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Abstract: This paper reviews synthetic concepts for the functionalization of various inorganic
nanoparticles with a shell consisting of organic polymers and possible applications of the resulting
hybrid materials. A polymer coating can make inorganic nanoparticles soluble in many solvents as
individual particles and not only do low molar mass solvents become suitable, but also polymers as a
solid matrix. In the case of shape anisotropic particles (e.g., rods) a spontaneous self-organization
(parallel orientation) of the nanoparticles can be achieved, because of the formation of lyotropic
liquid crystalline phases. They offer the possibility to orient the shape of anisotropic nanoparticles
macroscopically in external electric fields. At least, such hybrid materials allow semiconducting
inorganic nanoparticles to be dispersed in functional polymer matrices, like films of semiconducting
polymers. Thereby, the inorganic nanoparticles can be electrically connected and addressed by the
polymer matrix. This allows LEDs to be prepared with highly fluorescent inorganic nanoparticles
(quantum dots) as chromophores. Recent works have aimed to further improve these fascinating
light emitting materials.

Keywords: polymer coated nanoparticles; solubility; self-organization; fluorescent nanoparticles;
dispersion in polymers; quantum dot LEDs

1. Introduction

The use of nano-objects in the real macroscopic world requires—besides their preparation—also
their macroscopic processing, organisation, and orientation. This is because any device in the “real
world” is in the micro- to milli-meter range and thus contains many nanoparticles. This requires the
homogeneous dispersion of the nano-objects in solvents (aqueous or non-aqueous water based) or
organic polymeric materials. However, this is often hindered by massive segregation of the nano-objects
from the surrounding matrix [1]. Thus, concepts to improve the compatibility of nano-objects with the
surrounding matrix become important (see Section 2). In addition, self-organisation of the nanometre
sized objects is attractive in dispersing them in a controlled way and to orient anisotropic nanoparticles
in a uniform way. This can be realised, if the nanoparticles become individually dispersed in a mobile
matrix allowing their self-organization (as compared to agglomerates, in which the multitude of
interactions hinder a reorientation). It can be achieved in colloidal crystals [2–4] and lyotropic (solvent
induced) liquid crystals (LC) [5,6] (see Section 3). At least the topic of a “functional coating” becomes
important and will be discussed in Section 4 (QD-LEDs), where the focus is put on semiconducting
properties. In combination with semiconducting polymers as a matrix it is then possible to address the
nanoparticles electrically and to prepare quantum dot LEDs (that are polymeric LEDs with quantum
dots as chromophores). So, altogether concepts to achieve a solubilization of nanoparticles (Section 2),
their organization (Section 3), and the successive electrical addressing of fluorescent nanoparticles
(Section 4) are the topic of this review.
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2. Concepts for the Functionalization of Inorganic Nanoparticles to Improve Their Solubility
and Processability

In this context it is advisable to start by considering the general concepts for the stabilization of
colloids in a matrix [7–10]. This relies on either electrical charges or a steric stabilization to overcome
the strong adhesion forces among the nanoparticles [11–13] (see Figure 1). These concepts are, in
addition, already used in “nearly any” synthesis of nanoparticles, which is performed in the presence
of detergents, to prevent aggregation and to stabilize the nanoparticles formed. In this context an
electrostatic stabilization is most often used, which can result from an excess of oxides or cations
in the nanoparticle. However, for applications in combination with electric fields (discussed later)
it is advisable to use steric stabilization and not electrostatic stabilization to avoid water as solvent.
In addition, electrostatic stabilization is less effective for a dispersion in polymeric materials. This
makes concepts for a steric stabilization, like “hairy rods” most attractive. Even though this concept
was developed for stiff main chain liquid crystalline polymers, it is also applicable for inorganic
nanoobjects. [14] The concept implies, that a stiff insoluble core is solubilised by linking long chains
(“hair”) onto its surface, which are soluble in the solvent. As “hair” are often used alkyl chains [15–17],
which can stabilize sphere- or rod-like shaped nanoparticles. They are also in use for delaminated clay
fragments [18,19], which possess a plate-like shape.
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Figure 1. Schematic drawing of spherical and shape-anisotropic nanoparticles (left) and ways of
stabilization by ionic and steric stabilization [8,10,20,21].

Polymeric surfactants [7,9,18–20,22,23] offer here advantages for the solubilisation of inorganic
nano-objects because polymers themselves are objects of nanometre dimensions (for comparison: the
alkyl chain in a detergent may possess 18 C–C bonds, while a polymer chain of a degree of 100 has
200 C–C bonds, which bring it, even in the coiled conformation, to the size of many nms). Therefore,
polymers for steric stabilization match the size of inorganic nano-objects much better than simple alkyl
chains. Thus, polymer coated surfaces are stabilised sterically up to a distance of nanometres and not
only for angstroms as with alkyl chains. In addition, polymer chains have, in the coiled conformation,
a lot of free volume inside, which can be filled by solvent. This large interaction volume between
solvent and functionalised surface leads to good solubility in solvents for the polymer.

As result it is possible to disperse inorganic nanoparticles as individual objects in various solvents,
which are good solvents for the polymers used for coating [20,24], which applies also to the use of
compatible polymers. It is thus possible to disperse them homogeneously in polymer films as “solid”
solvents. The preparation of highly concentrated solutions also becomes possible. This can finally
open the door for the incorporation of fluorescent nanoparticles in semiconducting polymers and for
their electrical addressing [24,25].

To coat inorganic nanoparticles with a dense and stable layer of polymer chains two strategies
exist, which are either grafting to or grafting from [26–35] (see Figure 2). From a polymer perspective
the grafting to approach offers here the advantage that the polymer chains used for grafting can
be characterized very well. By the use of multiple anchor groups it becomes possible to avoid
adsorption–desorption equilibria and to achieve a stable fixation.
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Figure 2. The coating of nanoparticles can either be done by a grafting from (a) or a grafting to (b)
process. In the last case the ligand exchange is shown; reproduced with permission from [24]; published
by Wiley-VCH, 2015.

Recently a block copolymer synthesis via RAFT polymerisation in combination with a reactive
ester intermediate to introduce the anchor groups attracted much interest [20,21] (see Figure 3). It can
be used to introduce different anchor structures to the same block-copolymer, which are suitable for
grafting to oxidic or chalkogenidic nanoparticles [36,37]. This is important because oxidic nanoparticles
attract much attention because of their magnetic or semiconducting properties, whereas nanoparticles
based on selenides (often with a sulfidic shell) are prominent as fluorescent nanoparticles. In addition
the new polymers can be designed to have multiple anchor units for surface attachment. Through the
multi-dentate fixation of the polymer onto the surface adsorption–desorption equilibria reactions are
avoided. In this way not only sphere- or rod-like nanoparticles, but also more complex structures like
tetrapods [38] have been successfully coated and dispersed.
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Such inorganic nanoparticles coated with polymer chains can be dispersed as indivual
nano-objects [7,9,39,40]. This can be seen e.g., from AFM- and TEM-measurements of this films
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(see Figure 4A). AFM makes it thereby also possible to differentiate between the inorganic core
(hard) and the softer polymer corona and to prove thus directly the core–shell structure of the hybrid
materials. The direct proof that there are individually dispersed nano-objects comes mostly from light
scattering experiments [39,41] (see Figure 4B). Here both dynamic light scattering, which measures
the hydrodynamic radius, and static light scattering, which measures the radius of gyration, give
similar results, which correspond to the size of the individual object. Some differences between both
measuring technics are, however, to be expected, because the hydrodynamic radius (dynamic light
scattering) includes the size of the swollen polymer brushes, whereas the radius of gyration is strongly
dominated by the inorganic core, which has a higher refractive index increment (see [39] for a detailed
discussion).
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During the last decade, remarkable progress has been made in colloidal synthesis [42–46]
and the polymer coating [47–52] of nanoparticles with well controlled shapes, which range from
simple dots [53–57] to rods [58–61] and to more complicated structures such as tetrapods [62–65],
hyperbranched structures [66–68], and wires [69–71] among others. For most of these geometrical
structures the solubilization enhancing effect of a polymer coating has already been shown. A
large variety of semiconductor materials, e.g., metal sulfides [11–13], metal selenides [72–74], metal
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tellurides [75,76], metal oxides [77–79] and lead halide perowskites [80] have been investigated in
relation to this topic. They can be coated using the anchor groups presented in Figure 3.

Depending on the solubility of the polymer chains it is also possible to prepare nano-particle
solutions, which change their solubility reversible with temperature [39] (see Figure 5a). Alternatively,
it becomes possible to include photocleavable links to the polymer chain and to split-off the solubilizing
polymer chains on irradiation [81] (see Figure 5b). The solubility can also be changed after preparation of
the solution by external stimuli. This might be especially interesting for the dispersion of nanoparticles
in polymer matrices, because their viscosity is high and thus solution and dissolution is slow. It is thus
possible to stabilize intermediate states of dispersion like finely percolated structures [24], which are
interesting for photovoltaics (see below for a more detailed discussion)
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Figure 5. Ways to destabilize polymer coated nanoparticles with an external stimulus and to
induce a coagulation. (a) Nanoparticles coated with a polymer with an lower critical solution
temperature coagulate during temperature increase [39]; (b) Nanoparticles coated with polymers with
a photosensitive group with in the polymer backbone allow it to split-off the stabilizing polymer
corona [81]; lower part reproduced with permission of [81], published by Wiley-VCH, 2014.

Semiconducting polymers (mostly conjugated polymers) and fluorescent inorganic nanoparticles
have been investigated separately for some time. The combination of both materials is, however,
highly interesting as it can lead to nanocomposites whose properties are much superior to those of
their constituents [82]. These hybrid materials are being considered in several applications, mostly in
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light emitting diodes and photovoltaic cells. Latest reviews about this topic can be found in [83–87].
Semiconducting hybrid systems offer the potential to combine the benefits of inorganic nanocrystals
(NCs) such as tunable optical properties, optical stability, and high electron mobility [82,86] with
the advantages of semiconducting polymers like light weight, flexibility, ink jet printing, roll-to-roll
production, solvent processability over a large area and with low costs [83,88–92]. Because it is possible
to tune the optical band gap of NCs very accurate from the ultraviolet to the near-infrared, they can
be used to prepare very bright quantum dot light emitting diodes (QLEDs, see Section 4) or solar
cells consisting of p-type donor polymers and n-type acceptor inorganic nanoparticles which absorb a
significant range of the solar spectrum.

Controlling the morphology is a crucial aspect for optoelectronic applications. For QLEDs a
homogenously dispersed structure is most desirable. Therefore, intimate contact between NCs and
polymers (no demixing) is essential. Preparation techniques such as kinetic entrapment [93] and in
situ polymerization [94] are known to generally stabilize highly dispersed states in nanocomposites.

Solar cells need a percolated structure to facilitate the macroscopic transport of holes and electrons
to the appropriate electrode, even though they benefit from improved dispersion (short exciton diffusion
lengths). To prepare a percolated structure a controlled demixing is required, which must be stopped
(to prevent further coarsening) before the demixed structures become larger than several hundred nms
(see [23] for discussion). In this context the concepts discussed in the context of Figure 5 [39,81] are
suitable to induce a demixing.

3. Controlling Orientation, Dispersion, and Percolation of Inorganic Nanoparticles in a
Polymer Matrix

As discussed in the first paragraph, polymer chains can be used to cover inorganic nanoparticles,
which makes them well soluble as individual objects and allows the preparation of highly concentrated
solutions even in a polymer matrix. Through this, it is possible to fill polymeric materials with a high
concentration of inorganics [7,39–41,95]. Furthermore, even functional inorganic nanoparticles can be
combined with a functional semiconducting polymer matrix.

In the case of shape anisotropic inorganic nano-objects their good solubility can also give rise to the
formation of liquid crystalline phases. That is because above certain “critical” concentrations [20,21,39]
the shape anisotropic nano-objects act as mesogens and self-organize [6,7]. This can be also attractive
for opto-electronic applications. Generally, the formation of lyotropic liquid crystals [14,96,97] from
rigid-rod objects as result of form-anisotropy is well understood [98,99] and such phases offer the
potential to orient anisotropic nanoparticles.

Historically lyotropic LC-phases in water have been observed for various rigid-rod objects like
V2O5 ribbons [100,101], tobacco mosaic viruses [102], and TiO2 nanorods [103,104]. Aqueous solutions
offer the opportunity to stabilise nano-objects electrostatically by surface charges. Thus lyotropic
(solvent induced) liquid crystalline phases from V2O5 solutions in water have been known for a long
time [22] under proper pH and salt conditions. However, the charges used to stabilise the system
require water as solvent and disable any electronic use. Therefore, ion free mineral liquid crystals from
uncharged anisotropic nanoparticles in organic solvents are attractive and can be made following the
concept of grafting to polymer chains to the anisotropic object.

Using this concept, smectic and nematic phases could be prepared recently in highly concentrated
solutions of TiO2 nanorods [20], which were coated with block copolymers (see Figure 6). Polarizing
optical microscopy showed birefringent, mobile textures, while TEM measurements of samples
prepared from concentrated solutions showed the parallel orientation of the rod like nanoparticles,
which are the shape anisotropic mesogens of the system. This work has been extended to various
other semi conducting nano-rods from oxidic and chalkogenidic semiconductors like TiO2, ZnO,
SnO2 or CdSe, ZnS, and CdTe [21], which required different anchor blocks (see Figure 3). This
concept was also applied successfully to induce a liquid crystalline orientation in dispersions of carbon
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nanotubes [105–107]. A comparable ordering of plate like nanoparticles can also be obtained and is
used to make artificial nacre [95].
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Generally, the possibility to orient shape anisotropic nanoparticles and especially semiconducting
ones is interesting for materials science and especially for photovoltaics [108–111]. In this
context Alivisatos and co-workers [15] could recently show that rod-shaped nanoparticles oriented
perpendicular to the electrodes improving the efficiency of solar cells [112]. In their case they had
to orient the semiconducting inorganic nanorods however by a complicated growing process, away
from the substrate. Liquid-crystalline phases, would allow an orientation of the whole phase. For
non-properly coated nanoparticles, it is, however, difficult to obtain the high concentrations needed to
obtain them. The situation is, however, different for the systems and the polymer coating discussed here.

Recently it was found that polymer coated TiO2 nanorods could be solubilised and oriented
also in an organic hole conducting matrix where they orient into a liquid crystalline phase by
self-assembly [113]. Moreover, it is possible to orient this liquid crystalline phase uniformly in an
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external electric field. [114] Thus it becomes possible to orient the central part of the liquid crystalline
phase perpendicular to the electrodes (see Figure 7, lower part). The resulting structures have the
correct orientation for an organic photovoltaics setup, in which the oriented TiO2 nanorods transport
the electrons to one electrode while the holes migrate through the organic hole conducting material.
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Two more aspects should be mentioned in the context of the electrical coupling of inorganic
nanoparticles and an organic matrix. First, by coating an inorganic nanoparticle with a semiconducting
polymer, a p-n junction is established on the level of the core-shell nano-object (see Figure 8). This allows
charge transfer and charge migration on the nano-level to be studied [115–117]. So it became possible
to determine charge separation and charge transport under irradiation for polymer coated hybrid
systems [115–117]. Figure 8 shows, how the polymer corona charges positively under irradiation,
while the inorganic core from TiO2 accumulates electrons (negative charges).
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Figure 8. Schematic presentation of Kelvin-probe AFM measurements (left), which allow a
determination of charging of nanoobjects and measurements (right), which prove the transfer of
electrons from the coated semiconducting polymer to the TiO2 nanoparticles (see [115–117]); right part
reproduced with permission of [115], published by the ACS, 2010.

Second, the polymers grafted to the inorganic nanoparticle can be a precursor for graphitic material,
into which they decompose during heating (see Figure 9a). This allows the coating of redoxactive
inorganic nanoparticles with graphite or, if the process is done in a composite, the dispersion of
many nanoparticles in a graphitic matrix. This can be beneficial to electrically address nanoparticular
electrode materials in lithium or sodium ion batteries [118–120] (see Figure 9) where it helps to improve
the electrode performance.

So, to summarize the result of Section 3: The high solubility in “classical” solvents and polymers
(as solid solvents), which can be achieved with the polymer coating of inorganic nanoparticles, allows
liquid crystalline phased rom shape anisotropic nanoparticles to be prepared easily. These phases
can then be used to orient the nanoparticles macroscopically by an external electric field. In addition,
the coating with functional polymers makes an electrical coupling to an external matrix possible, this
opens up the possibility for electric addressing of fluorescent inorganic nanoparticles like quantum
dots (QDs). This will be discussed in Section 4.
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Figure 9. Coating of TiO2 nano-rods with block copolymers with a graphitable polyacrylonitrile block
and their conversion into a nanocomposite with nano-rods embedded in graphite [118] (a) and the use of
this nanocomposite as anode (b); reproduced with permission of [118], published by Wiley-VCH, 2013.

4. QD-LEDs

Generally, in semiconducting nanoparticles the electronic properties (e.g., band gap) depend
on their size. This is especially obvious for fluorescent nanoparticles, for which the wavelength
of fluorescence varies with size. Such fluorescent nanoparticles are called quantum dots (QDs).
They possess often a high fluorescence efficiency. So, they are attractive as chromophores in LEDs.
Thus recently, quantum dot based light emitting diodes (QLEDs) became competitive alternatives to
organic light emitting diodes (OLEDs) in terms of colour purity, luminescence intensities, and external
quantum efficiencies (EQEs) [121–123] The narrow emission profile, the high stability of quantum
dots (QDs), the high photoluminescence quantum yields (PL QYs), and the easily tunable emission
wavelengths make them attractive as quantum dot LEDs (QLED) [124]. By understanding the basic
device physics and optimizing the device structure it was possible to improve the device performance
and efficiency of QLEDs, so much that they can be compared to organic LEDs [122,125–133]. For this
study semiconducting polymer hybrids QD, which allow a homogeneous dispersion in the matrix of a
semiconducting polymer and an efficient charge transport into the QDs were very helpful [116,134–136].

Chemical structures of a combination of semiconducting polymers and QDs are presented in
Figure 10.
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Figure 10. Block copolymers based on polyphenylene-vinylene [116] (A), polythiophene [136] (B) and
polytriarylamine v [134] (C) and an anchor block for oxidic or sulfidic quantum dots.

The strong affinity between the surface of the inorganic part and the anchoring block of the
polymers leads to a dense coating of the QDs and this allows a good dispersion (uniform distribution)
within the semiconducting polymer matrix (Figure 11a). In addition to that the electro-luminescence
observed in such hybrid systems is that of the pure QD (Figure 11b). This proves that all excimers
formed from the positive and negative charges in the polymer matrix reach the QD for emission. With
these systems it becomes possible to study the influence of the morphology of hybrid emission layers
(e.g., QD concentrations or mean inter-dot distances) simply by varying the mixing ratios between the
QDs and semiconducting polymers (see Figure 11) [24,135]. Using different semiconducting polymers,
the charge carrier transport through the semiconducting polymers can be adapted. This allows us
to raise the mean QD-to-QD distance or the thickness of the QD active layers without declining the
charge transport properties [137,138].

In this context it becomes also attractive to use shape anisotropic fluorescent nanoparticles (see
above) to optimize emission [139].

To optimize such QLEDS concerning the external quantum efficiency (EQE), CdSe/CdxZn1−xS
core/shell Type-I heterostructured QDs with a core radius of 2.0 nm and a total radius of 4.5 nm were
used. Such a structure confines both hole and electron wave functions within the CdSe core. In addition,
this specific type of QD was extensively used in previous QLED and QD-semiconducting polymer
hybrid studies [127,138]. For further improvement it is necessary to consider the band gap alignment
as presented in Figure 12. Crucial for QLEDS with CdSe QDs are especially their low HOMO and
LUMO values. They make it, on one hand, difficult to transport positive charges (holes) into the QD
and lead, on the other hand, to an easy overcharging of the QDs with electrons. This general problem
can be reduced either by optimizing the setup and the injection layers [140,141], or, in the case of the
homogeneous dispersion in bulk, by lowering the HOMO level of the conductive polymers grafted to
the QDs [24,137,138]. Figure 12 shows the energetic situation (band gap position of the sublayers in
the QLED) together with some polymer structures recently synthesized to optimize the transport of
positive and negative charges.
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Figure 11. CdSe QDs as light emitting material in a matrix of semiconducting polymer for the
preparation of an QLED; (a) dispersibility as viewed from the top and the side [135] (note the
homogeneous dispersion of the polymer coated hybrids); (b) electroluminescence from 3 hybrid
systems (QH1 to QH3, see ref. for assignment); they are identical to the electroluminescence of the pure
QDs; reproduced with permission of [135], published by Wiley-VCH, 2009.
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Figure 12. Scheme of the band gap alignment in an QLED with inverted device architecture (left)
as well as 3 new monomers for the preparation of a semiconducting blockcopolymer; see [138] for
more details.

Recently the significance of the morphology of QD emission layer on the device performance
was studied in a systematic comparison [25] and it could be shown that the homogeneous dispersion
of QDs, as it can be obtained with hybrid systems, is advantageous. For this purpose, QD emission
layers of different morphologies consisting of QD-only films, QD/semiconductor polymer blends or
QD-semiconducting polymer hybrids, were compared (see Figure 13). The optoelectronic performance
of QLEDs demonstrates that the hybridization of QDs with semiconducting polymers significantly
enhances the emission efficiency of QD emitters and this can be explained by (i) the improved charge
carrier balance concerning the QDs and (ii) the optimized morphology. Pure blends suffer from their
inhomogeneous structure due to segregation of QDs and polymer (see also Figure 11). Thus, in parts
of the film the charges will never meet a QD, while in others the situation resembles QD-only films.
QD-only films are, however, very fragile and cannot be expanded in thickness; they bring the QDs
in close proximity to each other, which increases the electronic coupling between the QDs and leads
to quenching. Thus, the efficiency of the QD emission layer can be increased by increasing the mean
inter-dot distance as happens naturally in the hybrid QD emission layers. This oppresses the quenching
between QDs. So, QD-semiconducting polymer hybrid emission layers benefit from both aspects and
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show a substantially enhanced device efficiency (peak EQE of 5.6%) and brightness (peak luminance of
21,707 cd m−2) [25] compared to the cases of QD-only (2.0% and 16,843 cd m−2) or physically blended
QD/polymer emission layers (1.7% and 4207 cd m−2).
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Figure 13. Results of the comparison of CdSe QLEDs with a single layer of fluorescent QDs (left,
reference) as well as polymer coated hybrids and blends of unfunctionalized QDs and polymer; see [25]
for more details; reproduced with permission of [25], published by Wiley-VCH, 2016.

Such hybrid structures can also be made from InP QDs (see Figure 14). Such QDs have found
a lot of interest in circumventing the use of toxic Cd in CdSe. From the chemical side it is relatively
easy to coat such InP QDs with semiconducting polymers, because InP quantum dots themselves are
usually coated with ZnSe/S as inorganic shell to stabilize the InP core [127]. Therefore, the chemistry
needed to graft polymers to them is identical to the established CdSe QD, which uses the same shell
material (Figure 14a). In this case successful grafting, homogeneous dispersion of the QDs, and an
improved external quantum efficiency could also be demonstrated. The electroluminescence is again
identical to that of QD-only devices (Figure 14b).

Quiet recently some new concepts to improve the performance of QD-LEDs by the use of polymer
hybrids were introduced. This concept starts with the idea, that the QDs act as chromophores in the
semiconducting matrix, which is needed for charge transport. Usually the need to localize the charges
(positive and negative) inside the chromophores for excimer formation requires that the QDs have
a lower band gap than the matrix. However, under these conditions they will naturally act as traps,
reduce the charge carrier mobility [142], and worsen charge transport and effectivity. Now there is a
possibility to circumvent this problem. It requires the blocking of charge transfer, because in this way
the creation of traps can be eliminated. The transfer of energy from the matrix (excimer formation
within the semiconductor) to the chromophore can then still be done by Foerster transfer [142]. This
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concept could be realized recently [142] (see Figure 15). It was possible by coating of the CdSe QDs
with polystyrene. Polystyrene has such a large band gap so that neither electrons nor holes can
easily cross a thin shell of it. So, the CdSe QDs no longer act as traps, which improves the charge
transport in the matrix of the semiconducting polymer. Furthermore, it leads to a voltage independent
electroluminescence spectrum of the quantum dots.

Inorganics 2019, 7, x FOR PEER REVIEW 14 of 22 

 

usually coated with ZnSe/S as inorganic shell to stabilize the InP core [127]. Therefore, the chemistry 

needed to graft polymers to them is identical to the established CdSe QD, which uses the same shell 

material (Figure 14a). In this case successful grafting, homogeneous dispersion of the QDs, and an 

improved external quantum efficiency could also be demonstrated. The electroluminescence is again 

identical to that of QD-only devices (Figure 14b). 

 

Figure 14. Structure of InP QDs coated with a ZnSeS shell (a) as well as the electroluminescence of 

QLEDs (b) prepared from such QDs after coating with a semiconducting polymer (a block copolymer 

from M2 in Figure 12). 

Quiet recently some new concepts to improve the performance of QD-LEDs by the use of 

polymer hybrids were introduced. This concept starts with the idea, that the QDs act as 

chromophores in the semiconducting matrix, which is needed for charge transport. Usually the need 

to localize the charges (positive and negative) inside the chromophores for excimer formation 

requires that the QDs have a lower band gap than the matrix. However, under these conditions they 

will naturally act as traps, reduce the charge carrier mobility [142], and worsen charge transport and 

effectivity. Now there is a possibility to circumvent this problem. It requires the blocking of charge 

transfer, because in this way the creation of traps can be eliminated. The transfer of energy from the 

matrix (excimer formation within the semiconductor) to the chromophore can then still be done by 

Foerster transfer [142]. This concept could be realized recently [142] (see Figure 15). It was possible 

by coating of the CdSe QDs with polystyrene. Polystyrene has such a large band gap so that neither 

electrons nor holes can easily cross a thin shell of it. So, the CdSe QDs no longer act as traps, which 

improves the charge transport in the matrix of the semiconducting polymer. Furthermore, it leads to 

a voltage independent electroluminescence spectrum of the quantum dots. 

Figure 14. Structure of InP QDs coated with a ZnSeS shell (a) as well as the electroluminescence of
QLEDs (b) prepared from such QDs after coating with a semiconducting polymer (a block copolymer
from M2 in Figure 12).

Inorganics 2019, 7, x FOR PEER REVIEW 15 of 22 

 

 

Figure 15. Schematic representation (a) of the general concept of preventing traps for charges by 

placing fluorescent guests inside a semiconducting polymer; coating the QD with a thin polystyrene 

shell (see energy diagram in (b)) can block the transfer of charges to the QD; the transfer of energy 

from the semiconducting matrix to the QD can, however, still proceed via Foerster transfer. The 

resulting electroluminescence (c) is voltage independent. See [142] for more information. 

5. Summary 

This paper summarizes recent work on the preparation of inorganic–organic hybrids from a 

materials perspective. For this purpose, it presents, at first, concepts to improve the solubility (or 

more broadly, the compatibility) of inorganic nanoparticles in organic solvents or polymers as matrix. 

It has been shown that with a proper polymer coating it is possible to dissolve (disperse) the 

nanoparticles as individual objects and to modify this,-later on, with external stimuli. The dispersion 

as individual objects becomes thereby not only possible in solvents, but also in polymers (as solid 

solvents) and even in highly functional, semiconducting polymers. 

Starting with good solubility (compatibility) two further aspects are discussed. The possibility 

to prepare highly concentrated solutions of shape anisotropic nano-objects make it easy to obtain 

lyotroic liquid crystalline phases. They also allow a macroscopic orientation of the shape anisotropic 

nano-objects. 

Alternatively, semiconducting inorganic nanoparticles can be electrically connected to a 

polymer matrix. This is advantageous for energy storage in batteries and it allows polymer LEDs to 

be prepared with highly fluorescent inorganic nano-particles (QDs) as chromophore. Recent works 

have aimed to further improve these fascinating light emitting materials. 

Funding: Most of the research of the author -in relation to this topic- was funded by the German Science 

Fundation, DFG (IRTG 1404) 

Acknowledgments: Dominik Fuchs is thanked for helping in the preparation of this manuscript.  

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Vaia, R.A.; Wagner, H.D. Framework for nanocomposites. Mater. Today 2004, 7, 32–37, doi:10.1016/S1369-

7021(04)00506-1. 

2. Bolhuis, P.G.; Kofke, D.A. Monte carlo study of freezing of polydisperse hard spheres. Phys. Rev. E Stat. 

Phys. Plasmas Fluids Relat. Interdiscip. Top. 1996, 54, 634–643, doi:10.1103/PhysRevE.54.634. 

3. Bartlett, P.; Warren, P.B. Reentrant melting in polydispersed hard spheres. Phys. Rev. Lett. 1999, 82, 1979–

Figure 15. Schematic representation (a) of the general concept of preventing traps for charges by
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5. Summary

This paper summarizes recent work on the preparation of inorganic–organic hybrids from a
materials perspective. For this purpose, it presents, at first, concepts to improve the solubility (or more
broadly, the compatibility) of inorganic nanoparticles in organic solvents or polymers as matrix. It has
been shown that with a proper polymer coating it is possible to dissolve (disperse) the nanoparticles as
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individual objects and to modify this,-later on, with external stimuli. The dispersion as individual
objects becomes thereby not only possible in solvents, but also in polymers (as solid solvents) and even
in highly functional, semiconducting polymers.

Starting with good solubility (compatibility) two further aspects are discussed. The possibility to
prepare highly concentrated solutions of shape anisotropic nano-objects make it easy to obtain
lyotroic liquid crystalline phases. They also allow a macroscopic orientation of the shape
anisotropic nano-objects.

Alternatively, semiconducting inorganic nanoparticles can be electrically connected to a polymer
matrix. This is advantageous for energy storage in batteries and it allows polymer LEDs to be prepared
with highly fluorescent inorganic nano-particles (QDs) as chromophore. Recent works have aimed to
further improve these fascinating light emitting materials.
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