. Dependences of the oxidation rates W0 on initial concentration of hydrogen peroxide in the 
oxidation of cyclohexane (0.2 M) with H2O2 (50% aqueous) in the presence of pyridine (0.01 M) in 
acetonitrile at 50 °C. For complex 4 (purple line), the reaction rate was calculated at the quasi-linear 
period (Wlin) because no lag period was observed for [H2O2]0 > 0.2 M. 

For complex 4, a notable lag period is observed only for the lowest studied [H2O2]0 of 0.2 M 
(Figure 4b). The initial reaction rate W0 was found to be 5 × 10−7 M s−1, while the reaction rate at the 
quasi-linear period Wlin is ca. five times higher (2.7 × 10−6 M s−1). Considering the absence of the lag 
period for [H2O2]0 > 0.2 M (Figures 4b, S6 and S7), one may conclude that the observed initial reaction 
rates when [H2O2]0 > 0.2 M correspond to the Wlin, but not to W0 (i.e., for complex 4 it is not possible 
to estimate true W0 values for [H2O2]0 > 0.2 M). This assumption is in accord with the nearly linear 

Figure 5. Dependences of the oxidation rates W0 on initial concentration of hydrogen peroxide in the
oxidation of cyclohexane (0.2 M) with H2O2 (50% aqueous) in the presence of pyridine (0.01 M) in
acetonitrile at 50 ◦C. For complex 4 (purple line), the reaction rate was calculated at the quasi-linear
period (Wlin) because no lag period was observed for [H2O2]0 > 0.2 M.

The structures of complexes 1–5 differ only by the type of substituents of the triazapentadiene
ligands (Scheme 1). Assuming that the rate-limiting step is the reaction of a metal complex with
hydrogen peroxide [15,41–46], these substituents appear to be too distanced from the copper centre
to sterically hinder this reaction. Considering the catalytic behaviour of 1–5, one may suppose that
the complexes undergo gradual alteration in solution to form species in which catalytic activity is
much higher than that of the original complexes. This hypothesis explains the observed acceleration of
the reaction rates (Figure 4 and Figures S5–S7) as well as the non-linear increase of the rates with an
increase of the oxidant amount (Figure 5). From this point of view, complexes 1, 2 and 5 appear to be
more resistant to degradation, while complexes 3 and especially 4 are more prone to that.

We used UV/Vis spectroscopy to monitor the stability of the coordination compounds in the
solution. The UV/Vis spectra of 1–5 in acetonitrile solutions are similar, showing a strong absorption
band from 287 to 300 nm and a weak absorption at 492 nm (Figure 6). The spectra of 1–3 and 5 do not
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undergo changes within 120 min, as evidenced by the intensities of the characteristic absorptions at
492 nm (Figure 6b). The spectra of 1 in the presence of pyridine revealed a slightly lower absorption
with no significant changes upon time (Figure 6b). In contrast, the spectra of 4 is evidence for its
gradual alteration and degradation in solution (Figure 7a).

The UV/Vis spectra of complex 4 (1 × 10−3 M) in acetonitrile as a function of time are depicted in
Figure 7a. After a short lag period, the peak at 492 nm disappears, while two other absorptions at
428 and 695 nm become visible (Figure 7a). The intensities of these two bands undergo rapid growth
showing maximum at 60 min time, then decreasing until the background level after 4 h time. Visually,
these changes correspond to the change of the solution colour from red to green (4red

→ 4green) and
then to the colourless one with a cloudy precipitate. We were interested in the study of if and how
these changes depend on complex 4’s concentration and other conditions.

The increase of the intensity of the 428 nm band is quasi-linear in the ca. 30–50 min range, allowing
to calculate its increase rate W428 (4.7 × 10−3 A min−1 for [4]0 = 1 × 10−3 M). When the twice lower
concentration of complex 4 was used (5 × 10−4 M), the W428 value was found to be 2.2 × 10−3 A min−1.
The W428 vs. [4]0 data show the dependence which can be approximately treated as a linear one
(Figure 7b, inset). The presence of pyridine affects the maximum intensity of the 428 nm absorption
(Figure 7b), while the W428 rate remains unchanged (3.3 × 10−3 A min−1 for [4]0 = 1 × 10−3 M and [Py]0

= 0.01 M).
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Figure 7. (a) UV/Vis spectra of 4 in acetonitrile (1 × 10−3 M) in the 4 mL cells along the time. The
inset shows changes in the absorbance at 300, 428 and 695 nm with time. (b) Absorbance at 428 nm
as a function of time for 4 (1 × 10−3 M, unless states otherwise) in the 1.5 mL cells in normal CH3CN,
4 in CH3CN in the presence of pyridine (0.01 M), 4 in CD3CN, deuterated 4-d32 in CH3CN, and 4 in
CH3CN in the presence of cis-1,2-dimethylcyclohexane. The inset shows the dependence of 428 nm
absorbance increase rate (W428) on [4]0.
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The use of deuterated acetonitrile leads to a lower W428 rate of 1.9 × 10−3 A min−1 and delay
of the 428 nm maximum appearance (Figure 7b). The influence of acetonitrile is clearly seen on the
plots of products accumulations in the course of cyclohexane oxidation performed in CH3CN and
CD3CN (Figure 8). While the reaction performed in normal acetonitrile shows acceleration with W0 =

5.5 × 10−7 M s−1, the reaction in deuterated acetonitrile shows the constant reaction rate W = 2.2 ×
10−7 M s−1.
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the oxidation of cyclohexane (0.2 M) catalysed by 4 (1 × 10−3 M, red blank circles) or 4-d32 (1 × 10−3 M,
green blank circles) in the presence of pyridine (0.01 M) in CH3CN (blank circles) or CD3CN (solid
circles) at 50 ◦C. Solid lines are exponential or linear fits.

As can be seen, the solution behaviour of complex 4 differs a lot from those for the other complexes.
Looking at the structures of all the compounds, one may see the principal feature of complex 4: Each
of the triazapentadiene ligands in 4 contain two tertiary C–H bonds (Scheme 1, Figure 1 and Figures
S1–S4). Since tertiary C–H bonds are typically more active than secondary and primary ones, we
assigned the alteration of the structure of 4 in the solution to the activation of this bond with the
formation (and consequent degradation) of new species. Considering that complexes 1–5 are known
to catalyse aerobic oxidation of alcohols [23], oxidation of the C–H bond with dioxygen could be a
probable explanation. To confirm such an assumption, we first studied the UV/Vis kinetics of complex
4 (1 × 10−3 M) in acetonitrile in the presence of a large excess (0.27 M) of cis-1,2-dimethylcyclohexane
(cis-DMCH). This substrate has easily-oxidizing tertiary C–H bonds [47] and in this way can act as a
quencher of the reactive C–H-attacking species. As expected, no changes in the 428 (Figure 7b) and
695 nm absorptions occurred, only the 287 nm one showing a slight increase after 4 h. No cis-DMCH
oxidation products were detected due to potentially low activity of such catalytic system and the
presence of traces of the respective tertiary alcohols in the substrate. Further, when complex 4 was
dissolved in degassed acetonitrile ([4]0 = 1 × 10−3 M; degassing was performed by freeze–pump–thaw
cycling) and stirred under inert atmosphere, no changes in colour were observed during at least 96 h.
In case the complexes 1–5 can be oxidized with dioxygen and/or catalyse this process, the oxygen
from O2 is expected to appear in the reaction products, first of all water. We attempted to follow
this process by dissolving complexes 1 and 4 (as the most stable and least stable ones) in acetonitrile
(2 × 10−3 M) and stirring the solutions under the 18O2 atmosphere, after the respective degassing. The
GCMS analysis of the mixtures, performed after 24 h, revealed the formation of H2

18O water in the
case of complex 1 (Figure S8). In contrast, the solution of complex 4 did not contain detectable amounts
of H2

18O (Figure S8). The absence of 18O-labelled water in the case of 4 was surprising; we assume
that the labelled species formed could not be detected under the conditions of the experiment. The test
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clearly demonstrates that dioxygen can be activated by the complexes studied (with their possible
degradation) and this process can be triggered by the nature of the complex.

An elegant way to enhance the robustness of the catalyst is to protect its oxidation-sensitive
C–H bonds by their deuteration [48]. The use of a fully deuterated 2-propanol as a solvent enabled
the synthesis of the 4-d32 complex, containing deuterated iPr-d7 moieties including the tertiary C–D
bonds (Figure 8, inset). The UV/Vis kinetics of 428 nm absorption of 4-d32 in acetonitrile is depicted in
Figure 7b. The presence of a 3 h lag period was accounted for 4-d32, after which the spectra similar to
that for 4 appears. The W428 rate was found to be 4.2 × 10−3 A min−1. This value is also very close to
that for normal complex 4 (4.7 × 10−3 A min−1). A considerable lag period allows recrystallization of
4-d32 from acetonitrile to produce crystals with unit cell parameters (determined by the single crystal
X-ray diffraction) equal to those for 4, confirming the retention of its integrity.

The accumulation of products (cyclohexanol and cyclohexanone) in the course of cyclohexane
oxidation catalysed by 4-d32 is depicted in Figure 8. The reaction shows an acceleration with the
initial reaction rate W0 (2.5 × 10−7 M s−1) very close to that for the 4-CD3CN system (2.2 × 10−7 M s−1).
However, the acceleration rate exhibited by 4-d32 is much lower than that for 4, as expected for the
higher resistance of 4-d32 towards oxidation.

Cyclohexyl hydroperoxide, CyOOH, was detected as a main reaction product of the cyclohexane
oxidation using catalysts 1–5 (Figure 9). The formation of large amounts of CyOOH is a sign for
a free radical oxidation mechanism, where long-lived alkyl radials react with dioxygen to form alkyl
hydroperoxides [6,24,49,50]. In the case of H2O2 oxidant, a free radical mechanism points to an
involvement of hydroxyl radicals as attacking species [6,24,49,50]. Oxidation of methylcyclohexane
(MeCyH) and adamantane catalysed by complexes 1 and 4 discloses low bond- and regioselectivities
as well as the absence of stereoselectivity of these catalytic systems (Table 2). Epimerization of
cis-1,2-dimethylcyclohexane (cis-DMCH) stereoconfiguration is a sign for the involvement of long-lived
alkyl radicals [24,49,51]. These results are consistent with a free-radical mechanism where the H
atom of the C–H bond is abstracted by non-selective HO· radicals, catalytically generated from H2O2

(Table 2) [6,24,49,50]. Larger oxygen-centred radicals, such as tBuO· one, result in similar discrimination
between secondary and tertiary bonds of adamantane, but much higher bond selectivity in the oxidation
of methylcyclohexane due to sterical hindrance of the R substitutes of the tertiary R3C–H bond (Table 2).
Higher selectivities are typical for catalytic systems oxidizing C–H bonds with high-valent metal-oxo
(HVMO) species or metal-peroxide intermediates (Table 2) [14]. For copper, however, such a mechanism
is less probable due to the necessity of stabilization of the CuIII HVMO compounds [52–54]. One may
note that some N2- and N3-donor ligands known to stabilize CuIII–O/CuII–O· species resemble the
triazapentadiene ones [55–58].
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oxide formed as a product of partial decomposition of CyOOH during the GC analysis.
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The difference between accumulations of the reaction products in normal and deuterated
acetonitrile (Figure 8) cannot be explained from the point of view of a free radical mechanism
with hydroxyl radicals as attacking species. It is known that the reaction rate of HO· radical with
acetonitrile is ca. 100 times lower (k4/k3 ~ 0.01) than with cyclohexane [59–61]:

Catalyst + H2O2→ HO· (k1)

Catalyst + HO· → degradation products (k2)

R-H + HO· → R· + H2O (k3)

CH3CN + HO· → → products (k4)

CD3CN + HO· → → products (k5)

The reaction product appearing from the attack of HO· to acetonitrile could be acetamide, detected
in small amounts by means of GCMS analysis. One may expect that deuterated acetonitrile reacts
with HO· radicals even slowly due to the D/H kinetic isotope effect [62]. Hence, if transformation
of the complex 4 is caused by the hydroxyl radical attack, such a transformation should be faster in
CD3CN solvent rather than in CH3CN solvent (i.e., k4/k3 > k5/k3). However, this contradicts with the
observed accumulations (Figure 8), where complex 4 shows first order dependence in CD3CN with the
reaction rate considerably lower than that exhibited in CH3CN solvent. Finally, since the 4red

→ 4green

transformation can occur in the absence of H2O2 (Figure 7), hydroxyl radical attack can be ruled out as
a reason for this transformation.

The presence of lag periods in the UV/Vis spectra of 4 suggests an autocatalytic nature of the
4red
→ 4green reaction, where the 4green intermediate could catalyse further oxidation of the initial

complex 4 (4red). An autocatalytic process of this type (involving the CuI/II cycle) was recently
described by Semenov et al. [63], where the reaction product catalysed the electron transfer. The 4green

intermediate could be responsible for the 4red
→ 4green transformation and the acceleration of the

reaction rate of cyclohexane oxidation as well (Figures 4 and 8). From this point of view, the different
behaviour of 4 in CH3CN and CD3CN solvents (Figures 7 and 8) can be explained by hampering the
autocatalytic process in deuterated solvent, where the latter may act as a ligand.

The typical overoxidation products resulting from cyclohexane oxidation via HO· radicals are
cyclohexanediols and hydroxycyclohexanones [41,64–68]. After notable accumulation of these products,
the C6 ring cleavage compounds start to appear. However, in the case of catalysts 1–5, the overoxidation
pattern is different from the expected one and, moreover, the amount of 6-hydroxyhexanoic acid is
considerably higher than those for cyclohexanediols (Figure 10). Therefore, while the main reaction
mechanism is believed to proceed through the hydroxyl radical attack of a C–H bond, the pattern of
the overoxidation products (Figure 10) evidences for the presence of a minor oxidation mechanism of
a different type. Since complexes 1–5 are active catalysts in the aerobic oxidation of alcohols [23], one
may suppose that this process is responsible for the oxidation of cyclohexanediols affecting, as a result,
the overoxidation pattern.

While cyclohexyl hydroperoxide is a relatively stable compound allowing its observation by
means of gas chromatography [38,64,65,69,70], it was interesting to see if the other studied alkanes can
also produce detectable alkyl hydroperoxides under the conditions of the experiment. To reach this
aim, we compared the chromatograms recorded before and after the addition of solid PPh3 (following
the method developed by Shul’pin [15,50,71]) to the reaction samples (Figures S9–S11).
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Figure 10. Fragment of the chromatograms showing the overoxidation products in the oxidation of
cyclohexane with H2O2 in acetonitrile catalysed by complex 1 (top), [CuII

4FeIII
2(OH)(Piv)4(tBuDea)4Cl]

(Cu4Fe2, middle) [64] and [(PhSiO1.5)20(FeIIIO1.5)6(NaO0.5)8(n-BuOH)9.6(C7H8)] (Fe6, bottom) [66].

For methylcyclohexane, a group of peaks appearing after the primary alcohol was attributed
to methylcyclohexyl hydroperoxides (Figure S9). The mass-spectrum of tertiary peroxide
(1-methylhydroperoxide) was found to be consistent with that reported earlier [72]. All hydroperoxide
peaks completely disappear after treatment of the sample with PPh3. Oxidation of cis-DMCH
affords the expected products (alcohols and ketones), as well as the typical by-products, such as
2,6-octanedione (Figure S10). Two group of peaks were detected, all having identical mass-spectra,
with the differences in retention times expected for tertiary trans- and cis-products as well as the
products of secondary carbons attack. Earlier, some of us reported similar mass-spectra of the products
found in the course of cis-DMCH oxidation with the Cu9/HNO3/m-CPBA catalytic system (where Cu9

is a nonanuclear complex of copper with silsesquioxane and m-CPBA is meta-chloroperoxybenzoic
acid) in the chromatograms recorded before quenching with PPh3 [73]. Hence, we can tentatively
assign the peaks IV and V (Figure S10) to the tertiary trans- and cis-DMCH hydroperoxides which
can be reduced to the respective alcohols by using PPh3. In contrast to MeCyH and cis-DMCH, the
analysis of adamantane oxidation products did not afford any peak which could be attributable to an
adamantyl hydroperoxide (Figure S11).
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Table 2. Selected bond and stereoselectivity parameters in the oxidation of alkanes a.

Catalytic System
Cyclohexane Methylcyclohexane,

1◦:2◦:3◦
cis-1,2-Dimethylcyclohexane Adamantane

3◦:2◦
Proposed C–H Attacking

Species Ref.
Yield, % b TON c cis/trans ratio 1◦:2◦:3◦

1/Py d/H2O2 13 27 1:7:17 1.2 1:7:34 3:1 HO· this work
4/Py/H2O2 19 37 1:8:18 1.2 1:10:44 3:1 HO· this work

[CuII(HL1)(NO3)(DMF)](NO3)·H2O/Py/H2O2 22 43 1:2:16 – – – HO· [38]
[CuII(L2)Cl2]·DMF/Py/H2O2 21 42 – 1.3 1:7:43 3:1 HO· [39]

[FeIII(HL1)Cl2(DMF)]Cl·DMF/HNO3/H2O2 37 900 1:6:16 ~1.0 – – HO· [41]
[CoIII

4FeIII
2O(L3)8]·4DMF·H2O/HNO3/H2O2 26 3570 1:7:20 – – – HO· [15]

(n-Bu4N)VVO3/H2SO4/H2O2 – – 1:7:26 ~1.0 – – HO· [74]
[VVO(OCH3)(L4)2]/PCA e/H2O2 39 897 1:5:17 1.3 – – HO· [69]

[OCuII
4(L5)4(BOH)4][BF4]2/CF3COOH/H2O2 3 15 1:5:14 1.3 – – HO· [75]

[OCuII
4(L5)4(BOH)4][BF4]2/TBHP f 5 22 1:16:128 1.3 – – tBuO· [75]

[FeIII(L6)(Cl)](Et4N)2/TBHP – – – – – 3:1 tBuO· [76]
[FeIII(L6)(Cl)](Et4N)2/m-CPBA g 2 5 – 30 69:1 FeV=O [76]

[MnIV
2(L7)2O3][PF6]2/HOAc/H2O2 46 1:26:200 2.9 – – MnV=O [65]

[CoII(L8)](NO3)2/m-CPBA – – – 56 0:1:35 h 21:1 CoIV=O [51]
[CoII(L9)]/HNO3/m-CPBA 8 80 – 57 0:1:36 – CoIV=O or CoIII–OOC(O)Ar [77]

[CoII(L9)]/HNO3/H2O2 – – – 1.1 0:1:35 – HO· [77]
[CoIII(L10)3]·DMF/HNO3/m-CPBA – – – 59 0:1:32 22:1 CoIII–OOC(O)Ar [78]

[CoIIIZnII(L10)3Cl2]·CH3OH/HNO3/m-CPBA – – – 90 0:1:38 39:1 CoIII–OOC(O)Ar [79]
[CoIIICdII(L10)3Cl2]·0.5H2O/HNO3/m-CPBA – – – 78 0:1:40 23:1 CoIII–OOC(O)Ar [78]

[NiII(L11)(CH3CN)2](BPh4)2/m-CPBA 9 622 – – – 13:1 NiII–O· [80]
[{NiII(L12)}(OH)2]/m-CPBA 2 46 1:47:250 – – – NiII–OO(O)Ar or NiII–O· [81]

[FeIII(L13)Cl]/m-CPBA 0.3 0.9 – >72 0:1:58 – FeIII–OOC(O)Ar and FeIV=O [47]
[FeII(L14)(CF3SO3)2]/H2O2 0.7 6.5 – 28 – 30:1 FeV=O [82]

a Parameters 1◦:2◦:3◦ (for methylcyclohexane and cis-1,2-dimethylcyclohexane) and 3◦:2◦ (for adamantane) are normalized bond selectivities, corrected for the numbers of respective
hydrogen atoms. The cis/trans ratio is the ratio of the tertiary alcohols having methyl groups in cis and trans positions, respectively. b Yield of products (cyclohexanol and cyclohexanone)
based on the substrate. c turnover numbers, mols of products per mol of catalyst. d Pyridine. e Pyrazinearboxylic acid. f Tert-butylhydroperoxide. g Meta-chloroperoxybenzoic acid.
h Zero value means that the primary alcohol was not detected or its amount is not reported. HL1 = product of condensation of salicylaldehyde and 1-(2-aminoethyl)piperazine; HL2

= product of condensation of 2-pyridinecarbaldehyde and aminoguanidine; H2L3 = salicylidene-2-ethanolamine; L4 = 5-chloro-8-hydroxyquinoline; H3L5 = triethanolamine; H4L6 =
biuret-amide N4-donor macrocyclic ligand; L7 = 1,4,7-trimethyl-1,4,7-triazacyclononane; L8 = isoindole-core N3-donor ligand; L9 = phthalocyanine; L10 = product of condensation of
o-vanillin and methylamine; L11 = N,N-Dimethyl-N,N-bis(pyrid-2-ylmethyl)ethane-1,2-diamine; L12 = hydrotris(pyrazolyl)borate; H2L13 = meso-tetrakis(pentafluorophenyl)porphine; L14

= 1-(2-pyridylmethyl)-4,7-dimethyl-1,4,7-triazacyclononane.



Inorganics 2019, 7, 82 13 of 19

3. Materials and Methods

3.1. Reagents and Materials

All chemicals were of reagent grade and used as received. Deuterated 2-propanol (99.5% d8) and
18O-labelled dioxygen (97.1% 18O) were purchased from CortecNet (Voisins-le-Bretonneux, France).
All experiments were carried out in air, unless stated otherwise. UV/Vis spectra were recorded using
Lambda 35 spectrometer (PerkinElmer, Waltham, MA, USA) in a 260–800 nm spectral range in the
1 cm length cells having 1.5 or 4 mL total volume. Elemental analyses for C, H and N were carried out
by the Microanalytical Service of the Instituto Superior Técnico.

3.2. Crystallography

The X-ray diffraction data for 3 and 4-d32 were collected using a D8 Quest diffractometer (Bruker,
Germany) with graphite-monochromated Mo Kα radiation. Data were collected using phi and omega
scans of 1◦ per frame. Cell parameters were retrieved using Bruker SMART software and refined using
Bruker SAINT on all the observed reflections. Absorption corrections were applied using SADABS
2016/2 [83]. The structure was solved by direct methods and refined against F2 using the program
SHELX-2018/3 [84]. The carbon atoms of two of four propyl groups (C3, C4 and C10, C11, C12)
were modelled as being disordered over the two positions with site occupancies 0.55(2):0.45(2) and
0.75(2):0.25(2), respectively.

Crystal data for 3: C16H32CuN6O4, M = 436.01, monoclinic, P21/c, a = 24.916(2) Å, b = 9.3586(9)
Å, c = 9.3255(9) Å, β = 92.291(3)◦, V = 2172.8(4) Å3, T = 296(2) K, Z = 4, 30,396 reflections collected,
of which 4551 were independent, R1 = 0.0671 [based on I > 2σ(I)], wR2 = 0.1546 (based on F2 and all
data), GoF = 1.090. Crystallographic data for the structure reported can be obtained free of charge
from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif quoting
the deposition number CCDC 1903982.

Unit cell parameters for 4-d32 (based on the group of 301 reflections): a = 8.232(8) Å, b = 10.513(8)
Å, c = 13.674(10) Å, α = 82.36(3)◦, β = 74.46(5)◦, γ = 82.57(4)◦, V = 1125(2) Å3.

3.3. Catalytic Oxidation of Alkanes

To 5 µmol of solid catalyst weighed into the reaction flask, 4.1 mL CH3CN, 50 µmol of pyridine
(in a form of a stock solution, typically 1.3 M solution in acetonitrile), 0.5 mL of CH3NO2 stock solution
(internal standard; 1 mL of CH3NO2 mixed with 9 mL of CH3CN), 108 µL (1 mmol) of cyclohexane
and 56–28 µL of 50% aq. H2O2 were added in this order at 50 ◦C under vigorous stirring (CAUTION:
the combination of air or molecular oxygen and H2O2 with organic compounds at elevated temperatures may
be explosive!). At the end of the reaction, aliquots (ca. 0.5 mL) of the reaction mixture were carefully
transferred into a vial containing an excess (ca. 150 mg) of solid PPh3. A Clarus 500 gas chromatograph
(PerkinElmer, Waltham, MA, USA) with a BP-20 capillary column (30 m × 0.22 mm × 25 µm; SGE,
Australia) and a Clarus 600 gas chromatograph (PerkinElmer, Waltham, MA, USA), equipped with
a Clarus 600 C mass-spectrometer (PerkinElmer, Waltham, MA, USA) (electron impact, 70 eV), with
a ZB-5 capillary columns (30 m × 0.25 mm × 25 µm; Phenomenex, Torrance, CA, USA) and helium
carrier gas were used for analyses of the reaction mixtures.

4. Conclusions

In this work, we have studied the chemistry and catalytic behaviour of the copper coordination
compounds [Cu{NH=C(OR)NC(OR)=NH}2] with a bidentate alkoxy-1,3,5-triazapentadiene ligands
having various substituents. Complex 3 was characterized by single crystal X-ray analysis.
The coordination compounds show a moderate activity in the cyclohexane oxidation with hydrogen
peroxide with the maximum observed reaction rate of 1.1 × 10−5 M s−1, corresponding to the TOF
value of 41 h−1. From the selectivity data, kinetic experiments and direct observation of cyclohexyl
hydroperoxide, the principal reaction pathway appears to operate via a free radical mechanism

www.ccdc.cam.ac.uk/data_request/cif
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involving long-lived alkyl radicals. However, there are indications for another minor mechanism of
different type, which affects the overoxidation products pattern.

The kinetic data disclosed a complex solution behaviour of all the complexes revealing gradual
alteration of their structures in solution. The complex 1 (R = Me) was found to be the most stable
compound, while complex 4 (R = iPr) showed the fastest alteration rate to form an intermediate
showing high catalytic activity in cyclohexane oxidation. The lowest stability of complex 4 was
associated to the presence of weak tertiary C–H bonds in its structure which are aerobically oxidized.
Basing on the spectral and kinetic data, an autocatalytic nature of this alteration process was suggested.
The use of CD3CN instead of CH3CN solvent enhanced the stability of 4 presumably by hampering the
autooxidation reaction. Protection of complex 4 by deuteration of its iPr substituents allowed higher
stability of the complex under catalytic conditions. We expect that the results obtained within the
present research would improve the understanding of copper-catalysed oxidation processes. Further
research will be focused on the characterisation of the intermediate formed from the autooxidation of
complex 4 and investigation of the respective reaction mechanism.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/7/7/82/s1,
Figures S1–S4: Ball-and-stick representation of 1,2,4,5 with atom numbering. H atoms are omitted for clarity;
Figure S5: Accumulations of the reaction products (sum of cyclohexanol and cyclohexanone) in the oxidation
of cyclohexane (0.2 M) with H2O2 (0.5 M) catalysed by 1–5 (1 × 10−3 M) and by Cu(NO3)2 (1 × 10−3 M) in the
presence of pyridine (0.01 M) in acetonitrile at 50 ◦C; Figure S6: Accumulations of the reaction products (sum
of cyclohexanol and cyclohexanone) in the oxidation of cyclohexane (0.2 M) with H2O2 (1 M) catalysed by 1–5
(1 × 10−3 M) in the presence of pyridine (0.01 M) in acetonitrile at 50 ◦C; Figure S7: Accumulation of the reaction
products (sum of cyclohexanol and cyclohexanone) in the oxidation of cyclohexane (0.2 M) with H2O2 (0.35 M)
catalysed by 4 (1 × 10−3 M) in the presence of pyridine (0.01 M) in acetonitrile at 50 ◦C; Figure S8: Fragments
of the chromatograms of the acetonitrile solutions (2 × 10−3 M) of 1 (bottom) and 4 (top) after stirring for 24 h
under 18O2 atmosphere at room temperature, showing the peak at 1.78 min attributable to water. The inset shows
the respective mass-spectra. The presence 19 and 20 m/z peaks for the complex 1 account for H2

18O water. The
small peak at 1.74 min corresponds to air; Figure S9: Top: fragments of the chromatograms recorded before and
after addition of PPh3 showing the reaction products in the oxidation of methylcyclohexane (0.2 M) with H2O2
(0.5 M) catalysed by 4 (1 × 10−3 M) in the presence of pyridine (0.01 M) in acetonitrile at 50 ◦C after 2 h. Bottom:
EI-MS spectra of the peaks attributed to methylcyclohexyl hydroperoxides; Figure S10: Top: fragments of the
chromatograms recorded before and after addition of PPh3 showing the reaction products in the oxidation of
cis-1,2-dimethylcyclohexane (0.2 M) with H2O2 (0.5 M) catalysed by 4 (1 × 10−3 M) in the presence of pyridine (0.01
M) in acetonitrile at 50 ◦C after 2 h. Bottom: EI-MS spectra of the peaks attributed to cis-1,2-dimethylcyclohexyl
hydroperoxides; Figure S11: Top: fragment of the chromatograms recorded after addition of PPh3 showing
the reaction products in the oxidation of adamantane (0.2 M) with H2O2 (0.5 M) catalysed by 4 (1 × 10−3 M)
in the presence of pyridine (0.01 M) in acetonitrile at 50 ◦C after 2 h. Middle and bottom: GCMS 2D maps of
the chromatograms recorded before (middle) and after (bottom) addition of PPh3, showing no difference in the
by-products. The peak 12.2 min is believed to be a residue formed from the degradation of the complex 4. The CIF
and the checkCIF output files of 3.
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