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Abstract: Energy storage is one of the main challenges to address in the near future—in particular
due to the intermittent energy produced by extensive renewable energy production plants. The use
of hydrides for this type of energy storage has many positive aspects. Hydride-based systems consist
of absorption and desorption reactions that are strongly exothermic and endothermic, respectively.
Heat management in the design of hydrogen storage tanks is an important issue, in order to ensure
high-level performance in terms of the kinetics for hydrogen release/uptake and reasonable storage
capacity. When loose powder is used, material in the form of pellets should be considered in order to
avoid detrimental effects including decreased cycling performance. Moreover, sustainable materials
in large-scale hydrogen reactors could be recovered and reused to improve any life cycle analysis
of such systems. For these reasons, magnesium hydride was used in this study, as it is particularly
suitable for hydrogen storage due to its high H2 storage capacity, reversibility and the low costs.
Magnesium hydride was ball-milled in presence of 5 wt % Fe as a catalyst, then compacted with
an uniaxial press after the addition of expanded natural graphite (ENG). The materials underwent
45 cycles in a Sievert’s type apparatus at 310 ◦C and eight bar, in order to study the kinetics and
cycling stability. Scanning electron microscopy was used to investigate microstructural properties
and failure phenomena. Together with Rietveld analysis, X-ray diffraction was performed for phase
identification and structural information. The pellets demonstrated suitable cycling stability in terms
of total hydrogen storage capacity and kinetics.
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1. Introduction

In the near future, energy storage will be one of the main issues in the field of renewable energy
sources (RES). Hence, suitable energy-storage facilities must be developed [1]. For portable devices
and the automotive sector, batteries are currently the best energy-storage solution while for stationary
large-scale applications batteries are no longer viable and other technologies need to be explored.
Another problem correlated to the use of batteries is related to raw material supply highlighting further
the need for alternative energy-storage solutions [2,3]. Hydrogen is an energy vector that could be
used for energy-storage applications—in particular for large-scale storage. Hydrogen can be stored
as a compressed gas in large stationary tanks or underground cavities. Other options include liquid
at low temperatures, or in suitable carriers such as ammonia and liquid organic hydrogen carriers
(LOHCs). However, using compressed hydrogen requires large amounts of energy for the compression
process. Reinforced composite materials must be used when designing the tanks. In addition, in the
case of storing hydrogen in liquid form, vast amounts of energy consumption is required for hydrogen
liquefaction and liquid boil off is inevitable, the system requiring the use of open tanks to avoid harmful
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overpressure [4–7]. Ammonia and liquid organic hydrogen carriers [8–11] have been considered for
hydrogen storage [12,13], but an additional step is required for carrier conversion, thus limiting their
use. Many hydrogen-storage methods have been studied in the past with solid state now emerging
as a serious contender [14]. The main features being considered in the case of solid state hydrogen
storage: storage capacity, both gravimetric and volumetric, reversibility, kinetics of reaction, cycling,
material resources. Concerning hydrogen capacity, complex hydrides can store large quantities of
hydrogen [15–18]. These materials include alanates, amides and borohydrides, however, their poor
kinetics, thermodynamic stability, irreversibility and high decomposition temperatures restrict their
practical application [19–21]. Magnesium hydride is one of the promising hydrogen-storage materials
due to its high abundance, low cost, high energy density (9 MJ/kg Mg), high gravimetric and volumetric
hydrogen capacities, 7.6 wt % H2 and 109 g H2/L, respectively, with reversible hydrogen sorption
kinetics [22–27]. Some attempts to use magnesium-based hydrides for thermal energy storage have
been reported [28–30]. A hindrance in the use of MgH2 as a hydrogen-storage material is its high
thermodynamic stability requiring moderate temperature for desorption (plateau pressure at 553 K is one
bar) and relatively slow kinetics [31,32]. In order to tune sorption kinetics and destabilize magnesium
hydride different approaches have been considered such as nano-confinement [33–35], nanostructuring
by ball milling [36], utilization of catalytic additives such as carbon [37,38], transition metals [39,40]
and transition metal oxides [41,42] or alloying with different transition metal-like Fe [43,44], Co [45],
Ni [46,47]. Mg-based hydrides have been also investigated including LaMg2NiH7 [48], YbMgNiH4 [49],
CaMgNiH4 [50], Na2Mg2FeH8 [51], Yb4Mg4Fe3H22 and Ca4Mg4Fe3H22 [52]. Ball milling helps to
improve the kinetics of magnesium hydrides. It helps to reduce diffusion path lengths for hydrogen,
to reduce particle size and increase of surface area all of which enhances the rates of hydrogen
absorption/desorption. Ball milling induces defects and local imperfections in the matrix increasing
nucleation sites which enhance the rate of hydrogenation of MgH2. Moreover, this process is suitable
to highly disperse a catalyst within the hydride particles [53–55]. Different compounds, in particular
transition metals (Ti, V, Cr, Fe, Co, Ni, Nb) [56–59] and their oxides (TiO2 Fe2O3, Cr2O3, V2O3 and
Nb2O5) [41,42,53,60], are suitable catalysts for MgH2. In particular, Nb2O5 showed enhanced catalytic
performances [61,62]. In previous studies it has been demonstrated that Fe, even in the form of oxides,
acts as a catalyst for MgH2 sorption reactions [56–58,63,64]. Formation of Mg2FeH6, in particular
during long time milling processes and in the case of stoichiometric Fe content, has been demonstrated
and extensively studied [29,65,66].

The use of non-critical raw materials for hydrogen storage can potentially become a serious issue
in the case of large energy-storage facilities and scale up implementation of these technologies. In this
case, magnesium and iron are geographically accessible elements on earth and bulk supply is not
considered an issue in the future. In the case of magnesium, critical aspects related to contingent supply
shortages and vulnerability along the supply chain remain an issue, rather than its availability [67].
Moreover, considering sustainability in a circular economy, the end of life of reactors filled with
MgH2–Fe compounds could be easily managed, as these elements are environmentally compatible
and they could potentially be recovered and reused. In this framework, the suitability of recovering
Mg–Al alloys and chips from magnesium processing for preparing compounds for hydrogen-storage
applications has also been demonstrated [68–70].

Another important aspect for hydrogen storage is the long term cycling stability of these systems.
It has been reported that the direct use of powders inside reactors is unfavorable due to long term
cycling effects with the sintering of powder particles. This problem causes hydrogen-permeability
reduction and consequently the formation of large volumes of inaccessible material in terms of
hydrogen flow. Moreover, because of particle entrainment in the gas flow, tiny powder particles may
obstruct components in the reactor, causing further malfunctions. Hence kinetics and-storage capacity
inefficiency upon with cycling [71]. To overcome these issues the material within the reactor can be
compressed in the form of cylindrical pellets. Aluminum, copper and carbon-based materials can also
be mixed with hydride materials for improved thermal conductivity [71–76]. In fact, since desorption
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and absorption are highly endothermic and exothermic reactions (about 75 kJ/molH2 in the case of
MgH2 [77]), heat must be supplied to and removed from the system in order to allow the reactions to
take place and prevent the slowing down of sorption reactions. It has been reported that carbon-based
compounds not only increase thermal conductivity, but also enhance the mechanical properties of
pellets which are affected by swelling during cycling. Due to cycling, pellets disaggregate with the
formation of cracks and increasing porosity resulting in the formation of loose powder [78–82]. Use of
carbon-based compounds increases mechanical stability and thermal conductivity of pellets resulting
in reduced gravimetric hydrogen capacity [16,71,75,76,83]. Thermal conductivity of MgH2 powders
can be increased from about 0.25 W/mK to more than 4 W/mK when compressed into pellets with
5 wt % ENG [71,83]. Another advantage of pellets is that they can be safely handled with reduced
moisture and oxygen contaminations compared to loose powder [75].

In the present work, hydrogen sorption behavior and microstructural characterization of
MgH2–5wt % Fe–5wt % ENG (MgH2–5Fe–5ENG) pellets were studied. The results demonstrate that
these pellets have suitable properties for the realization of hydrogen-storage reactors including scale
up capabilities.

2. Results and Discussions

X-ray diffraction patterns (XRD) were obtained for MgH2–5Fe–5ENG pellets after 20 and 45 cycles
(Figure 1). Initially, the XRD shows the presence of the γ-MgH2 phase in the as-milled powders.
However, this phase was not detected in the cycled samples. In fact, γ-MgH2 is a metastable phase
formed only due to high energy ball milling and the results show that it disappears after cycling.
The formation of Mg2FeH6 after ball milling and repeated cycles under hydrogen has not been
observed. This compound could likely be formed in trace amounts during cycling under hydrogen
pressure, but its presence was not detected by XRD. In respect to the process conditions used in these
experiments, higher energy and stoichiometric Mg/Fe ratio is required to obtain bulk formation of the
phase Mg2FeH6 [65,66]. XRD patterns and phases present in the MgH2–5Fe–5ENG pellets after 20 and
45 cycles are shown in Figure 1. Rietveld analysis performs the full profile fitting of the pattern and it
refines the crystal structure of the crystalline phases present in the sample. In Figure 1, calculated and
measured XRD patterns are shown as solid red line and as black hollow dots, respectively.
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Table 1 gives structural refinement parameters of different samples obtained by Rietveld analysis
performed using MAUD software. Figure of merits for the refinements with sig < 2% and Rw < 15%
was considered acceptable [84]. It was observed that MgH2 crystallite size with respect to pristine
MgH2, increases by an order of magnitude in the first 20 cycles and this trend slowing down with
further cycling. A similar trend could be observed for Mg, but the opposite is true in the case of MgO
and Fe.

Table 1. Structural refinement parameters of phases present in pristine MgH2 (as-prepared), ball milled
MgH2, MgH2–5Fe–5ENG after 20 and 45 cycles, obtained by Rietveld refinement.

Samples β-MgH2 γ-MgH2 Fe Mg MgO C

MgH2 as prepared
sig = 1.866

Rwp (%) = 11.001

Cell
Parameters

(Å)

a 4.5163 (1) – – 3.2093 (1) 4.2135 (3) –

b – – – – – –

c 3.0208 (1) – – 5.2116 (2) –

Crystallite
size (nm)

1366
(109) – – 641 (91) 83 (3) –

Microstrain 0.0004 (1) – – 0.0003 (1) 0.0165 (2) –

MgH2 milled 10 h
sig = 1.885

Rwp (%) = 11.110

Cell
Parameters

(Å)

a 4.5226 (7) 4.5244 (4) 2.8719 (6) 3.2893 (4) 4.2159 (1) –

b – 5.4269 (5) – – – –

c 3.0262 (8) 4.9838 (5) – 5.2251 (2) – –

Crystallite
size (nm) 15 (1) 6 (1) 98 (5) 27 (6) 99 (5) –

Microstrain 0.0004 (1) 0.0003 (1) 0.0018 (2) 0.0095 (7) 0.0173 (1) –

Cycled 20
sig = 1.888

Rwp (%) = 12.745

Cell
Parameters

(Å)

a 4.5166 (1) – 2.8684 (2) 3.2115 (4) 4.2179 (7) 2.4812 (8)

b – – – – –

c 3.0209 (9) – – 5.2148 (1) – 6.7156 (8)

Crystallite
size (nm) 343 (9) – 81 (11) 113 (39) 53 (1) 72 (4)

Microstrain 0.0004 (1) – 0.0012 (2) 0.0008 (3) 0.0026 (6) 0.0007 (6)

Cycled 45
sig = 1.941

Rwp (%) = 12.682

Cell
Parameters

(Å)

a 4.5169 (1) – 2.8689 (2) 3.2114 (6) 4.2193 (6) 2.4831 (1)

b – – – – – –

c 3.0210 (9) – – 5.2133 (1) – 6.7159 (9)

Crystallite
size (nm) 412 (19) – 52 (6) 220 (5) 13 (1) 76 (6)

Microstrain 0.0004 (1) – 0.0010 (2) 0.0003 (1) 0.0026 (5) 0.0010 (5)

Values in parentheses are estimated standard deviations on the last significant digit.

In Figure 2, the images of the pellets before and after 20 and 45 cycles are shown. It can be seen
that pellets are not heavily damaged by cycling process. The volume variation after 20 and 45 cycles is
about 1.9% and 18.7%, respectively.

The pellets were cycled at 310 ◦C at eight-bar hydrogen pressure during absorption and 1.2 bar
for desorption. Figure 3 shows the kinetics for sorption reactions indicating a slight increase in time
required for desorption after 45 cycles than 20 cycles. This could have been due to MgH2 crystallite
coarsening which tends to stabilize with cycling.
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In order to evaluate the stability due to the cycling of the pellets, wt % vs. t90 is shown in Figure 4.
t90 is the time in minutes to reach the 90 wt % of H2 total capacity. The pellets demonstrated high
stability in terms of hydrogen capacity and cycling kinetics, as the maximum quantity of hydrogen
stored remains constant. A slight increase and decrease of t90 during desorption and absorption
respectively was observed with cycling. In the case of desorption this may be due to the coarsening of
MgH2 crystallites with cycling and for absorption due to the increased porosity of the pellet, as a result
of cycling, as also reported by S. Nachev et al. [78]. A similar trend has been observed for compacted
powders of MgH2 ball milled with Nb2O5 and ENG [79].
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it appears as dark strips. In radial direction ENG seems to be randomly distributed in the matrix of
hydride while in the axial direction it is aligned along the direction perpendicular to the compaction
axis. This microstructural configuration, which has been observed previously [75,81], is particularly
suitable in the case of cylindrical reactors with heat flowing in the radial direction.
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3. Materials and Methods

High purity materials were used for powder and pellet preparation: MgH2 (98%, Alfa Aesar,
Kandel, Germany), iron (Sigma-Aldrich, Darmstadt, Germany), 325 mesh and expanded natural
graphite (ENG, Carbon Lorraine, La Défense, France). Sample preparation was performed following a
procedure similar to that reported previously [79,85]. In order to increase matrix defects and enhance
hydrogen mobility in MgH2, it was ball milled in a SPEX 8000 (SPEX, Metuchen, NJ, USA) with ball to
powder ratio 10:1 for 10 h. Before milling, MgH2 was mixed with 5 wt % of Fe. After milling—in order to
increase thermal conductivity and mechanical stability of the pellets—5 wt % of ENG, previously dried
at 120 ◦C under vacuum, was mixed into the MgH2–5Fe compound by milling for 2 min. A manual
uniaxial press (Specac, Orpington, UK) was used to prepare the pellets. The powder was pressed in a
8 mm diameter die at 600 MPa to prepare pellets of about 3 mm height. A quantity of about 250 mg of
powder was compacted. Sieverts-type apparatus (from Advanced Materials Corporation, Pittsburgh,
PA, USA) was used to study the kinetics and cycling behavior. Briefly, the compound was inserted
in a stainless-steel cylindrical chamber which could be positioned in a cylindrical oven and heated.
The chamber was evacuated in order to remove adsorbed gases and residual moisture present on the
particles surface. Ar was used as the purge gas. The chamber was heated to 120 ◦C under vacuum to
completely remove residual moisture present in the chamber. Successively, the sample was cycled
at 310 ◦C and eight bar hydrogen during absorption and 1.2 bar during desorption. The equipment
monitors pressure variations and records temperature and pressure data. During absorption, every
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time the pressure decreases to a set value, the valve from a calibrated volume opens allowing hydrogen
pressure to remain constant in the sample chamber. In the case of desorption, if the pressure increases
automatically, the evacuation valve opens, and the hydrogen gas is removed maintaining a constant
pressure. The pellets were cycled for 20 and 45 cycles in order to monitor the effects of cycling on
kinetics, and in particular, the samples microstructure. After cycling, the pellets were observed by
a Scanning Electron Microscope, SEM EVO MA15 (Zeiss, Oberkochen, Germany) operated at 20 kV
and equipped with an X-Act silicon drift detector with AZtec analysis software (Oxford Instruments,
Abingdon, UK) for energy dispersive spectroscopy (EDS) analysis. X-ray diffraction (XRD) analysis was
performed on X-ray patterns obtained in a SmartLab diffractometer (Rigaku, Tokyo, Japan) equipped
with a Cu Kα source radiation and a diffracted beam monochromator operated at 40 kV and 30 mA in
Bragg–Brentano geometry. The automatic optics and sample height alignment routines were used to
obtain reliable patterns. Rietveld analysis, which performs a full profile fitting, was done with the help
of MAUD software [84]. Crystallite sizes were obtained for the different phases present in the samples
after cycling. Images of the pellets were acquired with a stereo-microscope SZX12 (Olympus, Tokyo,
Japan) equipped with calibrated digital image acquisition system.

4. Conclusions

The use of cheap, abundant, non-critical and environmentally friendly materials for hydrogen
storage must be taken into consideration for the realization of large-scale facilities. In this work,
the preparation of MgH2 with 5 wt % of Fe and 5 wt % of ENG compacted powders and their hydrogen
sorption behavior are reported. MgH2 was ball milled in presence of Fe which acts as a catalyst for
hydrogen sorption reactions. ENG was added to the mixture in order to enhance thermal conductivity
and mechanical properties. The measurements, performed by means of a Sieverts-type apparatus,
demonstrated how Fe is a suitable catalyst for Mg-based compacted powders. XRD patterns showed
that MgH2 crystallite coarsening rates decreases with cycling, while Fe and MgO crystallite size
decreases. From a microstructural point of view, no important changes were observed and the pellets
demonstrated promising mechanical and hydrogen sorption properties. The concept at the base of
this work is that only after the material has been optimized can the most suitable reactor design
be evaluated.
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