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Abstract: The aim of this study was to evaluate the structural conformations of three clear aligner
systems, Eon®, SureSmile®, and Clarity®, and compare them with the most commonly used system,
Invisalign®. Clear aligner samples from Invisalign®, Eon®, SureSmile®, and Clarity® were cut into
5 × 5 mm squares and exposed to artificial saliva for 2 weeks. The specimens were then subjected to
a Vickers hardness test by applying three separate indentations with a 25 gf load for 15 s. Hardness
was calculated using the following formula: Vickers hardness number = 1.854 (F/D2). Fourier
transform infrared spectroscopy (FTIR) analysis was performed, with a diamond hemisphere and
infrared beam being allowed to pass through each specimen. A mid-infrared range from 4000 to
375 cm−1 was recorded. The samples were also evaluated using scanning electron microscopy
(SEM) combined with energy-dispersive X-ray microanalysis spectroscopy at different magnifications.
No statistically significant differences were observed between the included systems with regard to
hardness. All systems showed a polyurethane-based material, as illustrated by the FTIR analysis.
Some structural variations were noted in the Invisalign® system, which had a more homogeneous
architecture. Statistically significant differences in the carbon weights were found among the systems.
The four systems presented comparable hardness levels. Mild molecular composition differences
were found, but all systems had the similarity of being composed of a polyurethane-based material.
Carbon and oxygen were the main elements, as they were located in all studied clear aligners. The
SEM analysis revealed that Invisalign® had a smoother surface than the other three systems. All
included clear aligners had similar characteristics with minimal differences, providing a wide variety
of options for clinical orthodontic treatment according to patients’ demands.

Keywords: Clear Aligner Appliances; Fourier transform infrared spectroscopy; Vickers hardness;
scanning electron microscopy; EDX-microanalysis

1. Introduction

Since the late 1990s, invisible tooth correction technology has been established as an
alternative to conventional fixed orthodontic treatment. A wide variety of clear aligner
systems are commercially available worldwide. Each manufacturing company asserts its
own production material to have superior clinical effectiveness with improved characteris-
tics [1–3]. Align Technology is considered the leading company in the clear aligner market,
producing the world’s most advanced clear aligner system (Invisalign®) from SmartTrack
material [4]. Meanwhile, Eon® Holdings, established in 2011, designs and manufactures
clear removable aligners with a special form of polyurethane [5]. In 2018, 3M™ launched
their own clear aligner system called Clarity®, made from durable and virtually invisible
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material [6]. Lastly, SureSmile® aligners were designed by Dentsply-Sirona in 2019. They
are produced from Essix plastic, which is a thermoformed polyurethane material [7].

Although most invisible aligners are polyurethane thermosetting polymeric products,
some variations exist among different companies. These differences are attributed to
processing variations in the manufacturing techniques that incorporate various additives
and dimensional characteristics [8].

The oral cavity is considered a unique environment because of the presence of oral
flora and its byproducts. Hence, clear appliances’ exposure and prolonged contact with
the intraoral environment (saliva, enzymes, bacteria, and bacterial byproducts), various
temperatures, and pH concentrations as well as trauma caused by speech, swallowing, and
bruxism may adversely affect the composition of the material and subsequently result in
surface alterations [9,10].

Thavarajah and Thennukonda (2015) reported surface and molecular changes in
clear aligner systems. The structural changes of the materials were dependent on the
characteristics and composition of the outer monolayer [11]. Modification of the surface
and properties of the material can enhance the longevity of the appliance, including aging
of the polymeric material, contributing to changes in mechanical properties, such as friction
and super-elasticity.

It was previously reported that the absorption of liquids can cause major structural
alterations of polyurethane, inducing a plasticizing effect and a subsequent decrease in crack
resistance [12]. Previous studies have concluded that exposure to the oral environment leads
to morphological, structural, and compositional changes that in turn affect the mechanical
properties of dental polymers.

Hardness is a mechanical property that indicates the ability of a material surface
to withstand local deformation, and it is measured by applying a certain load for a spe-
cific time using a micro-hardness tester. Vickers indenters have been used as a standard
method for material characterization because they are inexpensive, simple, and allow
for non-destructive analysis [13]. On the basis of previous investigations, the hardness
of a polymeric material has been found to be sensitive to residual monomer content in
addition to material thickness [14,15]. Hence, the thickness of polymeric materials plays a
role in force delivery, and its effect on the deflection amount and structural characteristics
may also produce force delivery changes. In 2004, Shuster and his colleagues reported a
significant increase in aligner stiffness after intraoral exposure, attributed to chewing forces
and salivary enzymes [9].

To the best of our knowledge, the material properties of the Eon®, Clarity®, and
SureSmile® systems have not been previously investigated. This raises the following
question: do different clear aligners’ materials have similar characteristics in relation to
structural conformation? Therefore, the aim of this study was to compare the structural
conformation of three different clear aligner systems (Eon®, SureSmile®, and Clarity®) with
the most commonly used system, Invisalign®. Our null hypothesis was that there would
be no statistically significant differences in the structural conformation among the studied
variables of the four systems.

2. Materials and Methods

Characterization of Specimens: Maxillary and mandibular clear aligners from all four
included systems (Invisalign®, Eon®, SureSmile®, and Clarity®) were cut into 5 × 5 mm
squares. The samples were exposed to freshly prepared artificial saliva with pH = 6.7
and incubated in laboratory glass dishes for 2 weeks at 37 ◦C to simulate the intraoral
aging process.

All specimens were then subjected to the tests described below.

2.1. Vickers Indenter

Each specimen was mounted in a plastic mold using an orthodontic plaster to fa-
cilitate the indentation process. The microhardness was tested using a Vickers indenter
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(INNOVATEST, FALCON 450, Deutschland GmbH) by applying a 25 gf load for 15 s. Three
indentations were made at the center of each specimen. The indentations were approxi-
mately 100 µm apart. The size of each indentation was measured using a microscope. The
Vickers hardness number (VHN) was calculated using the following formula:

VHN = 1.854(F/D2)

where F is the applied load measured in kilogram-force and D2 is the area of the indentation
measured in square millimeters.

2.2. Fourier Transform Infrared Spectroscopy

The Fourier Transform Infrared (FTIR) spectra of the four clear aligner systems were
recorded using an Alpha spectrophotometer (Bruker, Germany) equipped with a platinum
attenuated total reflection module and a diamond hemisphere. Instrument control and data
recording and processing were performed using OPUS version 7.8 (Bruker Optik GmbH,
Germany). The flat portion of the small samples was placed on the sample holder touching
the diamond hemisphere, and the infrared (IR) beam was allowed to pass through the
diamond hemisphere to create at least one reflectance from the surface of contact with the
specimen. The data were recorded in the mid-infrared range of 4000 to 375 cm−1 with a
spectral resolution of 2 cm−1. The software recorded the percentage of transmittance with
changing wavenumbers to provide the infrared spectra.

2.3. Scanning Electron Microscopy Combined with an Energy-Dispersive X-ray Microanalysis

The surface alterations of the clear aligner samples (5 × 5 mm squares) were observed
using scanning electron microscopy (SEM) (Carl Zeiss SMT Ltd., Cambridge, UK). The
samples were sputter-coated with gold, and images were taken at different magnifications.
A low EHT voltage (5 kV) was used for imaging. A silicon drift energy dispersive X-ray
(EDX) detector (UltraDry) (Thermo Fisher Scientific, Madison, WI, USA) was used to
assess the elemental composition of the morphological alterations. Elemental microanalysis
was conducted with a 10 kV accelerating voltage, 500 X original magnification, a 300 s
acquisition time, and 5% dead time. Quantitative analysis of weight percentages (% wt) of
the probed elements was conducted using the “Phi-Rho-Z” matrix correction algorithm
using NSS version 3.0 software (Thermo Fisher Scientific, Madison, WI, USA) [9,13,16,17].

Statistical Analysis

Quantitative data obtained from the evaluation of the clear aligner hardness and EDX
microanalysis were tabulated and analyzed using the Statistical Package for the Social
Sciences (SPSS) software (version 26.0; IBM Inc., Chicago, IL, USA). All assessments were
performed by one examiner and repeated twice (average values were used) to confirm the
reliability, which was tested using the paired t-test. One-way analysis of variance (ANOVA)
and Tukey post hoc tests were performed to analyze the differences among the clear aligner
systems (Invisalign®, Eon®, SureSmile®, and Clarity®) in terms of hardness. The chi-square
test was used to examine differences in the elemental compositions of the included samples.
Results were considered statistically significant at p ≤ 0.05.

3. Results
3.1. Micro-Hardness

Vickers hardness data presented comparable values with no statistically significant
differences (p > 0.05) among the four included systems, as shown in Table 1.
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Table 1. Micro-hardness comparison of the different clear aligner systems via one-way ANOVA and
Tukey post hoc tests.

System Mean ± SD F-Test p-Value
95% Confidence Interval Multiple Comparisons

(Post Hoc Tukey HSD)

Lower
Bound

Upper
Bound Invisalign® Eon® SureSmile® Clarity®

Invisalign® 5.163 ± 0.440

2.449 0.138

4.071 6.255 1 0.143 0.994 0.872
Eon® 4.642 ± 0.188 4.176 5.108 0.143 1 0.200 0.382

SureSmile® 5.111 ± 0.164 4.703 5.519 0.994 0.200 1 0.955
Clarity® 5.003 ± 0.122 4.699 5.307 0.872 0.382 0.955 1

3.2. Fourier Transform Infrared Spectroscopy (FTIR)

Among the four included systems, only the Invisalign® samples presented the charac-
teristic peak of N-H at 3318 cm−1 and the N-H band at 1525 cm−1; however, these peaks
were not detected in the Eon®, SureSmile®, or Clarity® samples. The peaks of all four
systems were at 2852 cm−1 and 2939 cm−1, corresponding to C-H symmetric and asym-
metric stretching vibrations, respectively. In addition, a C=O peak observed at 1699 cm−1,
in addition to a peak at 1413 cm−1, corresponded to the CH2 detected in all samples. The
peaks appearing at 1218 cm−1 belonged to the C-O stretching of the ester group in all four
samples, which is usually observed in the polyurethane spectrum (Figures 1 and 2).
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3.3. SEM and EDX

SEM analysis of the Invisalign® samples (Figure 3) revealed a homogeneous and dense
surface with slightly elevated areas. Impurities were detected as magnification increased.
Microcracks were only apparent at higher magnification (30 K). By contrast, the Eon®

system (Figure 4) displayed an imperfect rough surface that was filled with irregularities,
presenting as grooves, elevations, and depressions of different sizes and shapes with
adhered particles. Increased magnification confirmed the irregular and nonhomogeneous
structure of the sample. Figure 5 demonstrates the rough, porous surface of the SureSmile®

system with multiple grooves and elevations. The porosity of the surface was clearly
illustrated at a magnification of 10–30 K. Multiple irregular depressed areas were also
observed within the porous background. Lastly, Clarity® scans showed a nonhomogeneous
surface configuration with dispersed uneven areas with multiple elevations, depressions,
and attached particles. At 10 K magnification, spherical particles and irregularly shaped
depressions were readily detected. At higher magnifications (20 and 30 K), extensive
roundish defects of different layers indicated imperfect architecture, as shown in Figure 6.
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EDX analysis revealed numerous elements, as illustrated in Table 2. Most importantly,
carbon and oxygen were present in all four samples. Nitrogen was detected only in
Invisalign®, whereas mercury was detected in Eon®. We found 0.02% and 0.36% fluorine
in Eon® and SureSmile®, respectively. Minute amounts of sodium and chlorine were found
in SureSmile®. Statistical analysis showed that the amount of carbon was significantly
different among the four systems (p = 0.012). However, the percentages of oxygen were
similar (p-value > 0.05) in all systems (Table 3).

Table 2. Elemental composition and weight of each system (EDX microanalysis).

System Element Atom Shell
(Location) Element Weight in %

Invisalign®
Carbon

K
39.52

Oxygen 14.13
Nitrogen 46.36

Eon®

Carbon
K

61.54
Oxygen 21.13
Fluorine 0.02
Mercury M 17.31

SureSmile®

Carbon

K

72.78
Oxygen 24.20
Fluorine 0.36
Sodium 1.75
Chlorine 0.90

Clarity® Carbon
K

69.92
Oxygen 30.08

Table 3. Chi-square analysis of the main elements presented in all four systems.

System Element Element Weight in % Chi-Square p-Value

Invisalign®

C

39.52

10.886 0.012 *Eon® 61.54
SureSmile® 72.78

Clarity® 69.92

Invisalign®

O

14.13

5.966 0.113Eon® 21.13
SureSmile® 24.2

Clarity® 30.08

* Statistically significant, p < 0.05.

4. Discussion

The present study evaluated the structural differences of the Eon®, SureSmile®,
and Clarity® clear aligner systems in comparison to the most commonly used system,
Invisalign®, using a Vickers indenter, FTIR spectroscopy, and SEM. To the best of our
knowledge, the physical and chemical characteristics of Eon®, SureSmile®, and Clarity®

have not been previously reported.

4.1. Micro-Hardness

Hardness is the mechanical property of a material’s resistance to a certain load (in-
dentation or penetration). This property can be influenced by several factors, such as the
thickness of the material, thermoforming process, polymer structure, and polymerization
process. The Vickers indenter was the method of choice for the polymeric material utilized
in this experiment [13,18,19]. The Vickers hardness results clearly showed that all tested
systems had similar hardness values, as confirmed by the absence of statistically significant
differences among the four clear aligner systems (Table 1). In contrast to the similarities
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in hardness found in our study, an older investigation reported the superior hardness of
Invisalign® compared with the other included systems [20].

Invisalign® is the only previously investigated system, and the studies in question
included controversial data regarding aging and hardness. Two previous studies concluded
an increased aligner hardness after intraoral aging of the retrieved sample [9,21]. On the
other hand, Bradley et al. reported a lower hardness value after intraoral exposure [22].

4.2. FTIR Spectroscopy

FTIR analysis of Invisalign® Eon®, SureSmile®, and Clarity® revealed comparable
spectral profiles on the surfaces of the included samples. The confirmed peaks of the ester
group were regularly observed in the polyurethane spectrum for all four systems studied.
Our findings are in agreement with recent investigations in which the authors identified
a polyurethane-based material of the tested clear aligner samples from the Invisalign®

system [20,23,24]. Some mild molecular differences, possibly attributed to the variable
molecular composition among the manufacturing companies, were noted. Hence, the
characteristic peaks of N-H at 3318 cm−1 and 1525 cm−1 were found only in the Invisalign®

sample, in accordance with multiple reports by researchers in the literature [20,22–24].

4.3. SEM and EDX

Invisalign® presented superior structures under the SEM, with a smoother and less
defective surface. The other three systems showed a comparable architecture, presenting
some degree of impurities, irregularities, and adherent particles on their surfaces. Among
the four systems, SureSmile® was the most porous. In 2021, an SEM characterization study
of two generations of clear aligners revealed that polymeric materials used in clear aligner
fabrication presented chemical stability even after accelerated aging in the laboratory.
Most of the reported changes were related to the intraoral usage of the aligners by the
patients [17].

The EDX analysis showed that the two main elements (carbon and oxygen) were
present in all four systems. These elements constituted the majority of the weight percent-
ages. Statistical analysis illustrated a statistically significant difference in the carbon weight
among the four systems, with the highest percentage found in SureSmile® (72.78%) and the
lowest percentage found in Invisalign® (39.52%). For oxygen, no statistically significant
differences were observed among the systems. Other elements have also been identified
in particular systems. For instance, the presence of nitrogen in Invisalign® is considered
a characteristic feature that has long been reported in the literature [23,24]. The current
experimental FTIR data of the Invisalign® sample coincided with the EDX in reporting
nitrogen, which was lacking in the other systems. Negligible percentages of fluorine were
found in Eon® and SureSmile®, which can be considered beneficial if implemented for
the construction of clear aligners in the form of fluoride compounds (sodium fluoride or
sodium fluorosilicate). The sodium and chlorine found in SureSmile® were mostly related
to the immersion solution of the sample (artificial saliva). Similarly, a previous study re-
ported a chlorine element via EDX analysis, relating its presence to the disinfectant solution
used to clean aligners in their experiment [10]. Previous investigations of the Invisalign®

product have reported elemental composition changes with decreased carbon amounts and
the presence of calcium and phosphorus after intraoral exposure [9,25]. Nevertheless, a
considerable amount (17.31%) of mercury was identified only in the Eon® sample, which
may contribute to unfavorable biological effects. Tremendous effort has been made since
the 1990s to investigate the adverse effects of mercury from dental materials, particularly
amalgam fillings. Mercury is a heavy metal known for its toxicity, which depends on the
concentration and administration route. Various pathological conditions, including gin-
givitis, allergic sensitivity, neurological disorders, cardiovascular diseases, and hormonal
imbalance have been documented from mercury toxicity [26–28]. Further investigation
is required to clarify the presence of mercury and its concentration in the clear aligner
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material. Lastly, the literature currently present on the subject has mainly focused on
Invisalign; in this study, other aligners were also evaluated and compared with the former.

5. Conclusions

The four included systems, Invisalign®, Eon®, SureSmile®, and Clarity®, presented
comparable levels of hardness. Some degree of molecular composition differences was
presented among the systems; nevertheless, they were all made of a polyurethane-based
material. Carbon and oxygen were the main fundamental elements of the studied clear
aligners, with nitrogen uniquely present in only the Invisalign® samples. Lastly, when
the sample surfaces were evaluated under SEM, Invisalign® had a smoother and more
homogenous structure than the other three systems. In general, all included clear aligners
had similar characteristics with minimal differences, providing a wide variety of options
for clinical orthodontic treatment according to patients’ demands.
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