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Abstract: Brazil is the world’s third largest common bean (Phaseolus vulgaris L.) producer, and 60%
of its population consumes this legume. Although organic farming is a sustainable alternative to
nonorganic agriculture, its effect on chemical composition is still controversial. Therefore, the aim of
this study was to investigate differences in the nutritional and phenolic compounds profiles between
organically and nonorganically produced Brazilian black beans. Samples were obtained from the
same harvest periods and from near geographical locations at metropolitan and coastal regions of
Rio de Janeiro state, Brazil. No residues of 294 evaluated pesticides were detected in the samples. In
both regions, organic beans had 17% fewer lipids, 10% less phytate and 20% more proteins when
compared to nonorganic ones. Sixteen different phenolic compounds were identified as soluble and
insoluble forms in black beans, with anthocyanins being the most abundant (on average, 66%). In
both regions, soluble and total phenolic compounds contents in organic beans were consistently
higher (on average, 25% and 28%, respectively) than in nonorganic ones. Our results show that
organic farming improves the nutritional profile and increases the phenolic compounds content of
black beans.

Keywords: minerals; pesticides; phenolic compounds; phytate; production system; protein

1. Introduction

Brazil is the world’s third largest dry bean producer, behind Myanmar and India, with
a production corresponding to approximately 10% of the 28.9 million tons produced in
2019, according to FAO [1]. Although consumption of this legume has been decreasing
over time, beans are typical of Brazilian cuisine and, according to the latest available data,
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consumption frequency by the general population is 60%. Moreover, this legume is one of
the most consumed foods in Brazil, with a daily average of 142 g per capita [2].

In general, legumes present high levels of protein, fiber, minerals and complex car-
bohydrates, in addition to having low levels of lipids [3]. Among minor compounds,
legumes show phenolic compounds, as well as phytates and trypsin inhibitors, which are
considered antinutritional factors [4]. Studies show that legumes have antioxidant activity
both in vitro and in animals [5,6]. Particularly for beans, several studies have reported
that their consumption is associated with a lower risk of developing noncommunicable
diseases, such as some types of cancer, cardiovascular diseases, diabetes mellitus, and
obesity [7]. These benefits are not only associated with the presence of fibers, proteins, min-
erals and vitamins, but also with bioactive compounds, mainly phenolic compounds [8,9].
In vitro studies that evaluated bean extracts rich in phenolic compounds have observed
both antiproliferative and anti-inflammatory effects [10–12].

Beans are an important dietary source of proteins, minerals and dietary fibers, and are
rich in flavonols and anthocyanins [13]. In fact, beans are the second most important dietary
source of phenolic compounds in Brazil [14]. In general, the nutritional and bioactive
compounds profile of foods may be influenced by climate conditions, soil, and cultivar, as
well as agricultural practice (i.e., nonorganic or organic farming) [15,16]. Since phenolic
compounds are secondary plant metabolites, their biosynthesis is especially affected by
stresses during cultivation, which is closely related to agricultural practice [17].

Organic farming has been recognized as a sustainable alternative to nonorganic agri-
culture. In addition to respecting social and cultural aspects, organic agriculture adopts
sustainable practices throughout the production process, which is also characterized by not
using pesticides and synthetic fertilizers. Consumers perceive organic foods as healthier
and safer than nonorganic [18], which is reflected in the growing number of organic produc-
ers throughout the world. However, there are only few studies about the health effects of
organic food consumption. The Nutrinet-Santé cohort study reported that, among French
adults, those with higher frequency of organic food consumption had a lower risk of cancer,
probably due to lower ingestion of pesticides by the organic food consumers [19]. Moreover,
studies that evaluated the effect of organic farming on food chemical composition showed
controversial results. While some authors reported small or no differences in minerals [15]
and phenolic compounds contents between organic and nonorganic food [15,20], in a meta-
analysis study, Barański et al. [16] observed lower levels of protein and fibers and higher
levels of phenolic compounds in organic foods in comparison to nonorganic. Furthermore,
there are a few studies evaluating differences between production systems, especially in
relation to legumes.

In this way, the objective of this study was to investigate differences in the nutri-
tional and phenolic compound profiles between organically and nonorganically produced
black beans.

2. Materials and Methods
2.1. Chemicals and Materials

Standard solutions of minerals were purchased from Quimlab Química & Metrologia®

(São Paulo, Brazil). Ion exchange column AG® 1-X8 was purchased from BIO RAD (Her-
cules, CA, USA). Kjeldahl catalyst was purchased from Vetec (Rio de Janeiro, Brazil).
Suprapur® sodium acetate, EMSURE anhydrous magnesium sulphate and formic acid
were obtained from MERCK® (Darmstadt, Germany). Anthocyanin and non-anthocyanin
standards were purchased respectively from Indofine Chemical Co. (Hillsborough, NJ,
USA) and Sigma-Aldrich Chemical Co. (St. Louis, MO, USA and Milwaukee, WI, USA).
The reference materials for pesticides were purchased from AccuStandard (New Haven,
CT, USA) and Dr. Ehrenstorfer (Augsburg, Germany). Phytic acid was purchased from
Aldrich Chemical Company, Inc. (Milwaukee, WI, USA). Total Dietary Fiber Assay Kit
was purchase from Sigma-Aldrich (St. Louis, MO, USA). All solvents were High Perfor-
mance Liquid Chromatography (HPLC) grade from Tedia (Fairfield, OH, USA) or MERCK®
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(Darmstadt, Germany). HPLC grade water (Milli-Q System, Millipore, Bedford, MA, USA)
was used throughout the experiments.

2.2. Black Bean and Soil Samples

Four black beans (Phaseolus vulgaris L., cv. “BR1-XODÓ”) samples were obtained from
two distinct regions of Rio de Janeiro state, Brazil. The first set of samples was from the
metropolitan region: organic beans were grown at Guapimirim county (~22◦33′33.6′′ S,
43◦00′24.1′′ W) and the nonorganic ones at Magé county (~22◦36′43.0′′ S, 43◦07′54.8′′ W).
The second set of samples was from the coastal region: both organic and nonorganic
beans were grown at Araruama county (~22◦43′21.9′′ S, 42◦15′57.8′′ W and ~22◦37′29.3′′ S,
42◦15′43.1′′ W for organic and nonorganic beans, respectively). The distance between
farms where organic and nonorganic beans were grown in the metropolitan and coastal
regions was about 14 km and 10.5 km, respectively (Figure 1). Although the state of Rio
de Janeiro is not a large producer of beans nationwide, it was chosen because there are
organic and nonorganic producers located close to each other in both regions studied.
All samples were harvested in the winter season, between July 1st and September 15th,
2016. Together, the chosen harvest locations and periods ensured that eventual chemical
composition differences between samples could be associated with organic or nonorganic
farmers rather than other effects, such as climatic conditions. Samples were ground in a
laboratory mill and kept at −20 ◦C until analysis.

1 
 

 
Figure 1. Map showing the coastal and metropolitan regions of Rio de Janeiro state, Brazil, where
black bean samples were collected.

Organic farms were certified through the Participatory Guarantee System (PGS) by the
Association of Biological Producers of Rio de Janeiro (Associação de Produtores Biológicos
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do Estado do Rio de Janeiro—ABIO), which is accredited by the Brazilian Ministry of
Agriculture, Livestock and Food Supply. It is important to describe that the coastal organic
producer has been using a rhizobia bacteria-based inoculant in bean crops since 2013, in
collaboration with Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Agrobiologia.

Samples of soils in which the beans were grown were collected close to the harvesting
period. They were ground, dried in an oven at 60 ◦C for 24 h, and kept at room temperature
until analysis.

2.3. Soil Chemical Analysis
2.3.1. Mineral Composition

Soil digestion was performed in duplicate according to United States Environmental
Protection Agency (USEPA 3050b method) [21]. Calcium, phosphorus, iron, magnesium,
manganese, potassium, copper, zinc and sodium contents in soil samples were determined
using an optical emission spectrometer with inductively coupled plasma source (ICP OES),
with radial vision (Horiba Jobin Yvon, Ultima 2, Longjumeau, France), equipped with a cy-
clonic spray chamber and a parallel flow nebulizer MiraMist type (Mira Mist EC, Burgener
Research Inc., Ontario, Canada), AS 421 automatic sampler and Analyst 5.4 operational
software for data acquisition. The quantification was performed by interpolation using
analytical curve with four standard solutions for calibration. These solutions were prepared
by diluting a standard stock solution SpecSol 1000 or 10,000 mg/L (Quimlab Química &
Metrologia®, Jacareí, Brazil) to obtain the desired concentrations using matrix matching
and ultrapure water. The operating conditions of ICP OES were 1200 W of incident power,
12 L/min of plasma gas flow rate, 0.2 L/min of coating gas flow rate, 0.02 L/min of neb-
ulization gas flow rate, 1 bar of nebulizer pressure, 1.0 mL/min of sample introduction
flow rate, 1 s of integration time and high resolution. The wavelengths (nm) used were Fe
(259.940), K (766.490), Mn (257.610), Na (588.995), P (214.914), Ca (396.847), Zn (213.856),
Cu (324.750) and Mg (279.553).

2.3.2. Nitrogen Content

The nitrogen analysis was performed according to Kjeldahl method [22].

2.4. Black Beans Chemical Analysis
2.4.1. Pesticides Residues

The pesticide residues analysis was carried out according to QuEChERS method, with
adaptations [23]. Aliquots of 5.0 g of black beans samples were weighed in 50 mL disposable
screw-capped polypropylene centrifuge bottles. As black beans are dry samples, ultrapure
water (approximately 4.5 mL) was added and homogenized. For extraction, acetonitrile
(10 mL) containing 1% acetic acid was used. After vortex homogenization, a solid mixture
of 6.0 g of magnesium sulfate and 1.5 g of sodium acetate were added. The samples were
homogenized again and centrifuged at 3000 rpm for 7 min at 20 ◦C. Two fortifications were
carried out at the first level of quantification (8 µg/kg) for the evaluated pesticides, and
method recoveries were calculated considering adequate recovery values ranging from 70
to 120%. Stock solutions from 100 to 400 µg/mL were prepared. Intermediate solutions
were made up to the concentrations of the analytical curves, which ranged from 0.002 to
0.008 µg/mL, where 0.002 µg/mL (8.0 µg/kg in the matrix) was the limit of quantification.

The chromatograph was equipped with a binary pump system, automatic injector,
degasser and oven column. The column used for the chromatographic separations was a
reverse phase ACQUITY UPLC™ BEH C18 (1.7 µm, 2.1 mm × 100 mm) (Waters, Milford,
MA, USA). The pre-column was a VanGuard™ BEH C18 (1.7 µm) (Waters, Milford, MA,
USA). The mobile phase was as follows: 5 mM ammonium formate, 0.1% formic acid and
10% methanol in deionized water (eluent A) and methanol (eluent B). The initial elution
gradient was 82.5% of eluent A, with a linear ramp until reaching 5.5% of the same eluent
in a linear curve. The mobile phase flow rate was set at 0.3 mL/min and the injection
volume was of 5 µL. The total analysis time was 25 min.
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The sequential mass detector was equipped with an electrospray ionization source
(Z-SprayTM, Waters, Milford, MA, USA) operating in positive ionization mode and a
MassLynxTM Version 4.1 workstation. The mass spectrometer operation conditions were
optimized for multiple reaction monitoring (MRM) mode, through the indication of precur-
sor ions and product ions. Two ion transitions were selected (m/z) for each pesticide. The
source parameters were capillary voltage 0.98 kV, desolvation temperature of 400 ◦C and
source temperature of 100 ◦C. Nitrogen was used as the cone gas at flows of 50 L/h. Argon
was used as the collision gas at a pressure of 3.5 µbar.

2.4.2. Proximate Composition

Moisture, protein, lipid, dietary fiber and ash contents of beans were determined
in triplicate, according to official methods [22]. Carbohydrate content was determined
by difference.

2.4.3. Phytate Content

Phytate content was determined in triplicate. Phytates were extracted with HCl
2.4% [24] and sample cleanup was performed using an AG® 1-X8 anion exchange col-
umn [25]. Extracts were mixed with Wade’s reagent (0.003 g/L FeCl3. 6H2O and 0.03 g/L
sulfosalicylic acid in distilled water) and absorbance was measured at 500 nm (Shimadzu
UV-1800, Kyoto, Japan) [24]. Quantification was performed by external calibration.

2.4.4. Mineral Composition

Bean digestion was performed in triplicate according to official methods [22]. Min-
eral contents were performed using the same conditions of the soil analysis, described
in Section 2.3.1.

2.4.5. Phenolic Compounds

Extraction of soluble and insoluble phenolic compounds from black beans was per-
formed in triplicate, according to an adaptation of the methodology of Matilla and Kumpu-
lainen [26].

For soluble phenolic compounds, 2 grams of sample were vortexed with 20 mL of
cold ethanol:water:hydrochloric acid (79:20:1, v/v/v) for 10 min and centrifuged (2500× g,
5 min, 10 ◦C). The supernatant was collected, and the residue re-extracted using the same
procedure. Supernatants were combined, the solvent was removed, and the dry residue
was reconstituted in HCl 0.01 M.

For insoluble phenolic compounds, we performed sequential alkaline and acid hy-
drolysis. For the alkaline hydrolysis, the solid residue remaining after the soluble phenolic
extraction was incubated with 12 mL of water and 5 mL of NaOH (10 M) at room temper-
ature in the dark for 16 h with orbital agitation (360 rpm). After this period, the pH was
adjusted to 2 and the mixture was extracted for 30 s with 15 mL of ethyl acetate. After
centrifugation (2500× g, 5 min, 10 ◦C), the supernatant was collected and the extraction
procedure repeated twice. Supernatants were combined, the solvent was removed, and the
dry residue was reconstituted in methanol 80%. For the acid hydrolysis, the solid residue
remaining after the alkaline hydrolysis was incubated with 2.5 mL of concentrated HCl
at 85 ◦C for 30 min. Then, the same extraction with ethyl acetate described for alkaline
hydrolysis was performed.

All extracts were filtered through a 0.45 µm cellulose ester membrane (Millipore®,
São Paulo, Brazil) prior to HPLC analysis.

Phenolic compounds were analyzed according to Inada et al. [27] in an HPLC system
(Shimadzu, Kyoto, Japan) composed of LC-20AT quaternary pump, SPD-M20A diode array
detector (DAD), control system CBM-20A, DGU-20A5 degasser and SIL-20AC automatic
injector coupled to LCMS-2020 mass spectrometer.

Chromatographic separation of non-anthocyanin phenolic compounds was achieved
using a reverse phase column (C18, 5 µm, 250 mm× 4.6 mm, Kinetex®, Torrance, CA, USA)
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and the mobile phase consisted of a gradient of 0.3% aqueous formic acid (eluent A) and
methanol (eluent B), both containing 1% of acetonitrile. The flow was 1.0 mL/min. Prior to
injection, the column was equilibrated with 18% B. After injection, solvent composition was
modified to 20% B in 1 min, 43% B in 18 min, and 85% B in 23 min, and kept constant for
30 min. Between injections, 10 min intervals were allowed to re-equilibrate the column with
18% B. Compounds were monitored at DAD from 190 to 370 nm and at mass spectrometer
(MS) by negative selected ion monitoring (SIM) mode.

Chromatographic separation of anthocyanins was achieved using a reverse phase
column (C18, 5 µm, 150 mm × 4.6 mm, Kinetex®) and the mobile phase consisted of a
gradient of 1% aqueous formic acid (eluent A) and methanol (eluent B), both containing 2%
of acetonitrile. The flow was 1.0 mL/min. Prior to injection, the column was equilibrated
with 18% B. After injection, solvent composition was kept constant for 2 min, and then
modified to 32% B in 6 min, 52% B in 8 min, and 18% B in 18 min. Between injections,
10 min intervals were allowed to re-equilibrate the column with 18% B. Anthocyanins were
monitored at DAD at 530 nm and at MS by positive SIM mode.

Identification of all phenolic compounds was performed by comparison with retention
time and UV-Vis absorption and MS spectra of the respective standard. Quantification was
performed by external calibration. Identification of compounds for which no commercial
standard was available (quercetin-3-O-glucoside, myricetin-3-O-glucoside, kaempferol-3-
O-glucoside, malvidin-3-O-glucoside and petunidin-3-O-glucoside) was performed by MS
spectra and, for their quantification, the corresponding aglycone was employed. Pelargoni-
din and malvidin were quantified together, since their chromatographic separation was
not possible.

2.5. Statistical Analyses

Data were expressed as mean ± standard deviation. The chemical composition be-
tween nonorganic and organic black bean and soil samples from the same region were
compared by an unpaired t-test. Differences between chemical composition of black bean
samples grouped according to the production system (nonorganic or organic), indepen-
dently of production region, were evaluated by paired t-test. All statistical analyses were
performed using GraphPad Prism version 7.0 (GraphPad Software, San Diego, CA, USA).
Results were considered significant when p < 0.05.

3. Results and Discussion
3.1. Pesticide Residues Were Not Detected in Any Sample

Considering the limit of quantification (8.0 µg/kg), no residues of 294 evaluated
pesticides (Table S1) [28] were detected in the samples. However, nine pesticides already
reported in Brazilian beans (procymidone, fenpropatrin, permethrin, fipronil, endosul-
fan, allethrin, phenotrothione, cypermethrin), as well as glyphosate, which is the most
employed pesticide worldwide and in Brazil [29], were not evaluated in this study due to
analytical limitations.

3.2. Organically Produced Black Beans Contain Approximately 20% More Proteins than
Nonorganically Produced Ones

Ashes, lipids, proteins, dietary fibers and carbohydrates contents in all black bean
samples were in accordance with the literature [30]. Although lipid contents in organic
black beans were, on average, 17% lower than that of nonorganic beans (Table 1), this result
is of low significance, as beans are not relevant dietary sources of this nutrient. Organic
beans cultivated in the coastal region showed 31% higher protein contents than nonorganic
(Table 1). For the metropolitan region, the same behavior was observed, but of a lower
magnitude (8%). To the best of our knowledge, protein contents in organic and nonorganic
beans have not been investigated. Organic soybeans also showed higher protein contents
compared to nonorganic ones [31]. On the other hand, in a meta-analysis of 343 original
articles, which investigated several food groups such as fruits, vegetables, cereals, oil
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seeds and pulses, and herbs and spices, only organic cereals had lower protein contents
compared to nonorganic ones, which may be associated with their lower nitrogen input
and availability [16].

Table 1. Proximate composition, phytate and minerals of nonorganic and organic black beans cultivated at the coastal and
metropolitan regions.

Coastal Region Metropolitan Region
Nonorganic Organic Nonorganic Organic

Proximate composition and phytate (g/100 g, dry weight basis)
Lipid 1.7 ± 0.1 1.4 ± 0.0 * 1.9 ± 0.1 1.6 ± 0.1 *

Protein 19.2 ± 0.4 25.2 ± 0.1 * 22.4 ± 0.0 24.3 ± 0.3 *
Ash 4.2 ± 0.0 3.8 ± 0.2 * 4.4 ± 0.2 4.4 ± 0.1

Carbohydrate 26.8 27.7 25.8 23.1
Total dietary fiber 35.5 ± 2.6 30.8 ± 1.2 * 31.2 ± 0.5 32.1 ± 0.9

Insoluble dietary fiber 31.9 ± 1.4 29.8 ± 0.5 * 27.2 ± 0.7 27.0 ± 0.8
Soluble dietary fiber 3.60 1.00 3.95 5.11

Phytate 1.86 ± 0.02 1.76 ± 0.02 * 2.08 ± 0.07 1.83 ± 0.11 *
Minerals (mg/100 g, dry weight basis)

Ca 158.6 ± 3.2 102.2 ± 11.4 * 152.9 ± 2.4 176.4 ± 3.4 *
Cu 1.01 ± 0.08 0.58 ± 0.05 * 1.15 ± 0.03 0.83 ± 0.01 *
Fe 4.13 ± 0.2 4.11 ± 0.4 4.56 ± 0.2 4.69 ± 0.3
K 1351.4 ± 25.6 1354.9 ± 3.8 1368.7 ± 11.7 1461.6 ± 21.5 *

Mg 156.4 ± 4.3 146.2 ± 3.1 171.1 ± 2.6 169.1 ± 2.4
Mn 1.97 ± 0.15 1.01 ± 0.16 * 1.46 ± 0.02 1.10 ± 0.08 *
Na 15.1 ± 9.5 10.6 ± 4.1 20.9 ± 0.17 8.98 ± 2.4 *
P 249.0 ± 56.4 318.2 ± 51.4 394.5 ± 14.4 372.9 ± 27.9

Zn 1.95 ± 0.10 1.61 ± 0.27 2.57 ± 0.08 2.31 ± 0.04 *

Results were expressed as mean ± standard deviation (n = 3). The asterisk indicates significant difference between nonorganic and organic
black beans samples from the same region (unpaired t-test, p < 0.05).

Soils from organic management farms showed 78% and 55% lower nitrogen contents
than that of nonorganic, at the costal and metropolitan regions, respectively (Table 2). This
result may be explained by the frequent use of chemical fertilizers (usually rich in nitrogen)
at nonorganic farms [16]. At first glance, these data would contradict the protein results
observed for our black bean samples. However, it is known that the main pathway for
nitrogen absorption in legumes, such as beans and soybeans, is not nitrogen uptake from
the soil, but, rather, fixation of atmospheric nitrogen through symbiosis with rhizobium
bacteria [32]. In that sense, the use of pesticides may affect this symbiosis by decreasing
bacterial population and/or symbiotic efficiency [33], therefore affecting nitrogen fixation
and, ultimately, protein legume contents. In this way, glyphosate appears to inhibit
aromatic amino acid biosynthesis through inhibition of the enzyme enolpyruvylshikimate-
3-phosphate synthase of the shikimate pathway [34]. In our study, glyphosate, the most
commonly used herbicide in Brazil has not been evaluated, and and information about soil
fertilization practices has not been collected. Therefore, it was not possible to know whether
the differences in protein contents were related to the use of this pesticide. However, a
meta-analysis with 56 studies shows that, overall, organic farming enhances total microbial
abundance and activity in agricultural soils on a global scale. This meta-analysis found
that soils from organic systems had 51% higher microbial nitrogen than conventionally
farmed ones [35]. We hypothesize that this may partly explain the higher protein contents
in organic beans, despite the lower nitrogen contents in the soils from organic management
farms observed in our study. Besides that, microbial inoculants can be used to supply the
plant’s nitrogen demand, thus increasing grain yield and improving soil fertility [36]. The
application of inoculant was reported by the coastal organic producer of our study.

Considering that the consumption of beans represents one of the main sources of
dietary protein, especially by low-income people in developing countries [7], access to
organic beans may be beneficial to this population.
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Table 2. Soil mineral composition (mg/kg, dry weight basis) of nonorganic and organic management
farms located at the coastal and metropolitan regions.

Coastal Region Metropolitan Region

Nonorganic Organic Nonorganic Organic

Ca 938.6 ± 1.8 131.8 ± 55.6 * 941.5 ± 42.4 1322 ± 223
Cu 9.4 ± 0.07 traces * 8.75 ± 0.3 0.69 ± 0.47 *
Fe 18,356 ± 725 1228 ± 239 * 3625 ± 80 24,351 ± 2104 *
K 2062 ± 57 traces * 184.4 ± 14.3 1306 ± 150 *

Mg 3171 ± 45 traces * 61.1 ± 18 3311 ± 361 *
Mn 219.7 ± 3.7 11.7 ± 1.9 * 8.82 ± 2.9 275.4 ± 33.9 *
Na traces traces traces traces
P 695.9 ± 2.6 81.5 ± 10.5 * 938.4 ± 20.6 267.3 ± 35.1 *

Zn 45.6 ± 1.0 traces * 12.46 ± 1.2 34.1 ± 5.2 *
N 4801.1 ± 42.7 1048.2 ± 24.3 * 6087.2 ± 199.1 2701.8 ± 14.9 *

Results were expressed as mean± standard deviation (n = 3). The asterisk indicates significant difference between
soil samples of nonorganic and organic management farms from the same region (unpaired t-test, p < 0.05).
“Traces” means that values were below the limits of quantification and above the limits of detection of the
analytical method for each mineral.

3.3. Lower Phytate Contents in Organic Black Beans May Increase Mineral Bioavailability

In general, the mineral profile of our black bean samples was similar to that reported
in the literature [30] (Table 1). Common beans are recognized as an important dietary
source of iron, zinc, magnesium, copper, potassium and phosphorous. Organic black beans
showed, on average, 35% and 37% lower copper and manganese contents, respectively,
than nonorganic ones in both regions. The organic sample from the metropolitan region
showed a 7% higher potassium content than the nonorganic one. There were no differ-
ences in magnesium and iron contents between organic and nonorganic beans in both
regions, despite the variations observed in the soil (Table 2). In general, the contents of all
minerals in beans (Table 1) and soils (Table 2) were not correlated, suggesting that plant
intrinsic (genetic aspects and carbohydrates contents) and extrinsic factors (weather and
soil physical–chemical aspects) influenced mineral acquisition capacity [32].

Although several systematic reviews have been published regarding differences in
mineral profiles between organic and nonorganic foods, there is no consensus in the
literature. Dangour et al. [15] reported no differences between organic and nonorganic
foods in terms of magnesium, calcium, potassium, zinc and copper, except for phosphorus,
which showed higher contents in organic foods. Hunter et al. [37] reported the same
result regarding higher phosphorus contents in organic plant foods, and for all analyzed
minerals in general. Hattab, Bougattass, Hassine and Dridi-Al-Mohandes [38] observed
higher levels of minerals in organic tomatoes, lettuces and strawberries when compared to
nonorganic. Barański et al. [16] reported lower manganese contents and slightly higher zinc
and magnesium contents in organic crops compared to nonorganic ones, while calcium,
copper and iron showed no significant differences. Worthington [39] concluded that organic
foods had higher iron, magnesium and phosphorus levels than nonorganic ones, possibly
due to a stronger association of plants and microorganisms in organic soils.

Phytate is an antinutritional factor that chelates divalent cations, such as calcium, zinc,
magnesium and iron, decreasing their bioavailability [40]. The mean phytate content in
black beans samples (Table 1) was similar to that reported by other studies [41]. In both
regions, organic samples presented, on average, 10% lower phytate contents in comparison
to nonorganic beans. Phytate is the main storage form of phosphate and inositol in
seeds, grains and nuts [40], and the use of synthetic fertilizers rich in phosphorus may
increase phytate content [42]. In fact, we observed higher phosphorus content in soils from
nonorganic farms in comparison to organic ones. Even though organic and nonorganic
black beans showed similar iron contents, we may suppose that iron bioavailability in
organic beans would be higher than in nonorganic ones. This could be especially relevant
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for low-income populations and vegetarians, groups vulnerable to iron deficiency and for
whom beans represent an important dietary source of this mineral [7].

3.4. Organic Black Beans Present 28% Higher Phenolic Compounds Contents than
Nonorganic Ones

The phenolic compounds profile was similar in the four black bean samples. These
compounds were mainly found in the soluble fraction, which corresponded, on average,
to 69% of the total phenolic contents. Nine compounds were found as soluble phenolics:
delphinidin-3-O-glucoside, petunidin-3-O-glucoside, malvidin-3-O-glucoside, myricetin-3-
O-glucoside, quercetin-3-O-glucoside, kaempferol-3-O-glucoside, myricetin, gallic acid and
quercetin. This profile has already been reported for black beans by other authors [13,43].
Anthocyanins were the most abundant, corresponding to 93%, on average, of total soluble
phenolic compounds (Figure 2A).
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Within samples from the same region, organic beans showed 25% higher contents of
soluble phenolic compounds, mostly anthocyanins, than nonorganic ones. According to a
meta-analysis based on 343 peer-reviewed papers [16], organic crops show higher phenolic
compounds contents, especially anthocyanins, when compared to nonorganic. It is worth
noting that none of the papers investigated in this meta-analysis have studied beans, which
were, to the best of our knowledge, investigated for the first time in this work regarding
differences between organic and nonorganic crops.

Twelve phenolic compounds were found in the insoluble fraction. In comparison to
those of the soluble fraction, no anthocyanins glucosides were identified, but three antho-
cyanidins (aglycones) were observed: delphinidin, malvidin and pelargonidin. Moreover,
this fraction also contained two other phenolic acids (ferulic and sinapic acids) and one
flavonol (kaempferol) that were not present in the soluble fraction (Figure 2B). Luthria and
Pastor-Corrales [44] found ferulic, sinapic and p-coumaric acids in the insoluble fraction
of black beans, obtained after alkaline and acid hydrolysis, but not in the soluble fraction.
Ranilla, Genovese and Lajolo [45] reported that phenolic acids are mainly present in the
cotyledon of black beans, whereas a predominance of flavonoids is observed in the seed
coat. In the insoluble fraction, differences between organic and nonorganic samples were
less frequent and less consistent than those observed in the soluble fraction. Considering
that soluble phenolics are mainly found in the seed coat of legumes [45], one could hypoth-
esize that these would be more susceptible to the influence of the production system than
those insoluble forms found in the inner part of the seed.

When grouping samples according to agricultural practice, regardless of the region,
we observed that organic beans showed a tendency (p = 0.08) to present a higher total
content of phenolic compounds (45.6± 6.9 mg/100 g) when compared to nonorganic beans
(35.5 ± 5.1 mg/100 g) (Figure 3A). When coastal and metropolitan regions were considered
separately, organic beans showed, on average, 28% higher total phenolic compounds
contents than nonorganic ones (Figure 3B). This difference was caused by higher soluble
phenolics contents in the organic samples (32.5 mg/100 g, on average) compared to the
nonorganic samples (24.2 mg/100 g, on average), but not by differences in insoluble
phenolics (13.2 and 12.2 mg/100 g, respectively). Giusti et al. [46] observed higher phenolic
acid contents for organic legumes compared to conventional ones. On the other hand,
Jakopic et al. [47] did not find differences in total phenolic compounds between organic
and nonorganic dwarf French beans, although a higher content of catechin was observed
in the organic sample.

Despite the limited number of samples analyzed, our results strongly suggest a posi-
tive influence of organic farming on black beans phenolic compounds. Barański ‘et al. [16]
reported that organic fruits and vegetables have higher concentrations of phenolic com-
pounds than nonorganic crops. Although some pesticides were not investigated in our
study due to methodological limitations, if one assumes that the farms were following
organic certification rules, and, therefore, pesticides were absent, organic plants may have
been more susceptible to biotic stress, such as pest attacks or diseases, and/or abiotic stress,
such as physical damage and water or nutrient scarcity [17,34]. The higher contents of
phenolic compounds in organic food samples may be associated with responses to these
stresses suffered by the plant in organic agricultural practice when compared to nonorganic.
In that scenario, plant secondary metabolism may be affected, leading to an increased
production of phenolic compounds and other substances for their protection. In addition
to environmental stress, organic management seems to be associated with plant oxidative
stress. Oliveira et al. [48] observed higher lipid peroxidation, superoxide dismutase activity,
soluble solids, vitamin C and phenolic compounds in organic tomatoes when compared to
nonorganic tomatoes. Furthermore, some pesticides may decrease secondary metabolite
synthesis by inhibiting the shikimic acid pathway that is part of phenolic compounds’
biosynthesis [17,34].
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The major drawback of this work is the limited number of black bean samples. Nev-
ertheless, these samples allow the association between the chemical composition and the
production system, as climatic confounding factors (e.g., weather conditions, altitude, sun
exposure) were carefully controlled by the study design (samples grown at geographically
near farms and from close harvest periods). Soil composition, which is another confound-
ing factor, was analyzed and taken into account when comparing production systems. Most
studies in the literature do not have such control over sampling, and thus require larger
sample sizes and often do not observe differences in chemical composition associated with
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the production system. Barański et al. [16] highlights that studies comparing the impacts
of agronomic practices on crop/food composition should minimize sample heterogeneity.

4. Conclusions

In conclusion, organic farming improved the nutritional profile (20% more proteins,
10% less phytate) and increased phenolic compounds contents (28%) of black beans. In
this sense, it could be interesting to encourage organic farming, especially in developing
countries in which beans are a staple food. Nevertheless, further studies with wider
sampling must be carried out to confirm the impact of organic agriculture on the chemical
composition of beans.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/foods10040900/s1, Table S1: List of pesticides analyzed by LC-MS-MS and their respective
chemical classes.
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16. Barański, M.; Średnicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.;
Giotis, C.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically
grown crops: A systematic literature review and meta-analyses. Br. J. Nutr. 2014, 112, 794–811. [CrossRef] [PubMed]

17. Gershenzon, J. Secondary Metabolites and Plant Defense. In Plant Physiology, 3rd ed.; Taiz, L., Zeiger, E., Eds.; Sinauer Asso-ciates:
Sunderland, MA, USA, 2002; pp. 283–308.

18. Gomiero, T. Food quality assessment in organic vs. conventional agricultural produce: Findings and issues. Appl. Soil Ecol. 2018,
123, 714–728. [CrossRef]

19. Baudry, J.; Assmann, K.E.; Touvier, M.; Allès, B.; Seconda, L.; Latino-Martel, P.; Ezzedine, K.; Galan, P.; Hercberg, S.; Lairon,
D.; et al. Association of Frequency of Organic Food Consumption with Cancer Risk. JAMA Intern. Med. 2018, 178, 1597–1606.
[CrossRef] [PubMed]

20. Faller, A.; Fialho, E. Polyphenol content and antioxidant capacity in organic and conventional plant foods. J. Food Compos. Anal.
2010, 23, 561–568. [CrossRef]

21. United States Environmental Protection Agency (USEPA). Method 3050B—Acid digestion of sediments, sludges, and soils. 1996.
Available online: https://www.epa.gov/sites/production/files/2015-06/documents/epa-3050b.pdf (accessed on 18 March
2016).

22. AOAC. Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000.
23. Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile

Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC
Int. 2003, 86, 412–431. [CrossRef]

24. Frühbeck, G.; Alonso, R.; Marzo, F.; Santidrian, S. A Modified Method for the Indirect Quantitative Analysis of Phytate in
Foodstuffs. Anal. Biochem. 1995, 225, 206–212. [CrossRef]

25. Ellis, R.; Morris, E.R. Appropriate resin selection for rapid phytate analysis by ion-exchange chromatography. Cereal Chem. 1986,
63, 58–59.

26. Mattila, P.; Kumpulainen, J. Determination of Free and Total Phenolic Acids in Plant-Derived Foods by HPLC with Diode-Array
Detection. J. Agric. Food Chem. 2002, 50, 3660–3667. [CrossRef]

27. Inada, K.O.P.; Oliveira, A.A.; Revorêdo, T.B.; Martins, A.B.N.; Lacerda, E.C.Q.; Freire, A.S.; Braz, B.F.; Santelli, R.E.; Torres, A.G.;
Perrone, D.; et al. Screening of the chemical composition and occurring antioxidants in jabuticaba (Myrciaria jaboticaba) and
jussara (Euterpe edulis) fruits and their fractions. J. Funct. Foods 2015, 17, 422–433. [CrossRef]

28. EURL DataPool website for Residues of Pesticides. Available online: https://www.eurl-pesticides-datapool.eu/ (accessed on 10
April 2021).

29. ANVISA. Relatório das análises de amostras monitoradas no período de 2013 a 2015. Programa Análise Resíduos Agrotóxicos em
Alimentos - PARA. 2016. Available online: https://www.gov.br/anvisa/pt-br/assuntos/agrotoxicos/programa-de-analise-de-
residuos-em-alimentos/arquivos/3778json-file-1. (accessed on 29 June 2020).

30. United States Department of Agriculture. Arugula, Raw. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-
details/169387/nutrients (accessed on 9 December 2020).

31. Balisteiro, D.M.; Rombaldi, C.V.; Genovese, M.I. Protein, isoflavones, trypsin inhibitory and in vitro antioxidant capacities:
Comparison among conventionally and organically grown soybeans. Food Res. Int. 2013, 51, 8–14. [CrossRef]

32. Bloom, A.J. Assimilation of mineral nutrientes. In Plant Physiology, 3rd ed.; Taiz, L., Zeiger, E., Eds.; Sinauer Associates:
Sunderland, MA, USA, 2002; pp. 259–282.

http://doi.org/10.3390/molecules22081360
http://doi.org/10.3390/ijms18112331
http://doi.org/10.1021/jf052974m
http://doi.org/10.1016/j.foodchem.2013.04.010
http://doi.org/10.1016/j.foodres.2014.12.003
http://doi.org/10.1111/1541-4337.12391
http://www.ncbi.nlm.nih.gov/pubmed/33350144
http://doi.org/10.3109/09637486.2013.879285
http://doi.org/10.3945/ajcn.2009.28041
http://doi.org/10.1017/S0007114514001366
http://www.ncbi.nlm.nih.gov/pubmed/24968103
http://doi.org/10.1016/j.apsoil.2017.10.014
http://doi.org/10.1001/jamainternmed.2018.4357
http://www.ncbi.nlm.nih.gov/pubmed/30422212
http://doi.org/10.1016/j.jfca.2010.01.003
https://www.epa.gov/sites/production/files/2015-06/documents/epa-3050b.pdf
http://doi.org/10.1093/jaoac/86.2.412
http://doi.org/10.1006/abio.1995.1145
http://doi.org/10.1021/jf020028p
http://doi.org/10.1016/j.jff.2015.06.002
https://www.eurl-pesticides-datapool.eu/
https://www.gov.br/anvisa/pt-br/assuntos/agrotoxicos/programa-de-analise-de-residuos-em-alimentos/arquivos/3778json-file-1.
https://www.gov.br/anvisa/pt-br/assuntos/agrotoxicos/programa-de-analise-de-residuos-em-alimentos/arquivos/3778json-file-1.
https://fdc.nal.usda.gov/fdc-app.html#/food-details/169387/nutrients
https://fdc.nal.usda.gov/fdc-app.html#/food-details/169387/nutrients
http://doi.org/10.1016/j.foodres.2012.11.015


Foods 2021, 10, 900 14 of 14

33. Ahemad, M.; Khan, M.S. Pesticides as Antagonists of Rhizobia and the Legume-Rhizobium Symbiosis: A Paradigmatic and
Mechanistic Outlook. Biochem. Mol. Biol. 2013, 1, 63. [CrossRef]

34. Santos-Sánchez, N.F.; Salas-Coronado, R.; Hernández-Carlos, B.; Villanueva-Cañongo, C. Shikimic Acid Pathway in Biosynthesis
of Phenolic Compounds. In Plant Physiological Aspects of Phenolic Compounds; IntechOpen: London, UK, 2019.

35. Lori, M.; Symnaczik, S.; Mäder, P.; De Deyn, G.; Gattinger, A. Organic farming enhances soil microbial abundance and activity—A
meta-analysis and meta-regression. PLoS ONE 2017, 12, e0180442. [CrossRef]

36. Santos, M.S.; Nogueira, M.A.; Hungria, M. Microbial inoculants: Reviewing the past, discussing the present and previewing an
outstanding future for the use of beneficial bacteria in agriculture. AMB Express 2019, 9, 1–22. [CrossRef] [PubMed]

37. Hunter, D.; Foster, M.; McArthur, J.O.; Ojha, R.; Petocz, P.; Samman, S. Evaluation of the Micronutrient Composition of Plant
Foods Produced by Organic and Conventional Agricultural Methods. Crit. Rev. Food Sci. Nutr. 2011, 51, 571–582. [CrossRef]
[PubMed]

38. Hattab, S.; Bougattass, I.; Hassine, R.; Dridi-Al-Mohandes, B. Metals and micronutrients in some edible crops and their cultivation
soils in eastern-central region of Tunisia: A comparison between organic and conventional farming. Food Chem. 2019, 270, 293–298.
[CrossRef]

39. Worthington, V. Nutritional Quality of Organic Versus Conventional Fruits, Vegetables, and Grains. J. Altern. Complement. Med.
2001, 7, 161–173. [CrossRef] [PubMed]

40. Kumar, V.; Sinha, A.K.; Makkar, H.P.; Becker, K. Dietary roles of phytate and phytase in human nutrition: A review. Food Chem.
2010, 120, 945–959. [CrossRef]

41. Schlemmer, U.; Frølich, W.; Prieto, R.M.; Grases, F. Phytate in foods and significance for humans: Food sources, intake, processing,
bioavailability, protective role and analysis. Mol. Nutr. Food Res. 2009, 53, S330–S375. [CrossRef] [PubMed]

42. Oatway, L.; Vasanthan, T.; Helm, J.H. Phytic Acid. Food Rev. Int. 2001, 17, 419–431. [CrossRef]
43. Lin, L.-Z.; Harnly, J.M.; Pastor-Corrales, M.S.; Luthria, D.L. The polyphenolic profiles of common bean (Phaseolus vulgaris L.).

Food Chem. 2008, 107, 399–410. [CrossRef] [PubMed]
44. Luthria, D.L.; Pastor-Corrales, M.A. Phenolic acids content of fifteen dry edible bean (Phaseolus vulgaris L.) varieties. J. Food

Compos. Anal. 2006, 19, 205–211. [CrossRef]
45. Ranilla, L.G.; Genovese, A.M.I.; Lajolo, F.M. Polyphenols and Antioxidant Capacity of Seed Coat and Cotyledon from Brazilian

and Peruvian Bean Cultivars (Phaseolus vulgaris L.). J. Agric. Food Chem. 2007, 55, 90–98. [CrossRef]
46. Giusti, F.; Caprioli, G.; Ricciutelli, M.; Torregiani, E.; Vittori, S.; Sagratini, G. Analysis of 17 polyphenolic compounds in organic

and conventional legumes by high-performance liquid chromatography-diode array detection (HPLC-DAD) and evaluation of
their antioxidant activity. Int. J. Food Sci. Nutr. 2017, 69, 557–565. [CrossRef] [PubMed]

47. Jakopic, J.; Slatnar, A.; Mikulic-Petkovsek, M.; Veberic, R.; Stampar, F.; Bavec, F.; Bavec, M. Effect of Different Production Systems
on Chemical Profiles of Dwarf French Bean (Phaseolus vulgaris L. cv. Top Crop) Pods. J. Agric. Food Chem. 2013, 61, 2392–2399.
[CrossRef]

48. Oliveira, A.B.; Moura, C.F.H.; Gomes-Filho, E.; Marco, C.A.; Urban, L.; Miranda, M.R.A. The Impact of Organic Farming on
Quality of Tomatoes Is Associated to Increased Oxidative Stress during Fruit Development. PLoS ONE 2013, 8, e56354. [CrossRef]

http://doi.org/10.12966/bmb.12.02.2013
http://doi.org/10.1371/journal.pone.0180442
http://doi.org/10.1186/s13568-019-0932-0
http://www.ncbi.nlm.nih.gov/pubmed/31865554
http://doi.org/10.1080/10408391003721701
http://www.ncbi.nlm.nih.gov/pubmed/21929333
http://doi.org/10.1016/j.foodchem.2018.07.029
http://doi.org/10.1089/107555301750164244
http://www.ncbi.nlm.nih.gov/pubmed/11327522
http://doi.org/10.1016/j.foodchem.2009.11.052
http://doi.org/10.1002/mnfr.200900099
http://www.ncbi.nlm.nih.gov/pubmed/19774556
http://doi.org/10.1081/FRI-100108531
http://doi.org/10.1016/j.foodchem.2007.08.038
http://www.ncbi.nlm.nih.gov/pubmed/25544796
http://doi.org/10.1016/j.jfca.2005.09.003
http://doi.org/10.1021/jf062785j
http://doi.org/10.1080/09637486.2017.1399258
http://www.ncbi.nlm.nih.gov/pubmed/29117733
http://doi.org/10.1021/jf304026u
http://doi.org/10.1371/journal.pone.0056354

	Introduction 
	Materials and Methods 
	Chemicals and Materials 
	Black Bean and Soil Samples 
	Soil Chemical Analysis 
	Mineral Composition 
	Nitrogen Content 

	Black Beans Chemical Analysis 
	Pesticides Residues 
	Proximate Composition 
	Phytate Content 
	Mineral Composition 
	Phenolic Compounds 

	Statistical Analyses 

	Results and Discussion 
	Pesticide Residues Were Not Detected in Any Sample 
	Organically Produced Black Beans Contain Approximately 20% More Proteins than Nonorganically Produced Ones 
	Lower Phytate Contents in Organic Black Beans May Increase Mineral Bioavailability 
	Organic Black Beans Present 28% Higher Phenolic Compounds Contents than Nonorganic Ones 

	Conclusions 
	References

