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Abstract: Understanding light-induced ligand exchange processes is key to the design of efficient
light-releasing prodrugs or photochemically driven functional molecules. Previous mechanistic
investigations had highlighted the pivotal role of metal-centered (MC) excited states in the initial
ligand loss step. The question remains whether they are equally important in the subsequent ligand
capture step. This article reports the mechanistic study of direct acetonitrile coordination onto a
3MC state of [Ru(bpy)3]2+, leading to [Ru(bpy)2(κ1-bpy)(NCMe)]2+ in a 3MLCT (metal-to-ligand
charge transfer) state. Coordination of MeCN is indeed accompanied by the decoordination of one
pyridine ring of a bpy ligand. As estimated from Nudged Elastic Band calculations, the energy
barrier along the minimum energy path is 20 kcal/mol. Interestingly, the orbital analysis conducted
along the reaction path has shown that creation of the metallic vacancy can be achieved by reverting
the energetic ordering of key dσ* and bpy-based π* orbitals, resulting in the change of electronic
configuration from 3MC to 3MLCT. The approach of the NCMe lone pair contributes to destabilizing
the dσ* orbital by electrostatic repulsion.

Keywords: ruthenium polypyridine complex; photochemistry; photosolvolysis mechanism;
metal-centered excited states; triplet state reactivity; nudged elastic band; DFT; molecular orbitals

1. Introduction

The photophysics of ruthenium polypyridine compounds is governed by the subtle balance
between the population of two types of triplet excited states of similar energies: metal-to-ligand
charge transfer states (MLCT) and metal-centered states (MC) [1]. 3MLCT states are photoluminescent,
contrary to 3MC states, which quench the luminescence and may lead to ligand loss [2]. Forty years of
spectroscopic studies on this family of compounds have provided a wealth of robust experimental
data, but MC states are spectroscopically “dark” and therefore their theoretical characterization is
essential in the rationalization and the anticipation of photophysical properties. For more than a
decade, we have been able to optimize 3MC excited states [3] and to explore the topology of the lowest
triplet potential energy surface using DFT-based methods [4–9]. Spectacular bond elongations and
angular distortions have been characterized in numerous Ru(II) 3MC states [10–28] and for other
metals, e.g., Ir(III) [29–31]. Our contribution to the field covers photoisomerization mechanisms [32–34]
and photoluminescence quenching mechanisms [35,36], as well as exploratory ruthenium(II) [37,38]
and iron(II) [39–42] photophysics, in a constant dialogue with experimental chemists.

In the course of our theoretical investigations of photosubstitution mechanisms, we have identified
some key 3MC states along the pathways for ligand photorelease, particularly pentacoordinate or
pseudopentacoordinate species [7,8]. In that work, these 3MC states have been considered to be
involved in such mechanisms via intersystem crossing (ISC) through a neighboring minimum energy
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crossing point (MECP), allowing the system to populate an electrophilic, coordinatively unsaturated,
and closed-shell species. The final coordination of a molecule of incoming ligand is thought to be
an efficient process [43–47] and yields a κ1-bound intermediate product that requires the absorption
of a second photon to fully release the departing bidentate ligand [48,49]. However an alternative
pathway can also be envisaged, overall requiring only one photon, namely the direct reaction between
the incoming ligand and the complex in its distorted 3MC state, to form a new complex with triplet
spin multiplicity according to Wigner rules. The aim of this work was therefore to investigate this
type of reactivity through DFT-based methods, computing minimum energy paths using Nudged
Elastic Band calculations and undertaking a thorough orbital analysis along this path. The model
reaction we chose is the approach of an acetonitrile molecule on the previously reported 3MCcis state of
Ru(bpy)3

2+ [50]. This state, repelling the two pyridine fragments of a single bpy ligand, is thought to
be prone to bpy loss, or at least more prone than the classical 3MCtrans state that repels two pyridines
from two different ligands (Figure 1).
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Figure 1. Structures of 3MCtrans and 3MCcis in Ru(bpy)3
2+ (H atoms not shown).

Acetonitrile was selected for its charge neutrality, for being a reactant that bears only one lone pair,
and for being an aprotic and weakly self-associating solvent, that allows us to consider the approach of
a single NCMe molecule as a reasonable model. The aim of this work was to envisage direct NCMe
coordination on the 3MCcis state of Ru(bpy)3

2+ in order to form an intermediate triplet state bearing
one monodentate bpy and one bound acetonitrile ligand (Scheme 1). This process was found to have
an energy barrier of 20 kcal/mol. Analysis of the coordination process from an orbital perspective
has shown that MeCN approach and change in electronic configuration from 3MC to 3MLCT were
intimately related.
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2. Results and Discussion

Working on the photoinduced loss of bidentate ligands, Elliott et al. reported the crystallographic
characterization of intermediate photoproducts of the type trans-[Ru(bpy)(κ2-btz)(κ1-btz)(NCMe)]2+

bearing a singly-bound bitriazolyl (btz) ligand [48,49]. By analogy we have built and optimized
trans-[Ru(bpy)2(κ1-bpy)(NCMe)]2+ in a singlet state, from which an excited state with triplet spin
multiplicity was subsequently optimized by unrestricted DFT. This state is unambiguously of MLCT
electronic nature and was used as endpoint for a minimum energy path calculation. This state contains
a bpy ligand that is a monodentate, κ1-bpy ligand. The exploration of the envisaged chemical reaction
was undertaken starting from the 3MCcis state having an acetonitrile molecule 5 Å away with its lone
pair oriented towards the metal, in the most open quadrant of the complex. Note that NCMe is not
interacting with the [Ru(bpy)3]2+ moiety in this structure, as estimated from its total energy that is
equal to the sum of the fragments’ energies.

At the starting point of the reaction path the complex is in the 3MCcis state. The rationale for this
choice lies in its presumed higher propensity for ligand loss than the 3MCtrans state. This is due to
its peculiar geometry repelling a single bpy ligand and opening a quadrant, allowing a potentially
entering ligand to approach the metal [50]. In the 3MCcis state, two major elongations are found
towards the same bpy ligand (Ru–N5 and Ru–N6, Table 1), the opposite quadrant opens up to 121◦

(Figure 1), and the Mulliken spin population on ruthenium is 1.7. At the end point, the complex
contains one monodentate bpy ligand (the pyridine ring containing N5 is rotated out of plane and
Ru–N5 = 3.59 Å); the Ru–N6 distance is standard and the two bonds towards the formally anionic
bpy ligand are the shortest (Ru–N3 and Ru–N4). The 3MLCT nature of this state is illustrated by its
Mulliken spin population on ruthenium, which is 0.9 (the other spin residing on a bpy ligand).

Table 1. Atom numbering and Ru–N distances (Å) at the start (3MC + MeCN) and end (3MLCT) points
of the computed reaction path.

Ru–N 3MC +MeCN 3MLCT
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Ru–N1 2.135 2.118
Ru–N2 2.080 2.110
Ru–N3 2.078 2.049
Ru–N4 2.177 2.057
Ru–N5 2.530 3.593
Ru–N6 2.384 2.132

Ru–NCMe 5.000 2.055

Minimum energy paths (MEPs) can be efficiently computed using the Nudged Elastic Band
method [51,52], which discretizes the reaction path into a series of points, called beads. The initial path
consists in a series of single point energy calculations along a geometry interpolation, which we perform
using the image dependent pair potential (IDPP) method [53]. Subsequently each intermediate bead is
minimized using path gradient and tangent information, until convergence to the MEP. The energy
gap between the two endpoints is 17 kcal/mol, and a first estimate of the energy barrier for the reaction
is 18 kcal/mol, as shown on Figure 2. The energy profile for this reaction appears as having a very
moderate slope up to bead 15 (Ru–NCMe distance of 2.77 Å), after which the energy suddenly rises by
about 14 kcal/mol at bead 18.
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Figure 2. Minimum energy path (blue) and Mulliken spin population on Ru (red) for the coordination
of acetonitrile on the 3MC state from Nudged Elastic Band calculations.

A sudden drop in the Mulliken spin population on ruthenium is apparent between bead 17
and bead 18, signifying a change between MC and MLCT character. Thus, a second nudged elastic
band (NEB) calculation was performed to refine this region. For simplicity the beads in this second
calculation have been numbered with intermediate values 17.25, 17.50, and 17.75 (Figure 3).
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Figure 3. Minimum energy path (blue) and Mulliken spin population on Ru (red) between beads 17
and 18 of the reaction path.

The switch between MC and MLCT states here occurs between beads 17.50 and 17.75, providing a
refined energy barrier of 20 kcal/mol. Wiberg bond indices (WBIs) have been computed at all geometries
along the reaction path, and have been used to quantify the Ru–N interactions. In the starting 3MC
structure, two Ru–N bonds are significantly elongated as a result of the population of an antibonding
dσ* orbital, namely Ru–N5 (2.53 Å) and Ru–N6 (2.38 Å). The corresponding WBIs are consequently
the lowest, 0.19 and 0.26 respectively (Figure 4). Bonds trans to these, Ru–N4 and Ru–N1, are slightly
elongated with WBIs of 0.36 and 0.41. The two remaining bonds, Ru–N2 and Ru–N3, display WBIs
that are similar to the ones found in the ground state, i.e., 0.44. Notably the gradual drop in the Ru–N5
WBI along the reaction path is paralleled by a gradual increase in the Ru–NCMe WBI, until bead 17.50
where this latter WBI doubles to reach 0.45 in the 3MLCT state. At the endpoint, the highest two WBIs
are the ones to the nitrogen atoms of the formally anionic bpy ligand, N3 (0.51) and N4 (0.54), Ru–N3,
and Ru–N4 being the shortest bonds (Table 1). The intermediate zone (between beads 7–14), where
WBIs towards departing and incoming ligands are both low, illustrates the fact that the complex gets
pentacoordinated and is stabilized by two successive weak Ru–N interactions along this path.
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Figure 4. Evolution of WBIs along the reaction path. The MC–MLCT transition region is highlighted
in yellow.

In order to allow the Ru–NCMe bond to form, a low-lying vacancy should be identified on the
metal with appropriate symmetry and orientation to enable significant overlap with the incoming
nitrogen lone pair. The crucial orbitals in this process are thus: (i) the metallic dσ* orbitals, (ii) the
NCMe lone pair that eventually evolves to a Ru–NCMe dative bond, and (iii) the bpy-based π* orbital
that will be singly occupied in the final 3MLCT state. The eigenvalues of these four molecular orbitals
(MOs) are plotted against bead number on Figure 5. All lines are broken between beads 17.50 and
17.75 to signify the rupture in the correlation diagram, e.g., when the NCMe lone pair is replaced by a
bonding Ru–NCMe interaction. At this very point along the path, we propose that the electrostatic
repulsion between the NCMe lone pair and the singly occupied dσ*1 orbital (as illustrated by the
gradual destabilization of dσ*1 from bead 12 onwards) is such that the dσ*1 is destabilized to a point
where its energy is higher than that of the bpy π* orbital. As a result, the electron that was in dσ*1 in the
MC state is transferred to the bpy π* orbital, thus producing an MLCT state. This change in electronic
configuration is what allows the total energy of the system to decrease towards the endpoint of the
path. In addition, the quasi invariance in the energy of dσ*2 confirms that it is always nonbonding
towards the incoming ligand.
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Figure 5. Selected orbital eigenvalues along the reaction path. The MC–MLCT transition region is
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A close inspection of these crucial orbitals, at beads 17.50 and 17.75 (Figure 6), reveals that the
formation of the Ru–NCMe bond is accompanied by a repolarization of both dσ* orbitals, as seen for
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instance in the disappearance of the Ru–N6 antibonding interaction in dσ*2’. The interaction of dσ*1
with the NCMe lone pair produces two new orbitals: the Ru–NCMe bond and the dσ*1’ antibond
(Figure S1). In this system, coordination of the incoming ligand is accompanied by the change of
electronic state nature, from 3MC to 3MLCT, which has a vacant dσ*1’ (as stated in the introduction,
an alternative to create a metallic vacancy is spin crossing to a closed-shell pentacoordinate singlet
state [8,54], which would also vacate the required dσ* orbital).
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3. Computational Details and Methods

Geometry optimizations were performed without symmetry with Orca [55] using the B3LYP
functional [56,57], a relativistic small core pseudopotential on Ru (SD28) [58], the def2-TZVP(-f) basis
set [59], and the empirical D3 dispersion correction [60,61]. Solvent effects were modelled as the SMD
polarizable continuum [62]. The restricted Kohn–Sham formalism was used for ground states, while
its unrestricted analogue was used for triplet states. SCF convergence was achieved using the DIIS
algorithm followed by a semi-quadratic SOSCF converger. Frequency calculations were run at the
same level of theory and the absence of imaginary frequencies ascertained the nature of these points as
minima. Molecular orbitals were viewed using Gabedit [63]. Mulliken spin densities on Ru were used
as a straightforward descriptor of the electronic nature of the triplet excited state (~0.9 for a 3MLCT
state, ~1.8 for a 3MC state). Orbital analysis was systematically undertaken to view the localization of
the unpaired electrons.

The 3MLCT–3MC minimum energy paths were optimized with the nudged elastic band (NEB)
method [51,52] using a python module developed in the Clancy group [64] that is interfaced with Orca.
The convergence criterion was set to 0.03 eV/Å. A 20-frame initial path was prepared by interpolating
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start and end geometries using the IDPP method [53]. The geometries were previously processed
using lab-developed programs to minimize the discrepancy between start and end geometries. These
calculations were performed at the same level of theory as all the geometry optimizations. Convergence
of the MEP was achieved using a combination of FIRE and BFGS algorithms.

4. Conclusions

In this work, we have envisaged the direct addition of an acetonitrile molecule on the 3MCcis

state of [Ru(bpy)3]2+, a state that we had proposed to consider as potentially photoreactive [50].
Nudged elastic band calculations have provided an energy barrier of 20 kcal/mol for this model
reaction, significantly higher than the energy barrier involved in the spin crossing process towards
a pentacoordinate ground state species [54] (note that the former pathway requires a single photon
excitation, whereas the latter requires a second photon to fully release the departing bidentate ligand).
The orbital analysis we have conducted along the reaction path has enabled us to describe the chemical
reaction and the MC–MLCT transition. The change in electronic nature, from 3MC to 3MLCT, is
concomitant to the approach of the NCMe lone pair and triggers the interaction between the newly
formed metallic vacancy and the NCMe lone pair. In this view, the 3MC state itself can be seen as unable
to bind MeCN. It is noteworthy that the approach of an incoming nucleophile is able to perturbate
the metal complex so as to modify the electronic nature of its excited state. These results offer an
interesting glimpse of processes that could be involved in excited state reaction mechanisms under
specific experimental conditions such as pulsed irradiation. We are currently extending this work to
the mechanistic study of the subsequent steps, i.e., κ1-bpy ligand loss.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/8/2/15/s1,
Figure S1: MO diagram schematizing the interaction between the metallic fragment in the 3MC state and the
approaching acetonitrile ligand; Figure S2: MO diagram at selected points along the reaction path; Cartesian
coordinates of the 20 beads along the minimum energy path.
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