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Abstract: Scholarly productivity is a critical component of pharmacy faculty effort and is used for
promotion and tenure decisions. Several databases are available to measure scholarly productivity;
however, comparisons amongst these databases are lacking for pharmacy faculty. The objective of
this work was to compare scholarly metrics from three commonly utilized databases and a social
networking site focused on data from research-intensive colleges of pharmacy and to identify factors
associated with database differences. Scholarly metrics were obtained from Scopus, Web of Science,
Google Scholar, and ResearchGate for faculty from research-intensive (Carnegie Rated R1, R2, or
special focus) United States pharmacy schools with at least two million USD in funding from the
National Institutes of Health. Metrics were compared and correlations were performed. Regression
analyses were utilized to identify factors associated with database differences. Significant differences
in scholarly metric values were observed between databases despite the high correlations, suggestive
of systematic variation in database reporting. Time since first publication was the most common factor
that was associated with database differences. Google Scholar tended to have higher metrics than
all other databases, while Web of Science had lower metrics relative to other databases. Differences
in reported metrics between databases are apparent, which may be attributable to the time since
first publication and database coverage of pharmacy-specific journals. These differences should be
considered by faculty, reviewers, and administrative staff when evaluating scholarly performance.
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1. Introduction

One of the activities of faculty within research-intensive colleges of pharmacy is to add to the
scientific record through research and scholarly activities. Scholarly metrics, or bibliometrics, generally
refers to the analysis of individual productivity and impact through publication and citation counts [1].
Broadly, methods of research performance and impact evaluation for the purposes of promotion,
merit, and tenure have been offered that include the Hirsch Index (H-index), journal impact factor,
number of publications, authorship position on publication, and citation rates [2–4]. Such metrics are
used as “judgment devices” by reviewers and the scientific community in evaluation of an individual
researcher and the impact of their work [4]. Within schools of pharmacy, these same scholarly metrics
are utilized in addition to service, teaching, and clinical activities in the review of faculty performance
and promotion [5–7]. Previously, obtaining such measures required specialized software or was
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not easily accessible. Now, several common publication databases offer scholarly metric data for
searched authors. Such databases include Scopus, Web of Science, and Google Scholar. Additionally,
ResearchGate, a social networking site, provides scholarly metric data on user profiles. These easily
accessible metrics allow for rapid individual determination as well as the collection and comparison of
data across large groups.

These multiple, distinct scholarly metric databases offer faculty sources that can be utilized to
measure self-performance and in the preparation of promotion and tenure packets or for the general
assessment of research impact. Due to their inherent differences (i.e., software and algorithm designs),
these databases may provide differing measures of scholarly productivity on the same faculty member,
which can make reviews and evaluations of faculty performance more complex. For example, particular
pharmacy-relevant journals may have coverage in only a subset of databases, leading to potential
underestimation of metrics depending on a particular faculty member. To date, scholarly metrics from
multiple databases have not been explored within College of Pharmacy faculty to understand what
difference, if any, may exist in their measurements. Therefore, it is not known if scholarly productivity
is measured differently between databases, what factors may potentially predict such differences, and
if a given database is best able to measure the scholarly performance of pharmacy faculty.

The primary objective of this work was to identify differences, correlations, and predictors of
differences in reporting metrics between Scopus, Web of Science, Google Scholar, and ResearchGate
by collecting faculty scholarly metric data from research-intensive United States (U.S.) colleges of
pharmacy. These findings will allow faculty members, peer reviewers of grants and promotion packets,
administrators, and other key stakeholders to better understand how these databases represent faculty
scholarly publication so that, in the future, objective standards of productivity and review may be set.

2. Materials and Methods

Faculty names from the included U.S. colleges of pharmacy were collected from the American
Association of Colleges of Pharmacy (AACP) and individual college of pharmacy website directories
according to our previous published methodology [8]. To be included in the present analysis, U.S.
colleges of pharmacy must have had greater than 2 million USD in 2018 U.S. National Institutes
of Health (NIH) funding according to AACP grant data and a Basic Carnegie Classification of R1
(very high), R2 (high), or special focus. We chose this cutoff since we wanted to analyze differences
from a large, representative sample of research-intensive, NIH-funded U.S. colleges of pharmacy.
The Carnegie classification utilizes several criteria to determine research intensity; “special focus”
schools were included, since the number-one ranked pharmacy school is special focus, and we
did not want to exclude research-intensive schools with this classification [9]. NIH funding was
chosen due to its transparent reporting (as compared to foundation or industry funding, which is
not readily available), and the median cutoff was used due to the skewed nature of funding across
pharmacy schools. Although other definitions have been utilized to define research-intensive colleges
of pharmacy, the inclusion of such a large sample size here may assist in minimizing these definitional
differences [10–12]. Full-time academic faculty with rank were included in this analysis, while adjunct,
research, and emeritus faculty were excluded. For each included faculty member, the following data
were collected: (1) Name (for database searching), (2) position with rank, (3) department, and (4)
university affiliation. Departments were categorized as “clinical” (e.g., Pharmacy Practice, etc.) or
“basic” (e.g., Pharmaceutical Science, etc.).

Searches for scholarly metrics were performed in Scopus, Web of Science (WOS), Google Scholar,
and the social networking site ResearchGate. Scopus, Web of Science, and Google Scholar were included
because they each have wide coverage in biomedical sciences and pharmacy in particular [13–16].
Although each has a wide coverage, Google Scholar potentially covers more non-traditional sources,
such as conference abstracts and graduate theses, which could influence reported metrics [17,18].
Additionally, differences do exist for pharmacy coverage. For example, Mendes and colleagues found
that, of 285 identified pharmacy journals, 90% were found in Scopus, while 44.6% were found in
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Web of Science [19]. Additionally, on a qualitative level, citation counts from these three databases
(or some combination thereof) are commonly reported (and within our university, at least one is
required) on faculty promotion and tenure applications. Although ResearchGate, a social networking
site, should not be considered a primary source for scholarly metric data, we chose to include this
database given that it is a highly used social research network site with over 15 million users [20].
This means that, often, researchers are viewing other researchers, their work, and scholarly metrics
through this database, making it a potential future model of combining standard scholarly metrics
with proposed “altmetrics” [21,22]. However, other points discussed below should be considered for
ResearchGate. For Scopus, Web of Science, and Google Scholar, the “author search” utility was used,
and for ResearchGate, the general query search bar was used. The faculty member’s first, last, and
middle initial were input along with their university affiliation (searches performed by B.H., S.F., and
A.K.). If no record result was produced, a secondary author (K.B.) performed a verification search.
Alternative searches were also performed with additional information obtained from a faculty directory
profile, such as past universities, alternate names, or listed publications. An additional, randomized
confirmatory search process (K.B.) of records was used to confirm the presence or absence of database
records and the accuracy of extracted data. For each database, the following information was collected:
Number of documents, H-index, total citations, and highest-cited articles. For Scopus, the year
of first publication was collected to calculate the number of publishing years, as this information
was readily obtainable from searches. For ResearchGate, the highest-cited article metric was not
readily available for collection. Data for each faculty name were collected from their first publication
up to June 2019, when the database searching was completed. This research utilizes non-human
subject informational databases and, therefore, was exempt from ethics review. The primary research
question to be answered was: “What are the differences in scholarly metric reporting amongst major
databases, and can any individual or college-level factors predict identified differences?” We believe
that individual or college-level factors may have effects on any potential database differences, since
they may expose the underlying nature of these databases. For example, clinical faculty may more
regularly publish in pharmacy journals that are only covered in Scopus or Google Scholar; therefore,
this distinction may be helpful in explaining database differences.

Due to the skewed nature of scholarly metrics, we report the data with both means ± standard
deviation and medians with interquartile ranges (IQR), and we compared each common metric between
databases using Wilcoxon Signed Rank tests or Spearman Rho correlations [23]. For identification of
predictive variables, first, student t-tests were performed to identify significant associations between a
given variable and a difference in metrics between databases. Student t-tests were used here, as the
calculated differences in metrics (e.g., difference in number of documents between Scopus and Web
of Science, etc.) were normally distributed. Since 42 tests were performed for variable identification,
a Bonferroni cutoff of 0.001 was utilized. Next, significant variables were entered into regressions.
Specifically, linear regressions were performed where the calculated database difference variable (e.g.,
difference in number of documents between Scopus and WOS, etc.) was the dependent variable, and
significant variables from the preceding step were entered as independent variables. Beta estimates and
p-values were determined from regression analyses. A correction for multiple comparisons was made
for the primary statistics in the manuscript (i.e., differences between databases, correlations between
databases, and identification of predictors through regression analyses) by applying a Bonferroni
significance level of <0.0004 (117 total tests). All analyses were performed with JMP statistical software
version 14.0.

3. Results

A total of 3023 full-time faculty from 48 U.S. colleges of pharmacy were included (Table S1),
which yielded 7713 records from the four searched databases. Table 1 presents an overview of the
included faculty. Of note, the number of available Google Scholar and ResearchGate records was lower
compared to Scopus and WOS.
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Table 1. Overview of faculty and records included in the analysis (n = 3023).

N (%) or Mean ± SD

Academic Rank
Assistant Professor 1057 (35.0)

Associate Professor 910 (30.1)
Professor 1056 (34.9)
Department Type
Clinical Science Faculty 1848 (61.1)

Basic Science Faculty 1175 (38.9)
Number of Records
Number of Scopus Records 2798 (92.6)

Number of WOS Records 2536 (83.9)
Number of Google Scholar Records 871 (28.8)
Number of ResearchGate Records 1508 (49.9)
Average years since first publication 19.9 ± 12.2

3.1. Differences in Scholarly Metrics between Scopus, Web of Science, Google Scholar, and ResearchGate

Table 2 presents data for common scholarly metrics across the dataset and the percentage difference
between them for each metric. All pairwise comparisons were significantly different.

Table 2. Differences in common scholarly metrics across included datasets for College of
Pharmacy faculty.

Total Documents H-Index Total Citations Highest Cited

Scopus (n = 2798)
Mean (SD) 56.6 (78.7) 16.4 (16.1) 2090 (4720) 298 (1490)
Median (IQR) 30.0 (10.0–73.0) 12.0 (4.0–24.0) 569 (76.5–2170) 101 (27.8–270)
Web of Science (n = 2536)
Mean (SD) 48.4 (67.0) 15.6 (15.4) 1900 (4380) 283 (1560)
Median (IQR) 24.0 (8.00–62.0) 11.0 (4.00–23.0) 488 (78.0–1900) 94.0 (28.0–257)
Google Scholar (n = 871)
Mean (SD) 141 (186) 27.4 (20.4) 5030 (9550) 790 (3430)
Median (IQR) 86.0 (44.0–169) 23.0 (13.0–36.0) 2150 (673–5100) 273 (123–598)
ResearchGate (n = 1508)
Mean (SD) 61.5 (80.9) 16.6 (14.6) 1950 (4680) -
Median (IQR) 36.0 (14.0–77.0) 13.0 (6.00–24.0) 661 (131–2130) -
% Difference
SC to WOS +21.4 +8.83 +15.0 +9.07
SC to GS −50.6 −20.0 −43.7 −41.2
SC to RG −4.59 +2.08 −2.51 –
WOS to GS −64.8 −26.4 −53.9 −46.4
WOS to RG −25.2 −6.72 −16.6 –
GS to RG +39.9 +18.5 +38.9 –

All differences above were statistically significant (p-value < 0.0004) based on a Wilcoxon Rank Sum Test. – indicates
that the variable was not available for ResearchGate.

3.2. Correlations between Scopus, Web of Science, Google Scholar, and ResearchGate

We performed correlations as another step to gauge metric agreements between the four included
datasets (Table 3). The correlations between the databases for documents were above 0.89, and for
H-index, the total citations and highest cited document were all above 0.9. Expanded correlations are
found in Supplementary Table S2.
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Table 3. Spearman Rho correlations of scholarly metric data between included datasets.

Documents
Scopus H-Index Scopus Total Citations

Scopus
Highest Cited
Scopus

Documents WOS 0.960 0.947 0.921 0.797
H-index WOS 0.923 0.974 0.954 0.848
Total citations WOS 0.900 0.958 0.969 0.901
Highest cited WOS 0.781 0.854 0.903 0.931
Documents Google Scholar 0.930 0.851 0.813 0.634
H-index Google Scholar 0.917 0.965 0.935 0.775
Total citations Google Scholar 0.875 0.943 0.967 0.868
Highest cited Google Scholar 0.682 0.778 0.859 0.933
Documents ResearchGate 0.888 0.830 0.802 0.668
H-index ResearchGate 0.855 0.904 0.882 0.766
Total citations ResearchGate 0.830 0.889 0.900 0.828

Spearman Rho correlations were performed between corresponding metrics between databases. All correlations
were statistically significant (p < 0.0004).

3.3. Factors Associated with Metric Differences

To identify individual and college-level factors that are potentially associated with database
differences, we first performed student t-tests with available variables of interest to identify significant
correlations with database differences. Next, these significant variables were entered into a regression
model with the database metric as the dependent variable. Table 4 depicts the best estimates of
these regressions.

Table 4. Beta estimates for factors associated with metric differences.

SC to WOS SC to GS WOS to GS GS to RG

Total documents
Department type - - - - - - −4.31
Assistant Professor −2.16 15.2 15.8 −16.6
Associate Professor −2.49 * 11.3 13.0 −10.4
Years since first publication 0.387 * −2.38 * −2.96 * 0.992
H-index
Department type - - 0.156 - - - -
Assistant Professor −0.424 * 1.52 * 1.78 * −1.10
Associate Professor −0.0779 0.509 0.480 −0.568
Years since first publication 0.0199 −0.0512 −0.0969 * 0.0677
Total Citations
Department type −30.4 142 103 −232
School funding rank 45.8 - - - - - -
Assistant Professor −71.1 322 310 −501
Associate Professor −55.7 590 617 −409
Years since first publication 5.21 −86.1 * −104 * 32.4
Highest-Cited Article
Assistant Professor - - 91.1 77.8 - -
Associate Professor - - 90.9 94.2 - -
Years since first publication - - −10.8 −12.4 - -

Abbreviations: GS = Google Scholar; RG = ResearchGate; SC = Scopus; WOS = Web of Science. * indicates
statistically significant parameter within linear regression (p < 0.0004). - - indicates that the variable was not
included in the model. Department type is made up of two levels (clinical and basic) with basic serving as the
reference category. Therefore, numbers in this row are clinical relative to the basic science department. Academic
Rank is made up of three levels (assistant, associate, and full professor), with full professor serving as the reference
category in the regression. Thus, the values for the assistant and associate professor variables are relative to the
professor level within the database difference column. A positive value represents an increase in the assistant or
associate level relative to the professor level for a given scholarly metric. SC to RG are not shown because only years
since first publication were significantly associated with the H-index difference (beta = 0.0440, p = 0.0002). WOS to
RG are not shown because only faculty rank and years since first publication were associated with total document
difference; assistant professor (beta = 7.18, p = 0.0007), associate professor (beta = 4.74, p = 0.0037), and years since
first publication (beta = −0.0813, p = 0.547).

4. Discussion

The study provides the first comparison of scholarly metrics from highly utilized, easily accessible
databases and a social networking site, using data from research-intensive U.S. colleges of pharmacy.
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The data indicate that, despite high correlations in their measures, these databases have clear differences
in their metric measures which, depending on the metric, is attributable to time or experience-based
factors (i.e., faculty rank and years since first publication). The data provided here contribute to the
current bibliometric analysis literature by offering insight into the possible differences and similarities
between major bibliometric databases in addition to a popular research social network’s metrics. To
our knowledge, this is the first description comparing the social networking site ResearchGate to other
accepted databases; however, other work has similar correlations and differences when comparing
Google Scholar, Scopus, and Web of Science in metrics such as H-index, citation growth rates, and
number of citations for each paper per author [24–27]. Similarly to the findings described here, these
previous studies have found that Google Scholar provides higher estimates of citation and publication
counts, while Web of Science tends to produce significantly lower citation counts [18,24,28]. The
approaches in these previous studies were different in that they utilized smaller sample sizes, random
selections of researchers across disciplines, or specific journals of research papers for comparisons
between databases. Our method of including a large sample size of pharmacy researchers potentially
reduces the bias of research field type and specialty. Ultimately, our work adds to this body of
literature by aiming to understand how database coverage and algorithms can potentially influence
bibliometric estimations.

The Spearman Rho correlations for corresponding metrics between Scopus, Web of Science, Google
Scholar, and ResearchGate were all above 0.89, suggesting a high degree of similarity in scholarly metric
measurement despite statistically significant differences when tested by the Mann Whitney U. Indeed,
the correlations were also significant at the Bonferroni cut-off level of 0.0004. On a qualitative level,
Google Scholar had much higher metrics compared to all other databases. Scopus and ResearchGate
tended to have estimates with the smallest differences, while Web of Science tended to have the lowest
estimates compared to the other databases. These observed differences, yet high correlations, could be
due to the large database used here, with over 3000 faculty members and over 7000 database records
amongst the faculty members available for analysis. Such differences may be important factors for
consideration during faculty evaluations through peer assessment or administrative reviews.

In our analyses to identify potential individual or college-level explanatory variables that could
account for the observed differences between databases, it was evident that total publishing years
and faculty rank had significant effects on the observed differences. For example, for the difference in
documents between Scopus and Web of Science, each year of publication produced approximately
0.4 more documents in Scopus compared to Web of Science. This suggests that as a faculty’s total
publishing time grows, more documents are captured in the Scopus database compared to the WOS
database. Less often, faculty rank had effects on database differences in a pattern similar to that
observed with total publishing years. The effects of time and/or seniority factors on database difference
may be expected, as they may reflect a wider reach of research and collaborative efforts often observed
with senior researchers. Another study, evaluating citation differences in three top journals based
on database, identified group authorship (authorship by aggregated groups, such as Consolidated
Standards of Reporting Trials (CONSORT)) as the only factor in their analyses significantly associated
with the citation differences between databases [29].

It is possible that systematic differences, including content coverage and sources for each database,
may account for many of the differences described in Table 2 above [15,30]. Scopus covers over
22,800 titles with 69 million records, while Web of Science’s default “Core Collection” includes greater
than 21,177 titles with 74 million records [31,32]. This coverage difference is relevant to pharmacy,
where certain journals, such as Pharmacy Times, are included in Scopus, but not Web of Science. It
may be possible that this is reflected in the data presented here, where all metrics were at least 8%
greater in Scopus relative to Web of Science. It may better represent the scholarly productivity of
pharmacy faculty, especially clinical faculty that may publish in such pharmacy-based journals, to
utilize Scopus metrics in self-evaluations, yearly performance reviews, and promotion and tenure.
Interestingly, our multivariate analyses did not identify a significant effect of department type (clinical
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versus basic) on measured differences, possibly contradicting these hypotheses. It should be noted
that the total citations metric was significantly associated with department type (non-significant
factor in multivariate analyses), and the total documents metric was non-significantly associated with
department type due to the Bonferonni cutoff (p = 0.001).

Google Scholar’s coverage is not fully known, but it is estimated they have at least 369 million
records and may better capture international works, which likely explains the higher metrics
reported here [30,33]. Additionally, Google Scholar’s metrics include documents like abstracts
and thesis/dissertations, which may not be covered as well in other databases. Content coverage by
ResearchGate is not readily available, and their website states that they “import citation data from
different sources”. To this end, the transparency of ResearchGate as a site for scholarly metric data
is lacking. Often, social networking sites aim to incorporate as many users as possible to increase
advertising revenue, potentially making their scholarly metric accuracy secondary to other goals.
Additionally, ResearchGate has promoted some of their own metrics, such as “Reads” and their “RG
score”, which have not been validated, found to have little correlation to established metrics but
highly correlation to user activity on the site [34–37]. Of note, our study only utilized total documents,
H-index, and total citations in our analyses, which had strong correlations to Scopus metrics (Spearman
Rho > 0.8). Finally, ResearchGate’s activities, including methods of sharing full-text articles, have been
denounced amongst researchers and cited as violating copyright laws [38,39]. In our opinion, despite
the high correlations observed in our study, ResearchGate should not be used as a primary source for
scholarly metric data without future transparency and assessments.

From an expanded correlational analysis of all metrics between all databases (Table S2), it is evident
that lower correlations are observed between publication number and total citations or highest-cited
article. This may suggest that the impact of scholarly activity (by citations alone) is not completely
correlated with and not fully dependent on the number of publications by a given faculty member [40].
This consideration has been explored by others with proposed alternatives to explore scholarly
impact, such as combined article-level metrics, web-based metrics, social-media-based metrics, and
comprehensive approaches [41–43]. Future work should identify the predictors of total citations
or highly cited articles amongst college of pharmacy faculty along with the effect of the database.
Such work would also be useful in training junior faculty in approaches to creating high-impact
scholarly products.

5. Limitations and Conclusions

A few limitations should be considered for this study. First, Google Scholar and ResearchGate are
self-created profiles compared to Scopus and Web of Science. This is likely the primary reason for the
lower number of Google Scholar and ResearchGate records available for analysis. There were many
authors with records composed of a high number of documents in Scopus and Web of Science that
did not return a profile in Google Scholar and/or ResearchGate, demonstrating the self-creation and
self-curation required in these two later databases. The high number of overall records allows us to
perform statistical testing between databases; however, is it possible that our results are biased toward
faculty that are more likely to self-create these profiles (e.g., faculty with high scholarly productivity,
etc.). Additionally, we did not define criteria for including a database. Based on our experience, Web of
Science, Scopus, and Google Scholar are now commonly reported on faculty of pharmacy promotion
and tenure packets. ResearchGate is not reported as an official metric source; however, we thought
that it was useful to include statistics from this social media site, given that many researchers are now
using it to “look up” one another, including the metrics in a profile. Second, although our method of
collecting faculty profiles was comprehensive, this does not rule out missed or new faculty. To that
end, this analysis should be considered a snapshot of the scholarly metrics, and future updates may
be needed. The analyses also included covariates that may have a relationship (e.g., time since first
publication and faculty rank); there may be other covariates not captured in this study, such as degree
of collaboration and specialization or primary field of study, that could influence the results. Although
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these data are useful for faculty and administrative personnel in colleges of pharmacy, it should be
noted that our analysis was restricted to research-intensive U.S. colleges of pharmacy based on NIH
funding of wo million or more USD. Thus, these analyses and data may not represent faculty members
from non-research-intensive schools. Due to the time-intensive nature required to capture multiple
databases on such a large profile of faculty from colleges of pharmacy, our snapshot of 2019 data does
not represent the everchanging landscape of metric data. Therefore, future updates may be needed as
database coverage is expanded or altered and the faculty makeup of colleges of pharmacy evolves
over time.

The data presented here found differences between scholarly metric databases and a social media
site despite high overall correlations. Many of these differences can be at least partly attributed to time
since first publication by a faculty member; furthermore, they suggest systematic reporting differences
between databases. This study provides objective real-world data on which faculty, administrators,
and promotion peer-reviewers can understand possible database differences in reporting of scholarly
accomplishments. In our opinion, this study does not suggest that one database is more useful or
accurate over another, but may suggest that differences exist and that certain databases may provide
superior coverage for particular research areas (i.e., clinical pharmacy journals). Future work should
consider comparisons with newer transparent databases, such as Dimensions from Digital Science,
which further incorporates grant data with standard scholarly metric data. This will assist in validating
and comparing the ever-expanding landscape of citation databases.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6775/8/2/18/s1:
Table S1: Included Schools; Table S2: Full Metric Correlation Table.
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