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Abstract: Novel synthetic routes to the commonly encountered indole motif are highly sought
after. Tetrahydro-1H-indoles were synthesized for the first time from secondary alcohols and
2-aminocyclohexanol in the presence of a well-established iridium catalyst using a modified synthetic
procedure recently developed for the synthesis of hydrocarbazoles. The catalyst is stabilized by an
inexpensive and easy-to-synthesize triazine based PN5P pincer ligand. The reaction proceeds through
acceptorless dehydrogenative condensation (ADC) and yields the title compound, dihydrogen, and
water and can thus be classified as sustainable synthesis. Overall, five examples, three of which were
previously unknown compounds, were prepared. The propitious isolated yields and the mild reaction
conditions show the synthetic value of this approach. These tetrahydroindoles can be quantitatively
dehydrogenated over a heterogeneous Pd catalyst to yield the corresponding indoles.
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1. Introduction

The conservation of natural resources is a key element in ensuring a sustainable future for
mankind. Using substrates from renewable sources that do not compete with food production in
chemical reactions can conserve earth’s finite carbon resources and potentially help reduce carbon
dioxide emissions. Alcohols, for example, can be obtained from lignocellulosic biomass—an indigestible
and widely available biopolymer—by a series of hydrogenation and dehydration steps [1,2]. Reactions
that use alcohols as starting materials have seen a sharp rise in popularity in recent years [3] because
they permit the synthesis of nitrogen containing heteroarenes, like pyrroles and indoles [4,5]. The
indole motif is commonly encountered in pharmaceuticals, agrochemicals, and functional materials,
for example as liquid organic hydrogen carriers [6–8]. Common methods for the synthesis of indoles
require harsh reaction conditions or the use of highly reactive or worrisome chemicals [9–12]. With this
background, a synthesis concept for tetrahydro-1H-indoles from alcohols and aminoalcohols seems
appealing. Indeed, it was shown by the groups of Milstein [13], Shimizu [14], and us [15,16] that when
cyclohexanol was used in the pyrrole synthesis we developed [17] (Figure 1, top), tetrahydroindoles
can be obtained [18–22]. The innate disadvantage of this method, however, is that the substitution
pattern of the pyrrole moiety results from the aminoalcohol that was used, which significantly
limits the addressable substrate scope. In this study, we overcame that limitation by employing
2-aminocyclohexanol and a variety of secondary alcohols (Figure 1, bottom). We used the iridium
catalyst we developed for pyrrole synthesis but that meanwhile was used in several other heteroarene
syntheses [23–26]. This enables the broadest possible product scope as diversely substituted secondary
alcohols are commonly available.
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Figure 1. State-of-the-art iridium catalyzed synthesis of tetrahydro-1H-indoles from alcohols and 
amino alcohols. Top: Previously reported synthesis concept from cyclohexanol and 2-aminoalcohols. 
Bottom: Synthesis concept starting from 2-aminocyclohexanol and secondary alcohols (based on work 
in [26]). Follow-up dehydrogenation leads to indoles. 

2. Results 

The triazine-based PN5P iridium complex we developed for pyrrole synthesis [17] catalyzes the 
synthesis of tetrahydro-1H-indoles (Figure 1). By employing two equivalents of a secondary alcohol 
in the presence of 1.1 equivalents of the strong base potassium tert-butoxide, 2-aminocyclohexanol 
could be swiftly converted to the corresponding tetrahydroindoles at a low catalyst loading of 0.26 
mol % after 22 h at 105 °C (oil bath) using the solvent tetrahydrofuran (thf); 1-phenylethanol (1a) was 
converted to the corresponding indole (3a) in 76% yield of isolated product (Figure 2). Employing 1-
(4-methoxyphenyl) ethanol (1b) as substrate, the corresponding product (3b) was isolated in 74% 
yield, indicating that the para substituent only marginally affects the catalyst system. Moreover, 
aliphatic 2-octanol (1c) was transformed into tetrahydroindole 3c in 76% yield of isolated product. 
This emphasized that catalytic activity is not heavily dependent on the nature of the substrate 
used.We further explored the substrate scope by employing the cyclic alcohols cycloheptanol (1d) 
and cyclooctanol (1e), which were quantitatively converted into the corresponding products 3d and 
3e (96% and 95% yield of isolated product, respectively). The high yields are unexpected since the 
alkylation of the sterically hindered secondary carbon atom during the reaction is generally 
considered to be more challenging. The novelty of this approach is underlined by the fact that three 
of these substrates, namely 3c–e, have hitherto not been described in the literature (for 
characterization data of the isolated compounds please see the Supplementary Materials). 

 
Figure 2. Substrate scope for the ADC (acceptorless dehydrogenative condensation) of secondary 
alcohols and 2-aminocyclohexanol to tetrahydroindoles. Reaction conditions: secondary alcohol (2.0 
eq, 15.2 mmol), 2-aminocyclohexanol (1.0 eq, 7.6 mmol), KOtBu (1.1 eq, 8.4 mmol), Ir catalyst (0.26 
mol %, 0.02 mmol, 2.0 mL of a 0.01 M stock solution in thf), and thf (10 mL); 105 °C (oil bath 
temperature), 22 h. PMP: p-methoxyphenyl. 

Figure 1. State-of-the-art iridium catalyzed synthesis of tetrahydro-1H-indoles from alcohols and
amino alcohols. Top: Previously reported synthesis concept from cyclohexanol and 2-aminoalcohols.
Bottom: Synthesis concept starting from 2-aminocyclohexanol and secondary alcohols (based on work
in [26]). Follow-up dehydrogenation leads to indoles.

2. Results

The triazine-based PN5P iridium complex we developed for pyrrole synthesis [17] catalyzes the
synthesis of tetrahydro-1H-indoles (Figure 1). By employing two equivalents of a secondary alcohol in
the presence of 1.1 equivalents of the strong base potassium tert-butoxide, 2-aminocyclohexanol could
be swiftly converted to the corresponding tetrahydroindoles at a low catalyst loading of 0.26 mol %
after 22 h at 105 ◦C (oil bath) using the solvent tetrahydrofuran (thf); 1-phenylethanol (1a) was
converted to the corresponding indole (3a) in 76% yield of isolated product (Figure 2). Employing
1-(4-methoxyphenyl) ethanol (1b) as substrate, the corresponding product (3b) was isolated in 74%
yield, indicating that the para substituent only marginally affects the catalyst system. Moreover,
aliphatic 2-octanol (1c) was transformed into tetrahydroindole 3c in 76% yield of isolated product.
This emphasized that catalytic activity is not heavily dependent on the nature of the substrate
used.We further explored the substrate scope by employing the cyclic alcohols cycloheptanol (1d) and
cyclooctanol (1e), which were quantitatively converted into the corresponding products 3d and 3e (96%
and 95% yield of isolated product, respectively). The high yields are unexpected since the alkylation
of the sterically hindered secondary carbon atom during the reaction is generally considered to be
more challenging. The novelty of this approach is underlined by the fact that three of these substrates,
namely 3c–e, have hitherto not been described in the literature (for characterization data of the isolated
compounds please see the Supplementary Materials).
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Figure 2. Substrate scope for the ADC (acceptorless dehydrogenative condensation) of secondary
alcohols and 2-aminocyclohexanol to tetrahydroindoles. Reaction conditions: secondary alcohol (2.0 eq,
15.2 mmol), 2-aminocyclohexanol (1.0 eq, 7.6 mmol), KOtBu (1.1 eq, 8.4 mmol), Ir catalyst (0.26 mol %,
0.02 mmol, 2.0 mL of a 0.01 M stock solution in thf), and thf (10 mL); 105 ◦C (oil bath temperature), 22 h.
PMP: p-methoxyphenyl.
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We then shifted our attention to possible follow-up reactions of tetrahydro-1H-indoles.
One particularly difficult, yet interesting, reaction is the dehydrogenation of the previously
synthesized tetrahydroindoles 3a–e to the corresponding indoles 4a–e (Figure 3). Analogous to our
previously reported procedure for the dehydrogenation of partially saturated N-heterocycles [26,27],
tetrahydroindoles were quantitatively dehydrogenated by a heterogeneous Pd@SiCN catalyst and
isolated in excellent yields. All substrates were isolated in nearly quantitative yields, which shows the
synthetic value of this two-step procedure for the synthesis of indoles.
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3. Discussion

Acceptorless dehydrogenative condensation is a well-matured concept in homogeneous and
heterogeneous catalysis enabling the synthesis of a broad range of heterocyclic compounds from
alcohol and aminoalcohol starting material [26]. We recently expanded the use of ADC to
the synthesis of (hydro-)acridines, (hydro-)quinolines, and (hydro-)carbazoles from phenols and
aminophenols/aminoalcohols by an upstream hydrogenation process [26]. Inspired by the synthesis of
octahydrocarbazoles, we became interested in the related synthesis of tetrahydro-1H-indoles.

Indeed, the reaction of 2-aminocylcohexanol and secondary alcohols proceeds smoothly with a
catalyst loading of only 0.26 mol % and the corresponding compounds were obtained in yields of
isolated product from 74 to 96%. Analogous to previously published results regarding the synthesis
of pyrroles [17], the reaction presumably proceeds by dehydrogenation of the secondary alcohol,
condensation of the 2-aminocyclohexanol with the newly formed carbonyl compound, and subsequent
dehydrogenation of the iminoalcohol. Further condensation liberates the second equivalent of water
and leads, after an H-shift [13], to the formation of the tetrahydroindole.

ADC was used to synthesize five different tetrahydroindoles 3a–e, three of which (3c–e) were
previously undisclosed compounds. The yields for when non-cyclic secondary alcohols (1a–c) are
employed are similar (74% for 3b, 76% for 3a and 3c) and significantly surpassed by yields for when
alicyclic secondary alcohols 1d and 1e are used. This could potentially result from the β carbon being
a secondary carbon atom, which would lead to a lower rate for side reactions. Overall, the procedure
allows the regioselective synthesis of tetrahydroindoles, which are more challenging to address with
previous methodologies. Furthermore, the only byproducts that are formed in the course of the reaction
are water and dihydrogen; the latter can be considered as especially valuable, rendering the whole
process innately sustainable.

With a reliable synthesis for tetrahydroindoles at our disposal, we were able to investigate
their dehydrogenation to indoles. Using a heterogeneous Pd catalyst (Pd@SiCN), which we
previously employed in the dehydrogenation of octahydrocarbazoles, tetrahydroquinolines, and
octahydroacridines [26], tetrahydroindoles were quantitatively dehydrogenated at a low catalyst
loading of 0.18 mol % of active metal under a steady and slow stream of argon.
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4. Conclusions

In summary, an atom efficient and high yielding new procedure for the synthesis of substituted
tetrahydro-1H-indoles was derived from a recently published procedure for hydrocarbazole
synthesis [26] based on a well-defined catalyst. The synthesis uses sustainable and easily accessible
secondary alcohols and 2-aminocyclohexanol to construct the tetrahydroindoles in 76 to 96% yield
of isolated product. The reaction liberates only water and hydrogen gas as valuable byproducts.
Additionally, indoles can be synthesized from these intermediates by a simple dehydrogenation
procedure using a heterogeneous Pd catalyst to quantitatively yield the tailor-made products.

5. Materials and Methods

5.1. General Procedure for the Synthesis of Tetrahydro-1H-indoles

In a glove box, 2.0 mL of a catalyst stock solution (0.02 mmol, 0.01 M in thf), secondary alcohol
(15.22 mmol, 2 equivalents), 2-amino cyclohexanol (875 mg, 7.61 mmol, 1 equivalent), 10 mL thf,
and KOtBu (943 mg, 8.4 mmol, 1.1 equivalents) were added to a pressure tube and sealed with a
semi-permeable membrane. The mixture was stirred for 22 h at 105 ◦C (oil bath temperature). After
cooling to room temperature, 3 mL water and n-dodecane as internal standard were added. The product
was extracted with diethyl ether (2×) and purified by column chromatography or crystallization.

5.2. General Procedure for the Dehydrogenation Reaction

In a 10 mL Schlenk tube, Pd@SiCN (50 mg, 0.18 mol % active metal), substrate (1.0 mmol), and
0.75 mL diglyme were evacuated and flushed with argon three times. A slight argon flow of 4–6
mL/min was adjusted and the mixture was stirred for 20 h at 180 ◦C (oil bath temperature). After
cooling to room temperature, the catalyst was separated by centrifugation and washed with acetone
twice. The organic phases were combined, and the solvent was removed under reduced pressure
at 60 ◦C, giving the pure product. If required, further purification was achieved by either column
chromatography or crystallization.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/7/8/97/
s1, Characterization of products (3a–e, 4a–e) including NMR spectra, elemental analysis, and mass
spectrometry results.
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