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Abstract: This work aimed to evaluate the effect of Semaphorin 4D (SEMA4D) signaling through
Plexin B1 on the vasculogenic differentiation of dental pulp stem cells. We assessed the protein
expression of SEMA4D and Plexin B1 in dental pulp stem cells (DPSC) from permanent human
teeth and stem cells from human exfoliated deciduous (SHED) teeth using Western blots. Their
expression in human dental pulp tissues and DPSC-engineered dental pulps was determined using
immunofluorescence. We then exposed dental pulp stem cells to recombinant human SEMA4D
(rhSEMA4D), evaluated the expression of endothelial cell differentiation markers, and assessed the
vasculogenic potential of rhSEMA4D using an in vitro sprouting assay. Lastly, Plexin B1 was silenced
to ascertain its role in SEMA4D-mediated vasculogenic differentiation. We found that SEMA4D and
Plexin B1 are expressed in DPSC, SHED, and human dental pulp tissues. rhSEMA4D (25–100 ng/mL)
induced the expression of endothelial markers, i.e., vascular endothelial growth factor receptor
(VEGFR)-2, cluster of differentiation (CD)-31, and tyrosine kinase with immunoglobulin-like and
EGF-like domains (Tie)-2, in dental pulp stem cells and promoted capillary-like sprouting in vitro
(p < 0.05). Furthermore, Plexin B1 silencing abrogated the vasculogenic differentiation of dental pulp
stem cells and significantly inhibited capillary sprouting upon exposure to rhSEMA4D. Collectively,
these data provide evidence that SEMA4D induces vasculogenic differentiation of dental pulp stem
cells through Plexin B1 signaling.
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1. Introduction

More than five million children and adolescents in the United States experience
dental infections and trauma annually, which could lead to pulp necrosis. Deep caries in
developing permanent teeth account for approximately 7% of all dental pulp necrosis cases.
Furthermore, pulp necrosis subsequently develops in approximately 27% to 80% of children
and adolescents exposed to oral trauma [1,2]. Conventional endodontic treatment has been
the preferred choice for managing teeth with pulpal and periradicular pathosis for nearly a
century [3]. Although this approach preserves natural teeth, it does not fully restore the
physiological functions of the dental pulp, such as pulp repair through mineralization,
innate immunity, and the sensation of occlusal pressure and pain—factors vital for the
long-term survival of teeth. Furthermore, its effectiveness, particularly in relation to the
treatment of immature necrotic permanent teeth, has been subject to scrutiny [4,5]. These
teeth present distinct complications due to their open apices and thin root walls [6–8].
Conventional treatment, i.e., apexification, leads to a loss of vitality in teeth, disruption
of root development, and increased susceptibility to root fractures following secondary
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trauma [2]. Therefore, the pursuit of a biologically driven strategy that supports pulp
vitality in immature teeth and promotes continued root development may reinforce the
root structure and avert premature tooth loss [3].

The concept of pulp tissue regeneration, which serves as the cornerstone for regen-
erative endodontics, was originally introduced by Nygaard-Ostby in the 1960s [9]. Sub-
sequently, in 2004, Banchs and Trope proposed a protocol to promote the growth of new
soft tissue within the pulp space of infected root canals, after thorough debridement and
mechanical creation of blood clot [9–12]. This technique, particularly when combined with
platelet-rich plasma and fibrin, has been shown to enhance the outcomes of immature
permanent teeth treatment [13]. Nevertheless, the reliable induction of an appropriate
blood clot through over-instrumentation of the canals remains a challenge [14]. Fur-
thermore, achieving consistent radiographic evidence of apical closure or enhancing the
strength/length of the root structure has proven variable [1,13]. Notably, the term pulp
revascularization has been referenced in the context of regenerative endodontic procedures.
However, it should be emphasized that regenerative endodontics requires much more than
reestablishing vascularity [9]. Although revascularization is an essential prerequisite for
pulp regeneration, a regenerated pulp necessitates odontoblasts, nociceptors, nerve fibers,
interstitial fibroblasts, blood vessels, and stem cells to enable replacement of terminally
differentiated pulp cells [12,13]. Tissue engineering strategies involving the transplantation
of stem cells seeded in scaffolds into the pulp chamber have been an important area of
research [7,15].

Preclinical animal studies have demonstrated the capacity of dental stem cells to
regenerate the dentin–pulp complex [16,17]. However, a key challenge in dental pulp tissue
engineering success is the rapid development of functional local microvascular networks
that ensure an adequate supply of nutrients and oxygen to cells involved in the tissue
regeneration process and the newly formed tissue [18–20]. Within the field of regenerative
dentistry, this is challenged by the anatomical restraint of the pulpal space and the fact that
all vascularization must access the root canal through the apical foramen network [21]. As a
result, the implementation of techniques that enhance vascularization, such as incorporating
cells with high angiogenic potential or endothelial progenitor cells into the transplant, is
crucial for the success of dental pulp tissue regeneration [22,23]. Leveraging the endothelial
differentiation potential of DPSC, it is possible to induce angiogenic characteristics in these
cells before their implantation into the root canal. This approach could potentially expedite
the process of vascularization during pulp regeneration [24].

Semaphorins are a family of glycoproteins initially identified as axonal guiding
molecules during the development of the nervous system [25,26]. Interestingly, membrane-
bound SEMA4D was reported to have a potent proangiogenic activity in vitro and in vivo
upon binding to Plexin B1 in endothelial cells [27]. Numerous studies have been investigat-
ing the role of SEMA4D in promoting cancer angiogenesis and the role of SEMA4D/Plexin
B1 signaling in enhancing tumor vascularization [28–31]. However, their effect on dental
pulp stem cells remains unclear. In this study, we evaluated the effect of SEMA4D on the
vasculogenic differentiation of dental pulp stem cells. We hypothesized that Plexin B1
regulates SEMA4D-induced vasculogenic differentiation of dental pulp stem cells.

2. Materials and Methods
2.1. Cell Culture

DPSC (Lonza) and SHED (gift from Songtao Shi) cells were cultured in α-minimum
essential medium (Invitrogen, Carlsbad, CA, USA) supplemented with 15% fetal bovine
serum (FBS, Invitrogen) and 1% penicillin/streptomycin (Invitrogen) at 37 ◦C and 5% CO2.
When cells reached 80% confluency, they were passed and seeded in 60 mm tissue culture
plates. After 24 h, cells were treated with recombinant human SEMA4D (rhSEMA4D; ACRO
Biosystems, Newark, DE, USA) at concentrations of 0, 25, 50 and 100 ng/mL for 7 days.
Human dermal microvascular endothelial cells (HDMEC; Lonza, Walkersville, MD, USA)
were cultured in Endothelial Growth Medium2-MV (EGM2-MV; Lonza) supplemented
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with 5% FBS (Invitrogen) and 1% penicillin/streptomycin to be used as positive controls.
The culture medium was changed every 2–3 days in all experiments.

2.2. Western Blot

We collected pulp tissues from extracted non-carious human third molars. We also
retrieved DPSC, SHED, and HDMEC from cell culture flasks at 80% confluency. Cells and
pulp tissues were lysed in 1% NP-40 buffer. Then, the proteins were electrophoresed in
SDS-polyacrylamide gel and transferred to nitrocellulose membranes. The membranes
were incubated overnight at 4 ◦C with anti-human SEMA4D (Bioss Inc., Woburn, MA,
USA), anti-human Plexin B1, or anti-human β-actin antibody conjugated with horseradish
peroxidase (HRP) (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA). To verify the
endothelial differentiation, we incubated the membranes with the following primary
antibodies: rabbit anti-human vascular endothelial growth factor receptor 1 or 2 (VEGFR1,
VEGFR2), anti-human Tie2, or a mouse anti-human CD31 (Santa Cruz Biotechnology Inc.).
The next day, membranes were incubated with affinity-purified secondary antibodies
conjugated with HRP (Jackson Laboratories, West Grove, PA, USA). Lastly, the proteins
were visualized using SuperSignal West Pico chemiluminescent substrate (Thermo Fisher
Scientific, Rockford, IL, USA).

2.3. Tooth Slice/Scaffold Model of Dental Pulp Tissue Engineering

To generate dental pulp-like tissues from DPSCs, we used the tooth slice/scaffold
method, as we have described [32]. Briefly, the pulp tissue was carefully removed from
1.3 mm thick tooth slices obtained from extracted non-carious human third molars. The
pulp chamber was filled with a porogen (salt) and poly-L-lactic acid (Boehringer Ingelheim,
Germany) dissolved in chloroform. Approximately 6 × 105 DPSC cells were suspended in
a 1:1 mixture of Matrigel (BD Biosciences, Bedford, MA, USA) and culture medium, and
were then seeded in each tooth slice/scaffold that was transplanted into the subcutaneous
space of the dorsum of severe combined immunodeficient mice (CB.17 SCID; Charles
River, Wilmington, MA, USA). After 3 weeks, tooth slices/scaffolds were retrieved, fixed,
demineralized and prepared for histological analyses.

2.4. Immunofluorescence

For normal pulp tissue controls, non-carious human third molars extracted for or-
thodontic reasons were fixed in 10% formalin solution. Alternatively, tooth slices/scaffolds
containing the engineered pulp were fixed in 10% buffered formalin and then deminer-
alized. Specimens were dehydrated, embedded in paraffin blocks, and sliced into 5 µm
thick sections. The histological sections were deparaffinized and rehydrated. After anti-
gen retrieval, tissue sections were incubated overnight at 4 ◦C with rabbit anti-human
SEMA4D (Bioss Inc.), mouse anti-human Plexin B1 (Santa Cruz Biotechnology Inc.) or
non-specific isotype-matched IgG that was used as a negative control. The following
day, the sections were incubated with Alexa Fluor 488 goat anti-mouse and goat anti-
rabbit IgG secondary antibodies (Thermo Fisher Scientific) and visualized under standard
fluorescence microscopy.

2.5. In Vitro Sprouting Assay

Approximately 1.5 × 104 DPSC or SHED cells were seeded in each well of a 12-well
plate coated with growth-factor reduced Matrigel (BD Biosciences). Cells were cultured in
EGM2-MV medium (Lonza) supplemented with 0, 25, 50, and 100 ng/mL of rhSEMA4D
(ACRO Biosystems) in triplicates for a total of 7 days. Alternatively, SHED cells stably
transduced with shRNA-Scramble or shRNA-Plexin B1 were treated with 0 or 50 ng/mL
rhSEMA4D (ACRO Biosystems) for 7 days. To quantify the number of sprouts, 5 random
areas/well were marked on the plate. Imaging of those areas was obtained on the 1st, 3rd,
5th, and 7th days of treatment using a microscope (Olympus, Tokyo, Japan), and Image-Pro
Plus software. Counting was conducted at 100×magnification.
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2.6. Plexin B1 Silencing

HEK293T cells were transiently co-transfected with the lentiviral packaging vectors
psPAX2, pMD2G (Vector Core, University of Michigan) and shRNA-Plexin B1 or shRNA-
Scramble (Santa Cruz Biotechnology Inc.) using the calcium phosphate method. SHED
cells were infected with supernatants containing lentivirus and selected with 1 µg/mL of
puromycin (InVivogen, San Diego, CA, USA) for at least 1 week. The knockdown of Plexin
B1 was verified by Western blot, as described above.

2.7. Statistical Analysis

Data for each group were presented as a mean ± standard deviation. Statistical
analysis was performed using SPSS version 27.0 (IBM Corp., Armonk, NY, USA). One-way
ANOVA combined with Dunnett’s post-hoc test was used to compare the sprouting counts
on the 7th day of each treatment group with the control. A p-value less than 0.05 was
considered statistically significant. Furthermore, a linear regression model was created
with the outcome (sprouting counts on the 7th day), predicted variables of concentration
and receptor, and the interaction between concentration and receptor.

3. Results
3.1. Semaphorin 4D and Plexin B1 Are Expressed in Physiological Dental Pulp Tissues and in
Tissues Engeneered with DPSCs Seeded in Tooth Slices/Scaffolds

To examine the presence of SEMA4D and Plexin B1 in dental pulp stem cells and
pulp tissues, we collected the protein lysates of DPSC, SHED, and pulp tissue from non-
carious human third molars. Western blot analyses demonstrated that SEMA4D and Plexin
B1 were expressed by DPSC, SHED, and HDMEC (Figure 1A). Interestingly, pulp tissue
expressed higher levels of SEMA4D than the cell lines, whereas Plexin B1 expression was
comparable. In addition, we performed immunofluorescent staining of tissues obtained
from non-carious human third molars and from tooth slice scaffolds seeded with DPSC
and retrieved from SCID mice after 3 weeks of implantation. Immunofluorescence showed
that SEMA4D and Plexin B1 are expressed in the vascular endothelium of physiological
dental pulp tissues and can also be detected in a few other cells (likely fibroblasts) in the
engineered dental pulps (Figure 1B,C).
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Figure 1. Semaphorin 4D and Plexin B1 expression in the dental pulp. (A) Western blot analysis
shows the protein expression of SEMA4D and Plexin B1 in lysates from DPSC, SHED cells and human
dental pulp tissue. Primary human dermal microvascular endothelial cells (HDMEC) were used
as controls. (B) Immunofluorescence staining of pulp tissues for SEMA4D or isotype-control IgG.
(C) Immunofluorescence staining of pulp tissues for Plexin B1 or isotype-control IgG. Top images
(B,C) depict pulp tissues from human non-carious third molars, whereas bottom images show tissues
from tooth slice scaffolds seeded with DPSC cells and 3 weeks after transplantation into SCID mice
(images taken at 200×magnification, scale bars: 50 µm).
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3.2. Semaphorin 4D Induces Expresssion of Endothelial Markers in Dental Pulp Stem Cells

To initiate an assessment of SEMA4D’s effect on endothelial differentiation of dental
pulp stem cells, we subjected these cells to increasing concentrations of rhSEMA4D. After a
week, we evaluated the protein expression of several endothelial differentiation markers.
Interestingly, rhSEMA4D treatment induced the expression of endothelial markers such as
VEGFR2, CD31, and Tie2, along with VEGFR1, which is constitutively expressed in dental
pulp stem cells [33]. Each of these proteins was also expressed in HDMECs, which served as
our positive controls. As anticipated, the control (untreated) dental pulp stem cells did not
express markers of endothelial differentiation. Notably, both DPSC and SHED constitutively
express Plexin B1 (Figure 2), which enables a potential mechanism for SEMA4D signaling
in undifferentiated cells, a possibility we will explore later in this manuscript.
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Figure 2. Semaphorin 4D induces expression of endothelial cell markers in dental pulp stem cells.
Western blot analysis of DPSC and SHED treated with 0, 25, 50, or 100 ng/mL of rhSEMA4D for
7 days depicts the expression of VEGFR2, CD31, and Tie2. Primary human dermal microvascular
endothelial cells (HDMEC) were used as controls.

3.3. Semaphorin 4D Enhances Sprouting of Dental Pulp Stem Cells

To further explore the vasculogenic potential of dental pulp stem cells exposed to
SEMA4D, we seeded DPSC in 12-well plates coated with growth-factor reduced Matrigel.
Cells were cultured in EGM2-MV medium supplemented with 0–100 ng/mL rhSEMA4D.
On day 1, we observed that dental pulp stem cells were scattered throughout the gelatinous
matrix. By day 3, these cells had started to sprout and form small branches. By day 7,
longer branches were noticeable, and vascular networks became apparent. We also ob-
served that sprout number increased in tandem with the escalating dose of rhSEMA4D
(Figure 3A). To measure the number of sprouts, we captured images from 5 random
areas per well and found that the average sprout count increased with the passage of
days and elevation in rhSEMA4D concentration (up to 100 ng/mL). Notably, SEMA4D in-
duced sprout development when compared to control cells cultured in EGM2-MV medium
(p < 0.05) when we experimented with DPSC (Figure 3B,C). To verify the findings with
DPSC from permanent teeth, we replicated these studies with dental pulp stem cells
from primary teeth (SHED). We observed that indeed SHED responded very similarly to
SEMA4D induction of vasculogenic differentiation, when compared to DPSC cells (Figure 4)

3.4. Plexin B1 Signaling Is Required for SEMA4D-Induced Vasculogenic Differentiation of Dental
Pulp Stem Cells

As we observed that Plexin B1 is constitutively expressed by DPSC and SHED cells
(Figure 1A), we hypothesized that this cell membrane receptor plays a role in the SEMA4D-
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induced vasculogenic differentiation of dental pulp stem cells. To test this hypothesis,
we silenced Plexin B1 expression in SHED cells using two sequences of short hairpin-
encoding lentiviral vectors. The silencing of Plexin B1 expression was more effective with
sequence shRNA-PlexinB1(1) (Figure 5A). Interestingly, Western blots revealed that Plexin
B1 silencing abrogated the vasculogenic differentiation of dental pulp stem cells induced
by SEMA4D (Figure 5B). Furthermore, we observed a significant decrease in sprouting of
Plexin B1-silenced dental pulp stem cells compared to scrambled sequence control cells
(Figure 5C–E). SEMA4D induced sprouting of dental pulp stem cells transduced with a
control shRNA construct (95% CI = 21.743–30.257; p < 0.0005), whereas SEMA4D was
unable to induce sprouting in Plexin B1-silenced cells (95% CI = −4.990–3.524; p = 0.731).
Collectively, these in vitro findings demonstrate that Plexin B1 signaling is integral to
SEMA4D-mediated induction of vasculogenic differentiation in dental pulp stem cells.
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Figure 3. Semaphorin 4D induces DPSC cells to differentiate into sprout-like structures. (A) Pho-
tomicrographs of DPSC (×100 magnification) seeded in a 12-well plate (1.5 × 104 cells/well) coated
with growth factor-reduced Matrigel and cultured with EGM2-MV supplemented with SEMA4D
for a week. (B) Graph illustrating the average number of sprouts formed by DPSC cultured on 3-D
collagen matrices and stimulated with 0–100 ng/mL of rhSEMA4D for 7 days. (C) Average number
of sprouts developed by DPSC treated with 0–100 ng/mL on the 7th day. Data were analyzed from
15 microscopic fields in triplicate wells per condition and demonstrated as an average ± standard
deviation. Values were compared to the control group and statistical significance was determined to
be present at p < 0.05 (asterisks).
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Figure 4. Semaphorin 4D induces SHED cells to differentiate into sprout-like structures. (A) Photomi-
crographs of SHED (×100 magnification) seeded in a 12-well plate (1.5 × 104 cells/well) coated with
growth factor-reduced Matrigel and cultured with EGM2-MV supplemented with SEMA4D for a
week. (B) Graph demonstrating the average number of sprouts formed by SHED cultured on 3-D
collagen matrices and stimulated with 0–100 ng/mL of rhSEMA4D for 7 days. (C) Average number
of sprouts developed by SHED treated with 0–100 ng/mL on the 7th day. Data were analyzed from
15 microscopic fields in triplicate wells per condition and demonstrated as an average ± standard
deviation. Values were compared to the control group and the statistical significance was determined
at p < 0.05 (asterisks).
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Figure 5. Silencing of Plexin B1 inhibits vasculogenic differentiation of SHED cells. (A) SHED stably
transduced with shRNA scrambled vector control or two different sequences (1 or 2) of shRNA-
PlexinB1. (B) Western blot of SHED cells transduced with control shRNA or shRNA-PlexinB1 and
treated with 0 or 50 ng/mL of rhSEMA4D for 7 days depicting the expression of the endothelial
cell VEGFR2, CD31, and Tie2. However, transduced SHED cells with shRNA-PlexinB1 did not
express those markers. (C) Photomicrographs of transduced SHED cells with control shRNA or
shRNA-PlexinB1 (1) (×100 magnification) seeded in a 12-well plate (1.5 × 104 cells/well) coated with
growth-factor reduced Matrigel and cultured with EGM2-MV supplemented with 0 and 50 ng/mL
of rhSEMA4D for a week. (D) Graph illustrating the average number of sprouts formed by control
SHED cells or SHED transduced with shRNA-Plexin B1(1) cultured on Matrigel and treated with 0 or
50 ng/mL of rhSEMA4D for 7 days. (E) Average number of sprouts (7th day) generated by control
SHED or SHED transduced with shRNA-Plexin B1(1) treated with 0 or 50 ng/mL of rhSEMA4D.
Data were analyzed from 15 microscopic fields in triplicate wells per experimental condition and
demonstrated as an average ± standard deviation. Values were compared to the control group and
the statistical significance was determined at p < 0.05 (asterisks).

4. Discussion

Regenerative endodontics has led to innovations in the treatment of immature necrotic
permanent teeth, as numerous studies have showcased the ability of dental pulp stem cells
to regenerate a dentin–pulp-like complex [16,34,35]. However, the challenges posed by the
anatomy of the root structure to the vascularization of a pulp-like tissue following stem cell
transplantation largely remain unexplored. Here, we demonstrated that SEMA4D/PlexinB1
signaling contributes to the vasculogenic differentiation of dental pulp stem cells. This
suggests that activating this pathway could potentially accelerate the vascularization of
tissues engineered with these cells.

Semaphorin 4D, a member of the membrane-associated semaphorin family, was the
first semaphorin identified in the immune system [36]. SEMA4D expression has been
frequently observed in various human cancers as well as craniofacial tissues [37–39]. Here,
we detected SEMA4D expression in dental pulp stem cells (DPSC), stem cells from human
exfoliated deciduous teeth (SHED), and in human dental pulp tissue. This finding may
suggest the involvement of SEMA4D in the development and regeneration of dental
tissues. Concordantly, Abe and colleagues reported SEMA4D mRNA expression in the
dental epithelium and mesenchymal cells of mouse tooth germs at the early bell stage,
shifting towards predominant expression in mesenchymal cells at the late bell stage [39].
DPSC and SHED constitute key components of the dental pulp microenvironment and
have been recognized for their ability to differentiate into multiple cell types, including
those contributing to dental pulp and dentin regeneration [40–42]. The expression of
SEMA4D within these cells could suggest that this protein may influence their proliferative
or migratory abilities [30,43,44]. Interestingly, our fluorescence staining revealed that
SEMA4D expression is associated with vascular endothelial cells within dental pulp tissues.
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Consistent with this observation, SEMA4D expression was identified in endothelial cells
of carotid tissue and in HUVEC [45]. Moreover, after a three-week period of implanting
DPSC-containing tooth slices/scaffolds into mice, Zhang and colleagues found the majority
of DPSC-derived blood vessels were mature and enveloped by pericytes. This may indicate
that SEMA4D expression plays a role in the interaction between endothelial and mural
cells, a relationship that is vital for vascular development and maturation [46,47].

Plexin B1 is a transmembrane protein that regulates several functions in response to
its ligand SEMA4D, including angiogenesis [48]. Previous studies have evaluated Plexin
B1′s expression pattern during tooth development in mouse embryos, finding it evident in
enamel knots, enamel epithelium, and oral epithelium [49]. Our work reveals Plexin B1
expression in association with endothelial cells in dental pulp tissues. This finding aligns
with the previous detection of Plexin B1 in the immunoblot and RNA analyses of porcine
aortic endothelial cells [25].

Semaphorin–plexin interactions play a crucial role in key physiological and patho-
physiological processes [26]. In particular, these interactions are reported to significantly
influence the regulation of blood vessel growth [28,50]. The Gutkind laboratory demon-
strated that SEMA4D, cleaved from head and neck squamous cell carcinoma cells (HNSCC),
enhances endothelial cell migration by binding to Plexin B1 receptors expressed on these
cells [48]. Similarly, Ding and colleagues found that SEMA4D promotes the spreading of
human umbilical vein endothelial cells and the formation of tube-like structures, mimicking
blood vessels in a Matrigel assay. Additionally, in vivo tumor angiogenic assay also showed
that SEMA4D induces an angiogenic response, thereby promoting colorectal cancer growth
in a mouse model [51].

Vascular endothelial growth factor (VEGF) is an essential regulator of endothelial cell
differentiation, proliferation, migration, and survival. VEGF165 has been shown to prolong
the survival of HDMEC in vitro and to enhance the vascularization of severed human
dental pulps in vivo [52]. In the current study, we observed that SEMA4D promoted the
organization of dental stem cells into sprout-like structures at a rate comparable to that of
cells stimulated with VEGF [46]. This finding aligns with previous research, which demon-
strated that HUVEC, when cultured with a conditioned medium containing SEMA4D,
formed vascular-like structures on Matrigel [53]. Interestingly, Zou and colleagues ob-
served that SEMA4D treatment led to an upregulation of VEGF in DPSC, which enhanced
the formation of vascular-like structures by HUVECs [53]. Conversely, the Conrotto group
reported no significant difference in expression levels of VEGF-A, angiopoietin-2, and hepa-
tocyte growth factor between unstimulated and SEMA4D-stimulated endothelial cells [54].
These divergent findings highlight the complex nature of SEMA4D’s interactions with other
growth factors and their combined effect on vascularization.

Recent studies have highlighted the mechanisms behind SEMA4D signaling and
its angiogenic effect in tumor models. They demonstrated that Plexin B1 activation by
SEMA4D induces angiogenesis, cytoskeletal reorganization, and the migration of endothe-
lial cells through a RhoA-dependent pathway [31,50,55]. As SEMA4D is highly expressed
in HNSCC cells, Basile and colleagues silenced SEMA4D gene expression and found that
vascularization of HNSCC tumor xenografts was dramatically decreased [43]. In our study,
we found that the vasculogenic differentiation of dental pulp stem cells is halted when
SEMA4D signaling is blocked by Plexin B1 gene silencing. Collectively, this work suggests
that therapeutic activation of the SEMA4D/PlexinB1 signaling pathway could benefit pa-
tients undergoing regenerative endodontics procedures by facilitating rapid establishment
of vascular networks following the vasculogenic differentiation of dental pulp stem cells.
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