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Abstract: Liquid crystals are among us, in living organisms and in electronic devices, and they
have contributed to the development of our modern society. Traditionally developed by organic
chemists, the field of liquid-crystalline materials is now involving chemists and physicists of all
domains (computational, physical, inorganic, supramolecular, electro-chemistry, polymers, materials,
etc.,). Such diversity in researchers confirms that the field remains highly active and that new
applications can be foreseen in the future. In this review, liquid-crystalline materials developed
around coordination complexes are presented, focusing on those showing thermotropic behavior,
a relatively unexplored family of compounds.
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1. Introduction

Liquid-crystals are known for over a century, and despite being part of our everyday life, basic
research on liquid-crystalline materials remains highly attractive [1]. Indeed, new applications are
emerging, in which the particular properties of liquid-crystals are exploited [2,3]. Accordingly, liquid
crystals incorporating metal-based entities are showing great promises [4–10]. The introduction of
additional intermolecular interactions, such as metal–metal or metal–ligand, into the supramolecular
structure of the liquid-crystalline material, can modulate the properties, and ultimately, provide
new opportunities.

Liquid-crystalline materials are classified into thermotropes and lyotropes [11]. In thermotropic
liquid crystals, the mesophases are induced by the temperature, while in lyotropic liquid-crystals the
mesophases are controlled by the concentrations of the different components in a single or mixture of
solvents. Liquid-crystalline materials found in nature, such as lipids and membranes, are lyotropes.
On the other hand, those involved in electronic devices are more likely to be thermotropes. In the case
of metal-based liquid-crystalline materials, both types can be found in the literature [4–10], and some
can even be amphotropes [11].

Among metal-based liquid-crystalline materials, those exploiting supramolecular coordination
complexes have not yet found a commercial application, however, they are very interesting and they
offer great potentials in biology [12–16] and material sciences [17–19]. Moreover, and despite having
well-established synthetic strategies, the number of papers dealing with supramolecular coordination
complexes as liquid-crystalline promoters remains low. This might be associated to the complexity of
such systems, in which additional interactions are involved, thus increasing the difficulty of predicting
and interpreting the corresponding mesophases. Nevertheless, owing to the development of our
understanding on the molecular organization within mesophases, based on experiences as well as on
new computational models, we should see more of these hybrid supramolecular liquid-crystalline
materials in the future.
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2. Lyotropic Liquid-Crystalline Self-Assembled Coordination Complexes

Incorporation of supramolecular coordination complexes in liquid-crystalline materials was
first explored by Praefcke and Usol’tseva in the early 1990s. The lyomesomorphic behavior
of large metalla-assemblies were showing nematic phases in alkanes [20]. In the case of the
chloro-and bromo-bridged metalla-cycles (Figure 1), the nematic phase was stabilized upon addition
of 2,4,7-trinitrofluorenone (TNF), suggesting intercalation of TNF between the disk-shaped columnar
stacks. Following this initial study, analogous systems built from either palladium or platinum
metal centers were prepared and their liquid-crystalline properties examined [21–25], showing similar
organization in the lyotropic mesophases.
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Figure 1. Early supramolecular coordination complexes showing liquid-crystalline properties [20].

Later on, analogous platinum Schiff base pyridyl type metalla-cycles were synthesized by
MacLachlan and his coworkers [26]. In the series, the 2-hexyldecyl derivative (Figure 2) showed the
most interesting liquid-crystalline properties. In non-polar organic solvents, lyotropic mesophases
were observed for the tetranuclear metalla-cycle. As demonstrated by the authors, a supramolecular
aggregation of individual Pt-based metalla-cycle into columnar arrays was responsible for the
liquid-crystalline properties.
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In a similar manner, Gin and co-workers have prepared dinuclear-Pt mesogenic metalla-cycles
incorporating bis-pyridyl linkers [27]. The hexafluorophosphate salt (Figure 3) possesses a thermotropic
columnar hexagonal (ColH) liquid-crystalline phase, which can be swollen by polar solvents, to generate
a lyotropic liquid-crystalline phase. Upon irradiation, conversion of the azo group to the cis isomer
was observed, thus provoking a disorder in the liquid-crystalline phase. Photo-polymerization of
neighboring metalla-cycles increases the stability of the mesophases, with however, a similar rate of
conversion of the azo groups.
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solvents [27].

Trinuclear gold metalla-cycles have been used to generate columnar liquid-crystalline materials [28].
The presence of six alkyl chains at the periphery of the pyrazolato-gold complex (Figure 4) controls the
formation of columnar stacks in the solid and liquid-crystalline states; Both showing an hexagonal
symmetry. Interestingly, the functional groups (R, R’) can be equivalent or not, thus allowing the
formation of two isomers. The proportion and nature of the two isomers influence the transition
temperatures, and accordingly, the arrangement of the trinuclear assemblies in the lyotropic mesophases.

Inorganics 2020, 8, x 3 of 10 

 

thermotropic columnar hexagonal (ColH) liquid-crystalline phase, which can be swollen by polar 
solvents, to generate a lyotropic liquid-crystalline phase. Upon irradiation, conversion of the azo 
group to the cis isomer was observed, thus provoking a disorder in the liquid-crystalline phase. 
Photo-polymerization of neighboring metalla-cycles increases the stability of the mesophases, with 
however, a similar rate of conversion of the azo groups. 

 

Figure 3. A dinuclear platinum-based metalla-cycle with ColH liquid-crystalline properties in polar 
solvents [27]. 

Trinuclear gold metalla-cycles have been used to generate columnar liquid-crystalline materials 
[28]. The presence of six alkyl chains at the periphery of the pyrazolato-gold complex (Figure 4) 
controls the formation of columnar stacks in the solid and liquid-crystalline states; Both showing an 
hexagonal symmetry. Interestingly, the functional groups (R, R’) can be equivalent or not, thus 
allowing the formation of two isomers. The proportion and nature of the two isomers influence the 
transition temperatures, and accordingly, the arrangement of the trinuclear assemblies in the 
lyotropic mesophases. 

 

Figure 4. Trinuclear pyrazolato-gold metalla-cycles with columnar arrangement [28]. 

Addition of water to discrete septuple columnar stacks can induce lyotropic liquid-crystalline 
mesophases [29]. The columnar stacks were synthesized in solution by the self-assembly of a bis-
pyridyl linker, tris(4-pyridyl)-2,4,6-triazine (tpt), triphenylene, and the palladium complex 
(en)Pd(NO3)2 (en = ethylenediamine), see Scheme 1. Assemblies composed of six bis-pyridyl linkers, 
four tpt panels, twelve (en)Pd corners, and three triphenylene intercalated guests, were isolated. The 
presence of water-soluble side chains on the bis-pyridyl linkers was crucial for the generation of the 
mesophases and for keeping fluidity to the supramolecular system. 

Figure 4. Trinuclear pyrazolato-gold metalla-cycles with columnar arrangement [28].

Addition of water to discrete septuple columnar stacks can induce lyotropic liquid-crystalline
mesophases [29]. The columnar stacks were synthesized in solution by the self-assembly of a bis-pyridyl
linker, tris(4-pyridyl)-2,4,6-triazine (tpt), triphenylene, and the palladium complex (en)Pd(NO3)2

(en = ethylenediamine), see Scheme 1. Assemblies composed of six bis-pyridyl linkers, four tpt panels,
twelve (en)Pd corners, and three triphenylene intercalated guests, were isolated. The presence of
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water-soluble side chains on the bis-pyridyl linkers was crucial for the generation of the mesophases
and for keeping fluidity to the supramolecular system.Inorganics 2020, 8, x 4 of 10 
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3. Thermotropic Liquid-Crystalline Self-Assembled Coordination Complexes

Metal-based clusters have been used as central cores to generate mesomorphic materials.
Functionalization of the peripheral ligands has allowed a bottom-up approach to prepare
liquid-crystalline materials. The choice of the cluster dictates the type of the functionalized ligands
to be used. For the manganese cluster, [Mn12O12(RCO2)16(H2O)4], functionalized carboxylic acid
derivatives are needed (Figure 5A). The Mn12O12 clusters show mesophases with cubic or smectic
phases. The magnetic properties of the cluster are retained in the mesophases, thus providing
magnetic liquid-crystalline materials [30]. Similarly, to insert mesogenic arms to sawhorse-type
dinuclear ruthenium complexes, carboxylic acid derivatives are needed (Figure 5B). In these systems,
the cyanobiphenyl-based poly(arylester) dendron was used to induce mesomorphic properties [31].
Smectic A and nematic phases were observed, according to the generation of the dendrimers.
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metallic-cores [30,31].

In the case of the cupper cluster [Cu4I4], diphenyl-phosphine ligands (Figure 6A) were linked to
the cubic tetrametallic core, thus introducing four mesogenic side-chains [32]. The supramolecular
system shows a smectic A phase from room temperature to 100 ◦C. In the case of the spherical Pd12L24

framework (L = bis-pyridyl ligand), functionalized bis-pyridyl connectors (Figure 6B) were used to
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ensure stability of the Pd12 core, and to insert mesogenic arms [33]. Interestingly, the free ligands show
thermotropic behavior, while the cluster-based systems have lyotropic properties.Inorganics 2020, 8, x 5 of 10 
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Both compounds, the bis-pyridyl linker and the metalla-cycle, possess smectic phases with a 
multilayered organization [37]. 

Figure 6. Functionalized diphenyl-phosphine (A) and bis-pyridyl (B) ligands coordinated to
clusters [32,33].

Rectangular columnar arrangement has been observed for nickel, palladium, and copper
tetranuclear metalla-cycles (Figure 7). In these systems, a large inner cavity (≈9 Å in diameter)
is observed in the metalla-cycle [34]. The isotropic temperature of the metalla-cycles was higher than
the metal free cycle, and well below the temperature of decomposition. The nature of the peripheral
chains and the choice of the metal influence the thermotropic behavior [35]. Moreover, the cavity can
be exploited to accommodate guest molecules, and accordingly, to offer another alternative for fine
tuning the liquid-crystalline properties.
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Bis-pyridyl linkers can also be used to assemble arene-ruthenium metalla-rectangles [36].
Addition of 1,4-di(4-pyridinyl)-benzene poly(arylester) derivative to the dinuclear arene-ruthenium
complex [Ru2(p-cymene)2(donq)][DDS]2 (donq = dihydroxynaphthoquinone, DDS = dodecyl sulfate)
generates a tetranuclear metalla-cycle, isolated as its DDS salt (Scheme 2). The presence of four
dendritic arms bearing cyano-biphenyl end-groups ensures mesomorphic properties above 50 ◦C.
Both compounds, the bis-pyridyl linker and the metalla-cycle, possess smectic phases with a
multilayered organization [37].
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The host-guest chemistry of arene-ruthenium metalla-assemblies is well-established [38,39],
and arene-ruthenium metalla-prisms and metalla-rectangles have been used to encapsulate
pyrenyl-functionalized guests [40]. In the case of the pyrenyl-functionalized dendromesogenic guest
encapsulated in a tetranuclear arene-ruthenium metalla-cycle (Figure 8), thermotropic liquid-crystalline
properties were observed [41]. The guest alone is showing a smectic A phase, while the host-guest
system possesses a cubic phase. The multi-component arrangement is highly segregated, suggesting
a multi-layered structure involving metalla-cycles, dodecyl sulfates, and the side-arms of the
pyrenyl-functionalized dendrons.
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4. Suppression of Liquid-Crystalline Properties by Self-Assembled Coordination Complexes

Encapsulation of guest molecules in metalla-assemblies offers great potentials in molecular
recognition [42], transport [43], and protection of guest molecules [44], as well as in cavity-controlled
reaction (molecular flask) [45]. Moreover, the presence of guest molecules in the cavity of a
supramolecular coordination complex can modify its geometry and properties. Accordingly,
liquid-crystalline behavior can be modulated upon host–guest interactions. Indeed, encapsulation
of pyrenyl-functionalized dendrimers in the cavity of a hexanuclear arene ruthenium metalla-prism
has showed the suppression of the liquid-crystalline properties of the organic compound
(guest) [46]. The pyrenyl-functionalized poly (arylester) dendron (Figure 9A) shows an unidentified
liquid-crystalline behavior, and no cytotoxicity to cancer cells (A2780 and A2780cisR). On the other
hand, the host–guest system is cytotoxic, with IC50 < 3 µM on these two cancer cell lines, with however,
no liquid-crystalline behavior.
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Figure 9. Two pyrenyl-functionalized liquid-crystalline compounds (A,B) showing suppressed
liquid-crystalline properties after encapsulation in a coordination complex [46,47].

Similarly, a porphyrin-based tetragonal prism has been used to encapsulate a
pyrenyl-functionalized guest compound [47]. The pyrenyl derivative (Figure 9B) possesses between
23 and 107 ◦C a smectic A phase. Upon addition of the platinum-based tetragonal prismatic host,
the mesomorphic properties of the guest are lost. However, adding coronene or pyrene as competing
guests, re-established the liquid-crystalline properties of the pyrenyl-functionalized compound,
thus offering a switch-on switch-off control over the liquid-crystalline properties.

5. Conclusions

The field of liquid-crystalline materials is shifting toward more complexed systems, in which
multiple components are used to generate highly organized supramolecular arrangements. These
sophisticated materials are expected to have an impact in various fields, such as in engineering
(molecular electronics, photonics, high mechanical strength fibers, light modulators, lasers), energy
(battery electrolytes), healthcare (artificial membranes, drug delivery, gene therapy), environment
(biocompatible plastics), chemistry (surfactants, detergents, elastomers, gels), separation technology
(sensors), informatics (intelligent switches), catalysis, and others [1–4,48–59].

A pillar of supramolecular chemistry is coordination chemistry [60], and therefore, it is not
surprising to see more and more supramolecular coordination complexes being incorporated within
liquid-crystalline materials. However, as illustrated in this short review, examples dealing with
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thermotropic liquid-crystalline coordination complexes remain scarce. Nevertheless, when considering
the number of active groups in the field of coordination-driven self-assemblies [61–64], and the exciting
applications that can be foreseen for the next generation of liquid-crystalline materials, this trend
should be reversed in a few years.
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