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Abstract: This paper proposes the combination of headspace-gas chromatography-ion mobility
spectrometry (HS-GC-IMS) and chemometrics as a method to detect the age of Chinese liquor (Baijiu).
Headspace conditions were optimized through single-factor optimization experiments. The optimal
sample preparation involved diluting Baijiu with saturated brine to 15% alcohol by volume. The
sample was equilibrated at 70 ◦C for 30 min, and then analyzed with 200 µL of headspace gas. A total
of 39 Baijiu samples from different vintages (1998–2019) were collected directly from pottery jars and
analyzed using HS-GC-IMS. Partial least squares regression (PLSR) analysis was used to establish
two discriminant models based on the 212 signal peaks and the 93 identified compounds. Although
both models were valid, the model based on the 93 identified compounds discriminated the ages of
the samples more accurately according to the goodness of fit value (R2) and the root mean square
error of prediction (RMSEP), which were 0.9986 and 0.244, respectively. Nineteen compounds with
variable importance for prediction (VIP) scores > 1, including 11 esters, 4 alcohols, and 4 aldehydes,
played vital roles in the model established by the 93 identified compounds. Overall, we determined
that HS-GC-IMS combined with PLSR could serve as a rapid and accurate method for detecting the
age of Baijiu.

Keywords: Chinese liquor (Baijiu); ageing discrimination; HS-GC-IMS; extraction condition optimization

1. Introduction

Ageing is an integral part of the production of most distilled spirits, such as whiskey
and brandy, and improves their quality [1,2]. In general, freshly distilled spirits smell and
taste rough, unpleasant, and unbalanced [2,3]. During the ageing period, some compounds
in the spirits undergo chemical reactions, which affect the final flavor and taste profiles
of the spirits [1,2,4]. Ageing plays a critical role in the production process of high-quality
spirits, but is extremely time-consuming and often requires several years or more to
complete [5]. Consequently, spirits’ economic value is highly associated with their age [6].
Owing to the commercialization and relatively high costs of aged spirits, counterfeiting
these products is common worldwide [7]. Therefore, it is necessary to establish a rapid
and accurate method to detect the age of spirits to protect consumers from being deceived
concerning the age and quality of the spirits.
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Baijiu (Chinese liquor), similar to whiskey and brandy, needs to be aged to develop
its high-quality flavor [8]. Fresh Baijiu, which is distilled from fermented grains, is aged
by being stored in pottery jars for years [9]. During this time, various chemical reactions,
including reduction–oxidation, esterification, the Maillard reaction, hydrolysis, conden-
sation, and decomposition, proceed gradually [10]. As a result, aged Baijiu smells and
tastes more delightful and harmonious than its fresh alternative [11,12]. Aroma is one
of the most important characteristics of Baijiu, and is a standard indicator of the age of
the beverage [13,14]. Because the ageing time of Baijiu is closely related to its quality and
market price, it is necessary to detect the age of Baijiu by aromatic components to protect
consumers from being deceived with regard to its age and quality. To date, a few studies
have been conducted on the ageing of Baijiu. Xu et al. used a gas chromatography–flame
ionization detector (GC-FID) combined with principal component analysis (PCA) and
cluster analysis to characterize the changes in 21 major aroma components in Baijiu during
ageing and ultimately detect its age [13]. Peng et al. developed a rapid approach to dis-
criminate Baijiu age using a gas chromatography–flash electronic nose technique combined
with PCA and discriminant factor analysis [15]. Ma et al. studied the transformation of
aroma components in nine Baijiu samples, with ages ranging from 0 to 30 years, using
GC-MS and GC-FID [16].

Headspace–gas chromatography–ion mobility spectrometry (HS-GC-IMS) is an emerg-
ing approach in food control that uses new gas-phase separation and detection technol-
ogy [17–20]. HS-GC-IMS implements a two-dimensional separation process of volatile
compounds, using a combination of GC and IMS, which facilitates the identification and
differentiation of different samples [20]. In recent years, HS-GC-IMS applications have
increased dramatically, including for food classification and adulteration [17,21–26], pro-
duction monitoring [27], and storage monitoring [28]. Li et al. compared HS-SPME-GC-MS
with HS-GC-IMS to identify the age of brandy [5]. The results indicated that the model
using HS-GC-IMS and partial least squares regression (PLSR) is more effective than the
GC-MS model. However, the flavor of Baijiu is relatively complex, and few studies have
adopted HS-GC-IMS for evaluating Baijiu. Although HS-GC-IMS is a useful tool for de-
tecting the age of Baijiu, it is sensitive to experimental conditions, such as NaCl additions,
incubation temperature, alcohol content, and injection volume [17,18,29]. Therefore, the
headspace conditions should be optimized before sample analysis to obtain the most
accurate information.

Thus, this study aimed to (1) optimize the experimental conditions of HS-GC-IMS for
analyzing Baijiu and (2) establish and validate a model for Baijiu age identification using
the HS-GC-IMS database. Additionally, this study investigated the changes in the volatile
organic compounds within the samples.

2. Materials and Methods
2.1. Baijiu Samples

Thirty-nine strong-aroma samples of Baijiu from eight different vintages were collected
and stored directly in pottery jars without blending. The vintages used were 1998 (n = 2),
2004 (n = 5), 2008 (n = 4), 2012 (n = 6), 2014 (n = 5), 2016 (n = 6), 2018 (n = 5), and 2019
(n = 6). All samples were stored at 4 ◦C before the analysis. The samples were obtained
from Anhui Gujing Distillery Co., Ltd. (Anhui, China). Additionally, the A2–1 sample
was used as the reference matrix for the optimization experiments. Detailed information
regarding the samples is provided in Supplementary Table S1.

2.2. Reagents and Standards

All analytical standards used for the identification of the aroma compounds were GC
grade, with at least 95% purity. The following standards were obtained from Sigma Aldrich
in Shanghai, China: (E,Z)-2,6-nonadienal; 1,1-diethoxyethane; 1-octanol; 2-pentanone;
3-methyl-1-butanol; 3-methylbutanal; 3-methylbutyl butanoate; 3-methylbutyl hexanoate;
acetic acid; benzaldehyde; 1-butanol; butan-2-ol; butan-2-one; butyl acetate; ethyl
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3-methylbutanoate; ethyl 4-methylpentanoate; ethyl acetate; ethyl isobutyrate; ethyl lactate;
ethyl pentanoate; heptan-1-ol; hexanal; propyl hexanoate; isoamyl acetate; linalool; methyl
hexanoate; octanal; octanoic acid ethyl ester; pentan-2-ol; pentyl acetate; propionaldehyde;
terpinen-4-ol; and butyraldehyde. The following standards were obtained from J&K in
Shanghai, China: 2-methyl butanoic acid ethyl ester, 2-methyl-1-propanol, ethyl butyrate,
ethyl heptanoate, isobutyl acetate, pentyl butanoate, and propan-2-one. The following
standards were obtained from Aladdin in Shanghai, China: (E)-2-hexenal, 1-hexanol,
1-methylethyl acetate, 2-heptanone, 2-methylbutanal, ethyl hexanoate, furfural, methyl
2-methylbutanoate, methylpropanal, nonanal, and propanoic acid ethyl ester. N-ketones
(C4–C9) used for the calculation of retention indices (RIs) were obtained from Gesellschaft
für Analytische Sensorsysteme (G.A.S., mbH, Beijing, China). Ethanol (HPLC-grade, 99.9%)
was purchased from J&K Scientific. Water was purified using a Milli-Q water purifica-
tion system (Millipore, Bedford, MA, USA). Sodium chloride (NaCl) was purchased from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

2.3. HS-GC-IMS Method
2.3.1. Optimization of Headspace Conditions

The headspace conditions were optimized using a single-factor optimization experi-
ment. The independent variables and levels selected for the optimization experiment were
diluent (ultrapure water and saturated brine), alcohol content by volume (1%, 2%, 5%, 10%,
15, and 30%), incubation temperature (40, 50, 60, and 70 ◦C), and injection volume (40, 100,
200, and 300 µL).

2.3.2. GC-IMS Conditions

For the HS-GC-IMS analysis, a Shimadzu GC-2010 gas chromatograph (Shimadzu,
Kyoto, Japan) equipped with a Perkin Elmer TurboMatrix16 autosampler (Perkin Elmer,
MA, USA.) was coupled to an IMS module from GAS (Dortmund, Germany).

The analytes were separated in a DB-FFAP column (60 m × 0.25 mm × 0.25 µm film
thickness; J & W Scientific; Folsom, CA, USA.) using nitrogen gas (>99.999%) at a constant
flow rate of 0.8 mL/min. The temperature of the column was maintained at 40 ◦C for 3 min,
then was increased to 150 ◦C at 4 ◦C/min, and held at 150 ◦C for 5 min (total of 35.5 min).

After the analytes were separated in the column, they were driven into the IMS module.
First, the volatile organic compounds were ionized by the tritium source in positive mode.
Then, the ions were placed into a 9.8 cm long drift tube operating at 500 V/cm and 45 ◦C.
Next, nitrogen drift gas (>99.999%) was introduced at 150 mL/min. An average of 12 scans
was performed at a repetition rate of 30 ms and a grid pulse width of 150 µs to build each
spectrum. HS-GC-IMS data were obtained by Standalone (GAS, Dortmund, Germany),
and the raw data were analyzed using VOCal (GAS, Dortmund, Germany) software to
reveal information regarding the composition of the samples.

2.3.3. Identification of Compounds

Compounds were identified by comparing their RIs and drift times with those of
pure standards under the same conditions. To obtain more accurate results, all standard
products were injected in batches. The information of the standards is shown in Table S2.
The RIs were calculated using a mixture of C4–C9 ketones.

2.4. Statistical Analysis

To validate the models for Baijiu age identification, all samples were randomly divided
into two categories: a test set and a prediction set. According the research of Gerhardt [30],
a total of 35 samples were used as the test set and 4 samples were used as the prediction
set. PLSR was used to establish a regression model between Baijiu ages (Y variable) and
the volatiles (X variables), using the test set with SIMCA software (version 14.1 Umetrics;
Sartorius Stedim Biotech AS; Umea, Sweden). The prediction ability of the model was
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validated using the prediction set. In this analysis, the data were subjected to Pareto scaling,
wherein each variable was divided by the square root of its standard deviation.

To reduce the risk of overfitting, the number of latent variables in the model was
decided by internal seven-fold cross-validation [31]. The samples were divided into seven
groups to verify the accuracy of the model. The quality of the PLSR model was evaluated
according to its R2Y and Q2 values, where R2Y represents the percentage of variation in
the Y variable and Q2 represents the predictive ability [17]. Both values range from zero
to one. Values closer to one indicate better goodness of fit and prediction ability. For the
parameter Q2, values greater than 0.4 are acceptable. In addition, a permutation test was
conducted to validate the robustness of the model [5].

3. Results and Discussion
3.1. Optimization of Headspace Parameters

Headspace conditions influence the response of HS-GC-IMS; therefore, researchers
typically conduct optimization experiments before using HS-GC-IMS to analyze food
samples, as has been conducted with olive oil, ham, and honey [17–19,26,32]. However,
the optimization of distilled spirits by HS-GC-IMS has not been reported thus far. In this
study, the headspace method parameters, including diluent, alcohol content, incubation
temperature, and injection volume, were optimized to obtain more information, resolution,
and signal intensity for the samples. To assess the effects of different parameters, Arroyo-
Manzanares et al. relied on visual observation of topographic maps [17], and del Mar
Contreras et al. used signal intensity [18]. In this study, three innovative indicators were
used: the number, the height, and the volume of the peaks. The number of peaks represents
the quantity of the detected compounds. The height and volume of the peaks reflect the
concentration of the detected compounds. Below a certain concentration, the height and
volume of the signals correspond to the concentration of the compound. However, when
the concentration is greater than that value, the height of the signals remains unchanged
and only the volume of the peaks increases. The number of protons provided by the
tritium source was fixed; therefore, to obtain a better and more stable response from the
low-concentration compounds during detection, the height and volume of the peaks were
used as the second and third indicators, respectively.

3.1.1. Effects of Salt Addition

There are two opposite effects caused by the addition of NaCl, called salting in and
salting out [18]. The addition of NaCl did not cause significant increases in the number
and total height of the signals, but it did significantly increase the total volume of the peaks
compared to that of the sample diluted with ultrapure water (Figures 1A–C and S1). Owing
to the salting out effect, the evaporation of volatile compounds from the solution to the
headspace was promoted by the addition of salt [29].

3.1.2. Effects of Alcohol Content

Ethanol content has two main effects on the detection of compounds. First, ethanol
influences the release of other compounds [33]. Second, ethanol molecules compete with
the compound molecules to have a fixed number of protons [20]. Thus, it was necessary to
determine the appropriate alcohol content. Alcohol content had a significant impact on
the HS-GC-IMS method (Figures 1D–F and S2). The number of peaks was largest at 15%
ethanol by volume (ABV), which is similar to the result at 10% ABV. However, the total
height of the signals with 15% ABV was significantly higher than that of 10% ABV. Thus,
each sample was diluted to 15% ABV for analysis, which is different from studies that
used 10% ABV brandy with GC-IMS [5] and 5% ABV Baijiu with HS-SPME-GC-MS [34].
In order to ensure the consistency of the alcohol content, an accurate test of the alcohol
content in each sample was carried out, and then each sample was diluted to 15% alcohol
by volume strictly in accordance with the proportion.
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3.1.3. Effects of Incubation Temperature

As demonstrated in the present study, the incubation temperature directly affects the
equilibrium concentration of volatile organic compounds in the headspace [35–37]. In this
study, the incubation temperature was varied from 40 to 70 ◦C (Figures 1G–I and S3). The
incubation temperature was not raised above 70 ◦C to prevent water vapor from interfering
with the operation of the instrument. The release of volatile organic compounds with
particularly high boiling points was promoted by increasing the incubation temperature,
which increased the intensity of the peaks [17]. For this reason, 70 ◦C was selected as the
optimal condition.

3.1.4. Effects of Injection Volume

The injection volume directly influences the concentration of volatile organic com-
pounds entering the detector, making it an imperative parameter to optimize. The injection
volume ranged from 40 to 300 µL. After considering all indicators, we determined that an
injection volume of 200 µL was the most suitable (Figures 1J–L and S4).

In summary, the final conditions were confirmed using a single-factor optimization
experiment. The original Baijiu sample was diluted to 15% ABV with saturated brine, and
each 20 mL vial was filled with 2 mL of the diluted sample. After incubation at 70 ◦C for
30 min, the autosampler sucked 200 µL of headspace gas into the chromatographic column
for sample analysis.

3.2. Identification of Compounds in Baijiu Samples

Baijiu samples of different vintages were analyzed under the optimized conditions
mentioned above. The results of the HS-GC-IMS analysis of samples A1–4 are shown as
topographic plots where the x-axis represents the normalized drift time, and the y-axis
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represents the retention time (Figure 2A). The red vertical line denotes the normalized
reaction ion peak. Each point in the plot represents one or multiple signals, and the
different colors describe the intensity of the signals. Deeper red indicates a stronger
intensity. Seventy-five percent of all signals appeared in the range of 1.0–2.0 ms with regard
to normalized drift time and in the range of 500–1200 s with regard to retention time.
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A total of 212 signals were detected in the Baijiu samples. A qualitative analysis led to
the identification of the relationships between these signals and the ageing compounds
in Baijiu. First, the RI of each compound was calculated using n-ketone. Then, the
compounds were identified by comparing their RIs and drift times with those of the
standard reference compounds, which are recorded in the NIST database and the IMS
database. Thereafter, an IMS database of compounds in Baijiu was established (Table 1).
A total of 93 compounds were identified in the samples, including 33 aldehydes and
ketones, 39 esters, 18 alcohols, and 1 acid. Dimers and trimers were found in the high-
concentration compounds. Notably, IMS provides the second separation of compounds,
making it possible to separate isomers [20]. There were some separated isomers, e.g., code
22: 3-methyl-1-butanol and code 33: pentan-2-ol, with the formula of C5H12O.

Distinguishing samples using HS-GC-IMS has several advantages [20,38]. First, HS-
GC-IMS is highly stable and sensitive and can accurately detect changes in compound
concentrations. Second, HS-GC-IMS can achieve 2D separation of the signal peak, similar
to two-dimensional gas chromatography and mass spectrometry (GC×GC-MS). Signal
peaks that are originally clustered together can be distinguished to identify additional
compounds by enlarging the gap between signals. This is useful to differentiate samples of
various ageing durations. Because of the 2D separation ability of HS-GC-IMS, peaks 59 and
66 could be separated from each other and were identified as 1-butanol and 2-heptanone,
respectively (Figure 2B).

A gallery plot was constructed of the voltage intensities of the 93 identified compounds
(Figure 3). There are no obvious differences in the intensities of the signal peaks in frame B
among samples of different age groups (Figure 3 frame B). In contrast, the intensities of the
signal peaks in frame A generally decrease for each year (Figure 3 frame A). A trend of
increasing signal intensity with age is apparent in frame C (Figure 3 frame C and Figure S5).
The remaining peaks change irregularly with ageing time.
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Table 1. Information about the identified volatiles in Baijiu samples detected by GC-IMS.

Number Codes Compound RI (4) Rt (s) (5) Dt (RIP Relative) (6) Location in Figure 3

Aldehydes and Ketones
1 21 (E)-2-hexenal 1210 1124 1.183 frame B
2 20 (E)-2-hexenal A (1) 1210 1124 1.512
3 46 (E,Z)-2,6-nonadienal 1590 2051 1.384
4 65 1,1-diethoxyethane 902 545 1.069
5 64 1,1-diethoxyethane A 902 545 1.204
6 66 2-heptanone 1163 1015 1.261 frame A
7 68 2-heptanone A 1157 1001 1.618 frame C
8 67 2-heptanone B (2) 1158 1003 1.734
9 9 2-methylbutanal 933 584 1.404 frame C
10 14 2-pentanone 931 582 1.375 frame B
11 11 3-methylbutanal 923 571 1.164 frame C
12 10 3-methylbutanal A 923 571 1.396
13 87 benzaldehyde 1518 1838 1.147
14 86 benzaldehyde A 1518 1839 1.267
15 88 benzaldehyde B 1518 1838 1.461
16 89 benzaldehyde C (3) 1518 1838 1.649 frame C
17 90 butan-2-one 915 561 1.059 frame C
18 48 butan-2-one A 914 561 1.242 frame C
19 63 butyraldehyde 889 530 1.097 frame B
20 8 butyraldehyde A 889 530 1.132 frame C
21 7 butyraldehyde B 889 530 1.275
22 60 furfural 1473 1716 1.08 frame A
23 61 furfural A 1472 1715 1.325 frame A
24 42 hexanal 1100 875 1.262
25 41 hexanal A 1100 875 1.556 frame C
26 6 methylpropanal 830 464 1.112 frame B
27 5 methylpropanal A 830 464 1.117 frame C
28 4 methylpropanal B 830 464 1.277 frame A
29 79 nonanal 1361 1449 1.565 frame A
30 78 nonanal A 1361 1449 1.961 frame C
31 72 octanal 1302 1324 1.401 frame A
32 47 propan-2-one 849 471 1.117 frame A
33 3 propionaldehyde 816 450 1.073 frame A
34 1 propionaldehyde A 816 450 1.142
35 2 propionaldehyde B 816 450 1.166 frame A
Esters
36 62 1-methylethyl acetate 841 476 1.165
37 37 2-methyl butanoic acid ethyl ester 1084 841 1.259
38 36 2-methyl butanoic acid ethyl ester A 1084 841 1.647
39 71 3-methylbutyl butanoate 1275 1265 1.405 frame A
40 70 3-methylbutyl butanoate A 1274 1261 1.932
41 54 3-methylbutyl hexanoate 1463 1672 2.127
42 40 butyl acetate 1087 846 1.62
43 39 ethyl 3-methylbutanoate 1070 811 1.246
44 38 ethyl 3-methylbutanoate A 1070 811 1.646 frame C
45 23 ethyl 4-methylpentanoate 1198 1098 1.774 frame B
46 12 ethyl acetate 909 554 1.097
47 13 ethyl acetate A 909 554 1.333 frame A
48 92 ethyl butyrate 1065 800 1.204 frame B
49 91 ethyl butyrate A 1065 800 1.557 frame B
50 18 ethyl heptanoate 1350 1426 1.41 frame B
51 19 ethyl heptanoate A 1350 1426 1.907 frame C
52 56 ethyl hexanoate 1249 1210 1.339 frame C
53 50 ethyl hexanoate A 1253 1220 1.782 frame C
54 15 ethyl isobutyrate 990 664 1.312 frame A
55 16 ethyl isobutyrate A 991 664 1.312 frame B
56 17 ethyl lactate 1357 1441 1.531 frame A
57 28 ethyl pentanoate 1153 991 1.276 frame A
58 27 ethyl pentanoate A 1153 991 1.672 frame B
59 77 propyl hexanoate 1327 1377 1.398
60 76 propyl hexanoate A 1327 1375 1.855 frame C
61 51 propyl hexanoate B 1327 1380 1.91 frame C
62 35 isoamyl acetate 1133 945 1.304 frame A
63 34 isoamyl acetate A 1133 945 1.745 frame A
64 31 isobutyl acetate 1031 734 1.604
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Table 1. Cont.

Number Codes Compound RI (4) Rt (s) (5) Dt (RIP Relative) (6) Location in Figure 3

Aldehydes and Ketones
65 53 methyl 2-methylbutanoate 1022 723 1.533
66 25 methyl hexanoate 1195 1093 1.285
67 24 methyl hexanoate A 1195 1093 1.67 frame C
68 45 octanoic acid ethyl ester 1438 1627 1.476
69 44 octanoic acid ethyl ester A 1437 1626 1.905 frame C
70 43 octanoic acid ethyl ester B 1437 1626 2.017
71 69 pentyl acetate 1183 1063 1.312 frame A
72 57 pentyl acetate A 1181 1061 1.754 frame A
73 55 pentyl butanoate 1328 1382 1.955 frame C
74 49 propanoic acid ethyl ester 978 648 1.45 frame B
Alcohols
75 74 1-hexanol 1361 1450 1.321
76 73 1-hexanol A 1360 1447 1.657
77 75 1-hexanol B 1360 1447 1.761
78 85 1-octanol 1523 1853 1.301
79 84 1-octanol A 1523 1852 1.83
80 83 1-octanol B 1522 1850 1.869
81 26 2-methyl-1-propanol 1089 851 1.15 frame A
82 22 3-methyl-1-butanol 1216 1136 1.503 frame B
83 59 1-butanol 1161 1010 1.184
84 58 1-butanol A 1161 1010 1.383 frame A
85 30 butan-2-ol 1042 755 1.23 frame B
86 29 butan-2-ol A 1042 755 1.33 frame B
87 81 heptan-1-ol 1417 1577 1.398
88 80 heptan-1-ol A 1417 1578 1.472
89 82 linalool 1543 1908 1.253
90 33 pentan-2-ol 1132 944 1.287 frame A
91 32 pentan-2-ol A 1132 944 1.451 frame B
92 93 terpinen-4-ol 1589 2048 1.221 frame A
Acid
93 52 acetic acid 1467 1680 1.152 frame A

(1) Superscript A means that the compound is a dimer; (2) superscript B means that the compound is a trimer; (3) superscript C means
that the compound is a tetramer; (4) RI, retention index of the compound; (5) Rt, retention time of the compound; (6) Dt, drift time of the
compound.
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While some of the relationships between volatiles and ageing time were observable on
a gallery plot, others required multivariate statistical analysis to differentiate and identify.

3.3. Establishment and Validation of Models for Baijiu Age Identification

The test set was used to establish a PLSR model for the identification of Baijiu
age. Two data arrays were detected using HS-GC-IMS, including 212 signal peaks and
93 identified compounds. In some studies using GC-MS, UPLC-Orbitrap-MS/MS, GC-
pulsed flame photometric detection, and GC-flame ionization detection, samples were
discriminated [8,39,40]. With HS-GC-IMS, all of the signal peaks are usually used to estab-
lish the model because of the small number of identified compounds [18,24,26,41]. In this
study, both signals and identified compounds were used to build models, and one data
array was selected for in-depth analysis.
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The PLSR models based on 212 signal peaks and 93 identified compounds were
named Model A and Model B, respectively. Four latent variables were selected to build
the models in cases where the fifth latent variable was insignificant after seven-fold cross-
validation. The value of Q2 was 0.962 in Model A and 0.968 in Model B. The value of
R2Y was 0.990 in Model A and 0.988 in Model B. The values of both Q2 and R2Y were
close to one, and there was little difference between the two models. This indicates that
the optimized HS-GC-IMS conditions for untargeted analysis of samples can be used
to distinguish samples from different years. The model has reliable predictive abilities
and fit (Figure 4a,b), demonstrating that HS-GC-IMS has broad applications to sample
differentiation.
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A permutation test was performed to validate the robustness of the PLSR models
(Figure 4c,d). This method involves running a random arrangement of sample data and
then conducting statistical inference, which increases the number of samples fed into the
model. This is particularly suitable for models with a small number of samples. The result
was obtained through 200 permutation tests using SIMCA software. In Figure 4c,d, all
the Q2 values (blue) and R2 values (green) to the left are lower than the original points to
the right. Moreover, the regression line of the Q2 points intersects the y-axis below zero.
Therefore, neither model has a risk of overfitting, which indicates that both models are
valid.
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The PLSR models for Baijiu age identification were established based on the sufficient
Baijiu samples from different years having different concentrations of aroma compounds.
A connection was built between the age of the Baijiu and the concentration of aroma
compounds, which made it feasible to use the model to identify the age of Baijiu.

To more accurately understand the predictive ability of the established PLSR model,
the prediction set (four Baijiu samples assumed to have unknown ages) was used to verify
the model (Figure 4e,f). With a reliable model, all the points should fall close to the 45◦

line through the origin, and the prediction set should be close to the regression line. The
goodness of fit value (R2) of the regression line indicates the fitness level. The closer the R2

to one, the better the fit of the model. The value of R2 was 0.9923 in Model A and 0.9986 in
Model B. The root mean square error of prediction (RMSEP) of Model A was larger than that
of Model B, being 0.671 and 0.244, respectively. In addition, as shown in Supplementary
Table S3, the deviation of Model B was smaller than that of Model A, implying that Model
B has a stronger predictive ability than that of Model A. HS-GC-IMS was sensitive to
aldehydes, ketones, esters, and alcohols; thus, many of these substances were detected.
In addition, previous studies have shown that alcohols, esters, aldehydes, and ketones
undergo significant changes during the Baijiu ageing process [8,12,42]. Therefore, analyzing
the changes in these compound concentrations can distinguish and identify the age of the
samples.

In summary, PLSR Model B, based on 93 identified compounds, had better fitting
and predictive abilities and more accurately distinguished Baijiu samples from different
vintages and identified their ages. It is worth noting that the method can also be applied to
other alcoholic beverages based on analyzing sufficient numbers of samples to distinguish
and identify the age of unknown samples.

According to Model B, there were 19 compounds with variable importance for pre-
diction (VIP) scores greater than one. These 19 compounds (Figure 5), including ethyl
hexanoate A, propyl hexanoate A, ethyl pentanoate A, ethyl heptanoate A, ethyl acetate A,
2-methyl-1-propanol, methylpropanal B, butan-2-ol A, octanoic acid ethyl ester B, isoamyl
acetate A, ethyl butyrate A, nonanal, ethyl hexanoate, ethyl lactate, 2-methyl butanoic
acid ethyl ester A, 3-methyl-1-butanol, octanal, furfural A, and 1-hexanol A, were most
important for identifying the ages of samples. Fifty-eight percent of the total compounds in
Baijiu were esters, which illustrates that these important flavor compounds play a crucial
role in establishing a regression model for Baijiu age [8,12,41]. The remaining compounds
with VIP scores greater than one were alcohols and aldehydes, accounting for a combined
21% of the 19 compounds. Overall, HS-GC-IMS exhibited outstanding performance at
identifying the sample age, implying that fewer compounds can be used in future tests to
make it more rapid. Therefore, it is reasonable to apply HS-GC-IMS to age Baijiu.

Ethyl hexanoate A, propyl hexanoate A, ethyl pentanoate A, and ethyl heptanoate A

(Figure 5a–d) were positively correlated with ageing time, while ethyl acetate A, 2-methyl-1-
propanol, and methylpropanal B (Figure 5e,f) were negatively correlated with ageing time.
The R2 values for these compounds were greater than 0.65. The remaining compounds
(Figure 5g–s) play an important role in the discrimination of the ageing year, but have no
linear correlation with Baijiu age, exhibiting R2 values of less than 0.6.

The change in compounds is also affected by the ageing method, manufacturer, and
storing conditions, which may reduce the accuracy of the prediction. In future study, a
larger number of samples will be collected to improve the accuracy of the prediction. In
the study, the voltage intensity of the compound was used to identify the age of the Baijiu.
However, it is important to determine the absolute concentration of compounds so that
the age of samples from different batches can be identified. Thus, the determination of
absolute concentration is part of our next plan.



Foods 2021, 10, 2888 11 of 14
Foods 2021, 10, x  12 of 15 
 

 

 
Figure 5. Scatter plots of the changes in voltage intensity of ethyl hexanoate A (a), propyl hexanoate A (b), ethyl pentanoate 
A (c), ethyl heptanoate A (d), ethyl acetate A (e), 2-methyl-1-propanol (f), methylpropanal B (g), butan-2-ol A (h), octanoic 
acid ethyl ester B (i), isoamyl acetate A (j), ethyl butyrate A (k), nonanal (l), ethyl hexanoate (m), ethyl lactate (n), 2-methyl 
butanoic acid ethyl ester A (o), 3-methyl-1-butanol (p), octanal (q), furfural A (r), and 1-hexanol A (s). 

Ethyl hexanoate A, propyl hexanoate A, ethyl pentanoate A, and ethyl heptanoate A 
(Figure 5a–d) were positively correlated with ageing time, while ethyl acetate A, 2-methyl-
1-propanol, and methylpropanal B (Figure 5e,f) were negatively correlated with ageing 

Figure 5. Scatter plots of the changes in voltage intensity of ethyl hexanoate A (a), propyl hexanoate A (b), ethyl pentanoate
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4. Conclusions

This study demonstrated the potential of HS-GC-IMS to discriminate Baijiu of different
ages. HS-GC-IMS combined with PLSR performed excellently in distinguishing Baijiu
samples of different ages. PLSR Model A, based on 212 signal peaks, and PLSR Model B,
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based on 93 identified compounds, were both valid; however, Model B more accurately
identified the ages of unknown Baijiu samples, exhibiting R2 value of 0.9986 and RMSEP
of 0.244. HS-GC-IMS combined with PLSR also has better accuracy and precision for age
detection than other methods. There were 19 compounds with VIP scores greater than
one in Model B, including 11 esters, 4 alcohols, 4 aldehydes, and 1 acid. Among them,
seven compounds are potential ageing markers in Baijiu samples, which are positively or
negatively correlated with ageing time. Consequently, HS-GC-IMS combined with PLSR
can be used to rapidly and accurately identify the age of Baijiu.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods10112888/s1, Figure S1: Topographic plot of Baijiu samples diluted with saturated
brine (A), ultrapure water (B) detected by GC-IMS, Figure S2: Topographic plot of Baijiu samples
diluted in different alcohol content detected by GC-IMS, Figure S3: Topographic plot of Baijiu
samples detected by GC-IMS in different incubation temperature, Figure S4; Topographic plot of
Baijiu samples detected by GC-IMS with different injection volume, Figure S5: Topographic plot
of Baijiu samples with different years detected by GC-IMS, Table S1: Baijiu samples, Table S2: The
information of standards, Table S3: The age discrimination of the prediction set samples.

Author Contributions: Conceptualization, S.C. and J.L.; methodology, X.S.; software, J.G.; validation,
S.C., M.Q. and J.Z.; formal analysis, J.L.; investigation, S.C., J.L. and X.S.; resources, H.H., A.L. and
X.S.; data curation, J.G.; writing—original draft preparation, S.C. and J.L.; writing—review and
editing, J.L., M.Q., J.Z. and S.C.; visualization, Y.X.; supervision, Y.X. and S.C.; project administration,
Y.X.; funding acquisition, Y.X. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No.
32172331), National Key R&D Program of China (No. 2018YFC1604100), and the project funded by
the China Postdoctoral Science Foundation (No. 2018M631971).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. MacNamara, K.; Dabrowska, D.; Baden, M.; Helle, N. Advances in the ageing chemistry of distilled spirits matured in oak barrels.

LC GC Eur. 2011, 24, 448–467.
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