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Abstract: A great amount of biowastes, comprising byproducts and biomass wastes, is originated
yearly from the agri-food industry. These biowastes are commonly rich in proteins and polysac-
charides and are mainly discarded or used for animal feeding. As regulations aim to shift from a
fossil-based to a bio-based circular economy model, biowastes are also being employed for producing
bio-based materials. This may involve their use in high-value applications and therefore a remarkable
revalorization of those resources. The present review summarizes the main sources of protein from
biowastes and co-products of the agri-food industry (i.e., wheat gluten, potato, zein, soy, rapeseed,
sunflower, protein, casein, whey, blood, gelatin, collagen, keratin, and algae protein concentrates),
assessing the bioplastic application (i.e., food packaging and coating, controlled release of active
agents, absorbent and superabsorbent materials, agriculture, and scaffolds) for which they have been
more extensively produced. The most common wet and dry processes to produce protein-based
materials are also described (i.e., compression molding, injection molding, extrusion, 3D-printing,
casting, and electrospinning), as well as the main characterization techniques (i.e., mechanical and
rheological properties, tensile strength tests, rheological tests, thermal characterization, and optical
properties). In this sense, the strategy of producing materials from biowastes to be used in agricul-
tural applications, which converge with the zero-waste approach, seems to be remarkably attractive
from a sustainability prospect (including environmental, economic, and social angles). This approach
allows envisioning a reduction of some of the impacts along the product life cycle, contributing to
tackling the transition toward a circular economy.

Keywords: bioplastic; protein; biowaste; valorization

1. Introduction

The accumulation of plastic wastes is a globally recognized problem that involves an
extremely negative impact on the environment [1]. The exceptionally low biodegradability
of fossil-based plastics, together with the massive production scale associated with the
plastic market over the past 60 years, has generated a huge accumulation of plastics in
landfills and the oceans [2]. To illustrate the magnitude of the problem, considering that
almost 400 Mt of plastic waste is generated every year [3], there is currently more than
1 ton of plastic/person alive in the world. However, in spite of the recent efforts made in
this field to shift from a fossil-based to a bio-based circular economy model, only 20% of
plastic is collected for recycling, of which only 3% is reused [4,5]. The rest is incinerated,
landfilled, or disposed of into nature, an large part of which is ending up in the oceans [6].
In this sense, European Union Directive (EU) 2019/904 aims to prevent and reduce the
impact of certain single-use plastic products on the environment, especially the marine
environment, and on human health. Consequently, the future of the plastics industry needs
to be driven by sustainability issues, where the bioplastic sector is a crucial building block
for a circular economy scenario [7,8].

The most accepted definition of the term bioplastic, which has been controversial
among plastic industrial associations and environmental organization, is given by Euro-
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pean Bioplastics [5]. According to this association, any plastic material can be denoted
as a bioplastic if it is either bio-based, biodegradable, or displays both properties. Con-
sequently, bioplastics embrace a whole family of materials with different properties and
applications, ranging from biodegradable fossil-based polymers, such as poly(butylene
adipate-co-terephthalate) (PBAT) or polycaprolactone (PCL), to non-biodegradable bio-
based polymers, such as bio-based polyolefins (e.g., bioPE and bioPP) or polyesters (e.g.,
bioPET) [9]. However, the ecofriendliest bioplastic group is formed by biodegradable and
bio-based polymers. This group comprises biodegradable aliphatic polyesters produced by
fermentation of biomass, including polylactates (PLA), polyglycolates (PGA), polyhydroxy
butyrate (PHB), polyhydroxy valerate (PHV), etc., and polymers extracted from renewable
sources, also known as agropolymers, which include polysaccharide-based polymers (e.g.,
starch, cellulose, and cellulose derivatives) and protein-based polymers that can be ex-
tracted from animal or plant sources [10,11]. Currently, a big amount of the food produced
worldwide (~30%) is discarded by the agri-food industry, being considered as byproducts
or wastes [12]. These food biowastes could be reused as raw materials for the emerging
bioplastics sector since their proteins, carbohydrates, lipids, and other compounds can be
used for this application [13]

Agropolymers are considered the most ecoefficient bioplastic source in terms of
the ratio between the added value of their potential applications and the environmental
impacts associated with them [14]. They consist of a carbon backbone with different
side groups that can form inter-/intra-molecular H-bonds. It is precisely the ability to
temporarily disrupt these H-bonds and cause flow into new material shapes that allows
forming plastic materials by conventional polymer processing techniques (e.g., casting,
thermoforming, compression molding, extrusion, and injection molding) [15]. However,
despite the unquestionable importance of bioplastics for enabling a more sustainable
circular economy [16], they only cover approximately 1% of the global plastic market,
accounting for 2.11 Mt in 2020 [5]. About 60% of the bioplastic market corresponds to
biodegradable polymers and 20% to agropolymers (over 420 kt). Among them, starch and
cellulose are abundant and low-priced raw materials [6]. Unfortunately, they typically
require complex processing before they can be properly used as bioplastics. These processes,
including fermentation or functionalization, typically increase their costs and, as a result,
reduce their efficiency in the replacement of conventional plastics.

In contrast, an emerging ecofriendly and cost-efficient alternative to plastics is based
on the use of protein which can be easily processed for many applications [17,18]. Moreover,
protein may be inexpensively extracted from many sources that are also abundant in nature.
Interestingly, global food biowastes represent about 1300 Mt/year, according to the Food
and Agriculture Organization (FAO) of the United Nations [19]. This biomass may be
regarded as a potential source that can be used in the protein-based bioplastic sector,
competing with other uses (e.g., biofuel). However, some problems related to the collection
of food biowastes, due to their extremely wide dispersion, still impose a barrier to their
efficient application at large scales [20]. Other more interesting alternatives are currently
being considered for the valorization of proteins, such as the use of agri-food co-products
from the starch, oil, or biofuel industries; the extraction from industrial biowastes such
as blood, bones, feathers, wool, hair, nails, etc., from poultry or cattle slaughterhouses; or
microalgae from sewage plants [20,21]. However, the commercial use of protein-based
bioplastics in 2020 is still residual (with an output lower than 30 kt) as compared to other
agropolymers, particularly starch which accounts for almost 400 kt in 2020 [5]. Some
authors have indicated that plastics production from proteins is economically feasible,
reducing the wastes associated with industrial products [22].

As for the portfolio of bioplastic applications, food packaging remains the widest
segment of the whole bioplastic family, with an output of almost 1 Mt in 2020, representing
nearly half of the total bioplastics market. The other half is largely diversified finding
applications as consumer goods, or in the textile, agriculture, automotive, and construction
field, among others [5]. In particular, protein-based bioplastics may also accomplish some
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of those applications, mainly in the fields of food packaging and plastics for agriculture.
Moreover, they may also be used in more specific applications, such as in the development
of absorbent and superabsorbent materials, in the controlled release of active agents (e.g.,
drugs, antimicrobial agents, nutrients, etc.), or biomedical applications (e.g., as scaffolds
for tissue engineering) [23]. Therefore, despite the many advantages associated with the
use of protein as bioplastics for a wide variety of applications, its high potential for the
replacement of conventional plastics has not yet been sufficiently explored [20].

This review is focused on the potentials of protein co-products of the agri-food in-
dustry or protein fractions extracted from agri-food industrial biowastes, as well as their
applications as substitutes for conventional non-biodegradable fossil-based plastics. The
characteristic of these protein-based materials must be analyzed to assess the functionality
required for each application. These properties can be typically divided into mechanical
properties, thermal properties, and optical properties, correlating them to the microscopic
(even molecular) structure of the materials [24].

2. Proteins from Industrial Biowastes and Co-Products

Every year, around one third of all food produced worldwide is either lost or wasted [25].
In Europe, that amount is reduced to one fifth, being 19% obtained from food process-
ing and 11% from primary production [12]. Food biowaste is mainly composed of car-
bohydrates, proteins, lipids, and other compounds with great potential for high-value
applications [13]. In this section, the main protein-rich biowastes and co-products from
the agri-food industry that have been used in the development of plastic materials are
presented. It should be highlighted that depending on the application pursued, proteins
should be previously extracted and/or concentrated from the biowaste. Extraction can be
carried out either through dry (e.g., air classification) or nondry (e.g., chemical treatment)
conditions. Among the concentration procedures for obtaining protein concentrates or
isolates are isoelectric precipitation or ultrafiltration. These preparation techniques are
outside of the scope of this study, and readers interested in their description are referred to
a recent review on this topic [26].

2.1. Co-Products from Starch

Wheat gluten (known as vital gluten, containing 75–80% protein) and corn gluten
(typically containing 55–70% protein) are produced industrially as a co-product either from
starch or bioethanol industrial plants [27–29]. The most abundant amino acid residues
present in wheat gluten are glutamate and glutamine (31.9%) and proline (14.1%) [30].
Corn gluten is abundant in methionine and cysteine but is very low in lysine and trypto-
phan [31]. Wheat gluten is mainly used in bakery products, while corn gluten is mainly
used as animal feed. Nonfood applications for gluten have been pursued (e.g., thermoplas-
tic materials) [32,33]. In this sense, most wheat gluten-based plastics have been processed
through casting or extrusion [33–36], leading to insoluble films, plastics, and adhesives
with good barrier properties for oxygen and carbon dioxide [37,38]. Corn gluten has not
been studied as profusely as wheat gluten in the field of bio-based materials. However,
some studies have reported its potential to form glassy dense material of high thermoplas-
ticity [29,39].

Potato proteins (i.e., patatin, protease inhibitors, and different high-molecular-weight
proteins) can be obtained from potato-based starch production, as well as from peels and
damaged potatoes. Although the protein content of fresh potatoes is low (2%), a protein
isolate (90%) can be obtained from the wastewater generated during their processing
through alkaline precipitation [40,41]. Potato protein is rich in hydrophobic amino acid
residues with branched (isoleucine (3.1%), leucine (6.7%), and valine (3.7%)) and aromatic
(phenylalanine (4.2%) and tyrosine (3.8%)) side chains [42,43]. They also possess a lysine
content (~6%) higher than the average found in most plant-based proteins [43]. Potato
proteins have been used as food additives or for bioplastic production. Thus, films or
sheets from thermoforming or compression molding have been produced from potato
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protein flours mold, leading to bioplastics with adequate mechanical properties, sometimes
reinforced with some animal proteins, such as gelatin [44,45]. Films obtained by casting
have also proven to show significant barrier properties, highlighting its potential in the
packaging industry [46].

2.2. Co-Products from Bioethanol

In addition to the abovementioned wheat gluten, zein can be also obtained as a co-
product of the bioethanol industry. Zein is the alcohol-soluble protein of corn, and it is a
prolamin predominantly present in the endosperm [47]. It possesses a negligible content
in essential amino acids, such as lysine and tryptophan, which, together with its poor
solubility in water, limit its use for human consumption [47]. Zein may be obtained as
a byproduct from the production of ethanol, starch, or oil from corn, containing a high
amount of glutamic acid (21–26%) and hydrophobic amino acids, like proline (10.5%) or
leucine (21.1%) [47,48]. It has been mainly employed as a coating agent due to its ability to
form films with water vapor barrier properties [49,50]. Zein-based films have also been
produced through extruders provided with slit dies, where additives like oleic acid can
be used to enhance elongation [51–53]. Furthermore, zein may be used as plasticizer in
injection molded starch-based plastics [54].

2.3. Co-Products from Seed Oil

Soy oil is extracted from soybean (38–45% protein content) producing a protein-rich
meal as a byproduct, which is, for the most part, discarded as industrial biowaste or
used for feeding animals [55–57]. Soy proteins, mostly globulins, are rich in polar amino
acid residues, such as glutamic acid (12.4%), also containing a considerable amount of
lysine (3.4%) [43]. Soy protein-based bioplastics have been processed through several
techniques, like casting, compression, or injection molding, resulting in materials with
adequate mechanical properties but low water resistance [58–61]. It has been acylated
successfully to further enhance its hydrophilic character, which may be well used in
superabsorbent or horticulture applications [62,63].

The processing of rapeseed to obtain oil results in the production of a press cake with
a high protein content (35%) [64], which cannot be used as a food ingredient due to the
presence of antinutritional compounds (e.g., glucosinolates) [65]. Rapeseed and canola
have been sometimes used interchangeably, although canola should be strictly employed
for cultivars that have been genetically improved and contain a lower content of antinutri-
tional compounds [66]. Main rapeseed proteins are globulin cruciferin (60%) and albumin
napin (20%) [67,68], containing an important amount of glutamine/glutamate and aspartic
acid/aspartate residues (18.14% and 7.25%, respectively) [69]. The protein-rich biowaste
obtained in the manufacture of the oil is mainly used for low-value applications [70,71],
although some research about high-value applications has been pursued. Plastic materi-
als have been obtained from canola mostly through casting [72–74] or from rapeseed by
compression molding or injection molding [75,76].

Sunflower cake after extracting sunflower oil has been used for the development
of protein-based bioplastics [77–79]. The protein content of the cake after oil extraction
is high (~35%); however, the lignocellulose content is also high (~40%) [77]. Within the
protein fraction, globulins are the most abundant (~58%), followed by albumins (~20%),
glutelins (~14%), and prolamins (~3%). Because of its high protein content, it has mostly
used for animal feed. A protein extract can be obtained at alkali pH with a high content of
globulin and albumin [79]. Films have been obtained from sunflower through casting or
extrusion [79,80].

2.4. Wastes from Animal Farming

Both casein and β-lactoglobulin are milk proteins extensively used by the food in-
dustry. However, they are also noticeably present in the wastewater from dairy factory
plants (casein) or in the whey from cheese production (β-lactoglobulin), which can be
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revalorized as a source of protein for the development of bioplastics [81]. Both sources
are rich in glutamic acid (13.9% and 15.5%, respectively) and lysine (4.6% and 7.1%, re-
spectively) [43]. Materials obtained from whey are similar to those prepared from caseins,
characterized by transparency and flexibility and a water resistance that can be increased
by crosslinking [82,83].

Blood (18% protein content) represents up to 4% of the animal weight and, and only
30% is used by the food industry, which would imply that over 3000 ML were discarded
into municipal sewers and landfills in 2016 [84–86]. Plasma obtained after a centrifuga-
tion/drying process possesses a protein content that lies around 70% [87], which consists
mainly of albumin (50–60%) and globulins (40–50%) [88]. The protein content is highly
dependent on the animal species, being higher for bovine and porcine blood (~19%) and
plasma (~6.9%) compared to poultry (~13 and 3.5%, respectively). Lysine (~7%), aspartic
(~9.1%), and glutamic (~9.7%) acid contents are high for all those species [89,90]. Blood
and plasma may be used for nonedible applications, such as packaging [91]. Thus, blood
meal has been successfully extruded and injection molded [92–94], while more recently the
plasma fraction has proven its potential as the basis of superabsorbent materials [95–97].

Around one third of the fish caught globally is used to produce protein-rich marine
byproducts for animal feeding. For instance, a fish meal containing 59.0–68.5% of pro-
tein may be obtained [98]. Moreover, during fish processing, around 20–80% of waste,
depending on the level of processing and type of fish, is generated which can also be used
as fish meal [99]. Fish biowaste can also be used for production of proteins, oil, amino
acids, minerals, enzymes, bioactive peptides, collagen, and gelatin. Most of the fishmeal
is consumed by the aquaculture industry, but it could be employed for the production of
green materials, through compression or extrusion [99,100].

Collagen represents 30% of the animal protein content and may be obtained from
different byproducts of the meat industry, mostly pig skin (46%), bovine hide (29%),
and pork and cattle bones (23%) [101]. One third of collagen is glycine, which is also
rich in proline and hydroxyproline residues (~23% of the overall amino acid composi-
tion) [102,103]. Gelatin is produced when collagen is cooked or denatured by heat, being
relatively cheap and abundant [104–106]. Its excellent ability to form films for both food
and biomedical applications has facilitated its processing through casting, extrusion or
electrospinning, displaying flexibility, good moisture and oxygen barrier properties, and
excellent biodegradability [83,107,108].

Keratin comprises a mixture of high-molecular-weight fibrous proteins whose proper-
ties are greatly influenced by the methodology (chemical, enzymatic, and ionic solution)
employed for its extraction from different epidermal appendages (mainly, feathers and
wool, but also nails, claws, beak, hair, or horns) [109]. The amino acid composition may
vary depending on the source as well as on the animal breed or diet [110], being the cystine
content usually high [111–114]. Transparent materials have been obtained primarily by
casting, resulting in water-sensitive films with adequate UV barrier properties and thermal
stability up to 200 ◦C [109,114]. The toughness of these materials can be enhanced through
crosslinking [109].

2.5. Microalgae from Sewage Plants

Different microalgae species can completely remove nitrogen and phosphorus from
wastewater, being a useful tool for sewage plants [115]. These aquatic microorganisms
possess a high protein percentage, with species like Arthrospira platensis or Chlorella sp.
containing around 55 of protein in dry weight, and a lysine content similar to that of
soy protein (~3.5%) [43]. Moreover, they offer the advantage of not requiring any soil to
develop and allowing the use of nonpotable water as a culture medium when grown in
wastewater [116]. The use of microalgae in plastic materials production is also interesting
as scalable production seems to be more cost-effective because no prior treatment is needed
before their processing [117]. Bioplastics materials have been obtained from microalgae
biomass, although mainly blended with petroleum plastics or bioplastics [118,119].
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3. Processing of Bio-Based Materials

The production of biodegradable materials is one of the most promising and studied
pathways to handle the extremely high amount of biowastes and byproducts that the
agri-food industry produces every year [58,97,120–123]. In this sense, the processing tech-
niques and parameters selected strongly influence the end-use of the material developed.
Commonly, these new materials are processed by traditional techniques used for synthetic
plastic. However, a specific redesign is needed since these green materials require a differ-
ent range of processing parameters due to their different composition and properties [124]
which would influence their final characteristics, which definitely should be different from
those of common synthetic materials [125,126].

The processability of a protein-based raw material is typically achieved either by
its solubilization in an adequate solvent followed by a wet technique (casting or electro-
spinning) [127–129] or by a dry technique (e.g., extrusion and injection molding), which
previously requires its blending with a low-molecular-weight component acting as plas-
ticizer [130]. In the latter case, the plasticizer content is important for optimum control
of the processing parameters, which are crucial to modulate the final properties of the
materials. Furthermore, the amount of plasticizer alters the glass-transition temperature
(Tg), a key processing parameter to consider during its processing [131,132]. The most
extensively reported techniques employed in the production of protein based-materials are
described in the following subsections: compression molding, injection molding, extrusion,
three-dimensional (3D) printing casting, and electrospinning.

3.1. Compression Molding

Compression molding has been used since the early twentieth century for manufactur-
ing plastics [133], although its batch process nature has resulted in a major industrial limita-
tion [133]. During compression, the pre-cured or melt polymer is enclosed into a mold cav-
ity and subjected to a large pressure [134]. In many cases, protein is mixed with a plasticizer
to obtain blends that are then confined into the mold and compressed [135]. To perform the
process correctly, the mold temperature must be slightly higher than the Tg of the protein
blend. Therefore, temperatures over 60 ◦C should be generally selected [97,136]. This pro-
cessing technique does not require high flowability; therefore, the obtained materials can
be reinforced satisfactorily with fibers [27,137–145]. In literature, numerous studies have
used different protein sources with this technique, such as soy [146], gluten [33,147–152],
cottonseed [153,154], egg white [155], sunflower [156], corn [39,130], or whey [120,157]. As
highlighted elsewhere, the properties of the compression-molded materials depend greatly
on the processing temperature, which is usually around 100–120 ◦C [39,130,148]. Pressure,
commonly around 10 bar for 2–10 min, is less influential than temperature [120,153,157].

3.2. Injection Molding

When intricate complex geometries and/or dimensional precision are required, in-
jection molding is broadly used in polymer manufacturing, provided that the production
is at a large scale [124]. This processing technique is commonly carried out through two
stages: first, protein flour and the plasticizer (which is essential in this case) are con-
veniently mixed, and subsequently, blends are introduced into the injector feeding or
cylinder, where the sample is heated if required. Then, the injection pressure is applied
by means of a plunger, forcing the blend to flow through a nozzle into the mold cavity.
After injection, the pressure is reduced and maintained constant for a period required
to allow physical and/or chemical crosslinking of protein segments (i.e., the holding
stage) [18,158]. The main control parameters are temperature (of the cylinder and mold),
pressure, and time (injection and holding) [124]. In these terms, the mold temperature
has been pointed out as the most influential parameter in this technique, where pressure
exerts a lower impact [159]. Several studies have highlighted that changes in the mold
temperature (and/or in the holding time at which the blend is exposed) can modulate the
final properties of the product [17,95,97,121,160], modifying the water uptake capacity and
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rheological and mechanical properties [32,59,97,159]. Different protein sources have been
injection-molded, such as soy [18,58,59,62,161–168], sunflower [77], albumen [155,160],
porcine plasma [95–97], pea [121,159], whey [144], rice [169], or gluten [32,35,170].

3.3. Extrusion

Extrusion is widely employed for the manufacturing of plastics with constant sec-
tion [171–173], with the extra benefit of its continuous processing mode. In this technique,
temperature is controlled along a cylindrical barrel containing a screw that allows the
mixing and the transport of the material from the hopper to the die. During processing, the
protein/plasticizer blends combine thermoplastic behavior with heat-induced crosslinking
of different nature (e.g., protein aggregation and disulphide bonds). The selection of the
temperature profile along the barrel is extremely important [174]. Therefore, a previous
thermal characterization of the blend is helpful, using the Tg, which depends on the glyc-
erol content [34,175], as the temperature threshold that must facilitate the flow inside
the extruder and through the die [176]. Commonly, lower temperatures are required for
protein-based blends, due to their usually lower Tg and to avoid massive crosslinking
that would impede the process [171,174]. Furthermore, shear impact, time, and specific
mechanical energy have been also pointed out to be key parameters to control the extru-
sion process [177,178]. At the extruder die, the material is conveniently shaped [178] and
successively cooled down [172].

The protein more extensively processed through this method has been wheat
gluten [34,36,171,177–183], followed by soy protein [184–189].

3D-Printing

In the most extended 3D technique (fused deposition modeling, FDM) for the au-
tomated and additive manufacturing of 3D objects, after layer-by-layer deposition, no
excessive equipment investment is required [190], and relatively low energy is demanded
per batch [158]. However, its main competitive drawback is referred to the time required
for great productions [191]. This strategy has been developed fundamentally for poly-
meric materials, and it has been used in different fields such as biomedicine [191,192],
electronic [193,194], or food [195,196], among others that typically involve small-scale
production and high-value-added products. Although this manufacturing strategy has
been scarcely exploited using protein-based products, some studies have been developed
using pea [197], plasma [198], soy [199], and milk proteins [200,201]. All these studies
highlighted the importance that rheology exerts on the 3D printing process. Thus, the main
control parameters are those which exert influence over the rheology, such as temperature
and shear rate (related to the flow through the nozzle).

3.4. Casting

The processing of protein-based biowastes into bioplastics films by casting is the most re-
ported strategy, with applications as coating or packaging extensively described [127,202,203],
despite generally possessing lower mechanical properties than those of synthetic materi-
als [128,204]. It is a wet processing technique in which a prior disruption of linkages and
disulphide bonds is carried out through a chemical reagent [205]. Then, the protein source
is solubilized in a proper solvent, along with the plasticizer and other components such as
crosslinking or antimicrobial agents. To produce the protein-based film, the solution is first
spread, and then the solvent evaporation or drying is produced [127,206]. This procedure
is mainly controlled by the pH and temperature of the solution, as well as by the selected
solvent [206]. Based on its high content in cysteine residues, which are key since they
promote covalent bonds [207], gluten is the protein most employed to give rise this kind
of biodegradable films [207–225]. Furthermore, several studies were aimed at obtaining
films of protein-based materials by casting, such as zein corn [226–229], soy [61,230,231],
milk [232–236], sunflower [79], pea [237–240], and fish [205,217,241–244].
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3.5. Electrospinning

The electrospinning technique produces nanofibrous polymeric materials using a
high-voltage electric field [245–247]. The polymeric solution is confined in a syringe and
flowed out through the needle using a syringe pump. When an electric field acts over the
polymeric solution, the so-called Taylor’s cone is formed at the end of the needle [248].
Thus, the produced flow is boosted toward the collector by applying a direct electric current
field (commonly from 5 to 25 kV) connected to the collector and needle, which are usually
placed away at a distance of 10–20 cm [249,250]. Electrospun materials are formed by
ultrathin fibers with diameters in the nanoscale and commonly possess low density and
a high porosity, resulting in materials with large specific surface areas [251]. If a certain
degree of alignment is required for the nanofibers (e.g., biomedical functions), a rotating
collector should be employed during their production [252–254]. The main parameters
to control the morphological characteristics of the fibers formed are the type of polymer
and solvent used, the surface tension, the viscosity of the solution, the flowrate, and the
voltage applied [255]. Other parameters that may affect the process are the electrical
conductivity, the presence of electrostatic interactions, and the distance between the needle
and the collector.

Although it is difficult to carry out the electrospinning of protein solutions, they could
be denatured to some extent to induce the process [251,256–258]. For aqueous protein
solutions, pH is also a key parameter since it may modulate the charges of protein surfaces
and protein solubility. Several studies have been focused on the electrospinning of protein
solutions using gelatin [246,259–261], soy [262], egg albumen [263], silk fibroin [264], or
whey protein [265].

4. Characterization of Protein-Based Materials

Any material processed for any purpose (e.g., packaging, coating, and agricultural)
must reach some specific characteristics to properly provide the functionality required.
Thus, the mechanical properties, the thermal behavior, and/or the optical properties of
these materials should be controlled to meet the requirements of their final use. Characteri-
zation techniques quantify the macroscopic parameters, relating them to the microscopic
(even molecular) structure of the materials. The most important characterization techniques
are explained in the following subsections.

4.1. Mechanical and Rheological Properties

Mechanical properties help to understand and predict the behavior of materials
subjected to different kind of stresses. The majority of polymer-based materials show a
variety of viscoelastic responses after an applied strain or stress. When tested, materials
are typically submitted either to continuous or oscillatory deformation. It can be noted
that only some of the most important tests for material characterization are described in
this section.

4.1.1. Tensile Strength Tests

During these tests, the material is subjected to axial deformation at a constant rate
until breakdown. The results are plotted in stress–strain curves where three different
stages can be typically differentiated in polymer-based materials: (i) Initially, the strain
suffered by the material is linearly proportional to the stress applied, due to the elastic
deformation of the material. From this initial constant slope, the Young’s modulus (E)
is defined. (ii) Subsequently, a remarkable decrease in the slope takes place, showing
a nonelastic deformation. The maximum value or ultimate stress (σmax) is commonly
reached at the end of this section. (iii) Finally, the stress decreases due to the fast reduction
of the cross-sectional surface, ending the test when the probe collapses at maximum
deformation (εmax). [266]. The mechanical properties of different materials obtained from
several biopolymers, such as rice [267], albumen [268], plasma [95,97], soy [160], pea [121],
or whey protein [32,120], have been analyzed through this technique. A wide spectrum of
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values for the mechanical parameters was obtained, depending not only on the source, the
biopolymer/plasticizer ratio, and the presence of additives (e.g., a crosslinker) but also on
the processing technique and conditions.

4.1.2. Rheological Tests

Rheology is the science that studies the flow and deformation of matter and applies
to a wide range of materials [269]. Moreover, its importance is key since the majority
of polymeric materials show complex viscoelastic behavior [270], which is the result of
the combination of solid-like elastic properties and fluid-like viscous properties [271].
Rheological tests are normally carried out using oscillatory or continuous deformation.

Dynamic Mechanical Analysis (DMA)

In these tests, an oscillatory deformation (with a small-strain amplitude, γ0) is applied
to the sample, obtaining a sinusoidal stress response with amplitude σ0, below the limit
for the linear viscoelastic region (LVR). The viscoelastic behavior of the sample is obtained
relating both stimulus and response, giving rise to the linear viscoelastic functions that
remain independent of the applied strain [270]. The most important linear viscoelastic
functions are the storage modulus (E′ or G′), which is a measure of the elastic response
of the material; the loss modulus (E” or G”), representing the viscous properties; and the
loss tangent (tan δ, where δ is the phase angle). This parameter represents the relative
predominance of the viscous over the elastic properties (tan δ = E”/E′ or G”/G′). The
viscoelastic characterization of the material consists of obtaining the dependence of these
parameters on frequency and temperature.

Common dynamic mechanical tests are: (i) stress (or strain) sweep tests, which allow
the determination of the LVR through the identification of a critical strain value; (ii) fre-
quency sweep tests, which provides information about the unperturbed microstructure
of the sample [33,176]; and (iii) temperature sweep tests, in which the dependence of the
material on temperature is analyzed. These measurements can be carried by applying
different deformation modes (e.g., compression, tension, bending, and shear). The nature
of the sample tested would determine the type of geometry and mode that better fits the
analysis (parallel plates [272], rectangular [59], dual cantilever [169,273], or three-point
bending, among others).

The results of these tests could give relevant information that can be related to pro-
cessing parameters of the materials [97,274] or even predict some correlations with other
properties, such as printability [198] or biodegradability [275]. This rheological characteri-
zation has been largely performed for different protein-based bioplastics, such as soy [58],
plasma [95,198], zein [276], or pea [121,159], among others [277,278].

Continuous Deformation Tests

Stress relaxation and creep tests could be regarded as the most useful long-term assays
using continuous deformation. Stress relaxation tests record the evolution of stress until it
reaches a plateau while applying a constant strain γ0. On the other hand, creep tests apply
a constant stress σ0 while measuring the progressive deformation of the sample.

Within the LVR, a relaxation modulus (G(t)), defined as the ratio between stress (σ(t))
and strain (γ0), and a compliance modulus (J(t)), defined as the ratio between deformation
(γ(t)) and stress (σ0), are defined for relaxation or creep tests, respectively. Representative
relaxation and retardation times may be defined from these tests. Creep tests have been
used to identify the crosslinking degree by glutaraldehyde in gelatin-based materials [279].
Furthermore, soy-based [280] and fish-based materials [217] have been rheologically char-
acterized through these kinds of tests.

4.2. Thermal Characterization

The knowledge of the thermal events when samples are subjected to changes in tem-
perature is quite relevant to identify a suitable end-use of the material. Glass-transition
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temperature (Tg) should be identified to properly set the processing parameters of tech-
niques involving heating/cooling of the sample [183]. Tg is the temperature above which
the mobility of polymeric chains increases prominently as secondary interactions disappear,
resulting in biopolymer conformational changes [174,281]. This temperature depends on
the nature of the biopolymer (e.g., amino acid sequence) and the amount of plasticizer used
in the formulation [282].

The most extensively used tests to measure the changes induced by temperature in
materials are differential scanning calorimetry (DSC), thermogravimetric analysis (TGA),
and dynamic mechanical thermal analysis (DMTA).

4.2.1. Differential Scanning Calorimetry (DSC)

The main thermal events observed through DSC in protein-based bioplastics are
protein denaturation and glass-transition temperature. They could be clearly identified
in a thermogram since denaturation is an irreversible event commonly recognized as a
minimum in the curve (exo-up type plot). On the other hand, a reversible glass transition is
showed as a change in the slope or an inflection point. Additionally, protein aging prior to
processing can be also determined by DSC, being identified as a minimum in the curve, but
at a much lower temperature than the denaturation temperature [283]. Thus, two scans are
typically performed for separating reversible and irreversible thermal events. Although
the irreversible events (denaturation) are only shown in the first scan, the reversible events
(glass transition) are always observed. Physical aging, being a reversible event, requires
longer times and is normally not observed in the second scan neither. This assay is applied
to protein-based powder, blends, or materials [17], and it has been used to characterized
microalgae protein [284], soy protein [285], wheat gluten [33,149,286], egg yolk [287], pea
protein [159], plasma protein [97], canola protein [74], and whey protein [288], among
protein systems used for the bioplastic formation.

4.2.2. Thermogravimetric Analysis (TGA)

TGA measurements can be used to determine the thermal stability of protein/plasticizer
blends and bioplastics since it measures the weight reduction of a sample as the tempera-
ture increases. Several regions can be observed in protein-based bioplastics. Thus, below
150 ◦C, the diminution in the weight is caused principally by the loss of volatile components
and water [283,289]. At higher temperatures (c.a., 180–350 ◦C), the weight loss has been
attributed to protein degradation [290]. Moreover, these thermograms can indicate the
fat content of isolated proteins [125], the presence of volatile components after process-
ing [144], or the response of some active ingredients such as citric acid when used in the
production of soy-based porous materials [58]. Moreover, this technique has also been
used to determine the thermal stability of protein-based materials after the acylation of the
protein [163].

4.2.3. Dynamic Mechanical Thermal Analysis (DMTA)

This technique measures the rheological response of a material as a function of tem-
perature, after application of a small-amplitude oscillatory strain (or stress), as previously
commented in Section 4.1.2. This technique relates the evolution of the viscoelastic mod-
uli of biopolymers with temperature to their molecular structure, giving complementary
information to that obtained from DSC and TGA analysis. Tg can also be determined
from DMTA tests, although its value is dependent on the heating rate and the technique
employed [183,291].

Several protein-based materials have been tested through DMTA, such as materials
obtained from egg albumen [155,268], soy [17,59], microalgae [284], pea [121], wheat
gluten [33,149,290], rice [169], bloodmeal [92], plasma [97,292,293], and canola [76], among others.
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4.3. Morphological Properties

Microscopy is widely applied to bioplastics to analyze their morphology. Scanning
electron microscopy (SEM) is the most widely used for the materials and matrices based
on a wide variety of proteins, such as soy [17,18,165], pea [121], wheat gluten [33,149,150],
rice [169], or plasma [96,292]. Furthermore, the surface of bioplastics films could be also
studied by SEM [294,295]. On the other hand, when transmission electron microscopy
(TEM) is used some considerations have to be made as this technique requires electron
transparency, which may be acquired directly by thin bioplastic film [296] or by cut-
ting thin slides from bioplastic probes [185,297]. Additionally, atomic force microscopy
(AFM) is useful to study the topography of the three-dimensional surface of protein-based
materials [155,296]. Finally, confocal laser scanning microscopy (CLSM) can exploit the
autofluorescence of certain proteins, being quite useful to characterize the morphology of
protein-based films [298].

4.4. Optical Properties

The optical properties, such as color, transparency, or refractive index, may be some-
times neglected, but they are quite important for several end-uses of these materials. They
are highly dependent on the nature of the protein source [17], the composition of the sys-
tem, the amount of plasticizer [121], and the processing technique or conditions [159,299].
Transparency has been used, for instance, to quantify the presence of some microbial
polysaccharides in gluten WPI-based films [300].

5. Applications of Protein-Based Bioplastics

The main agri-food industrial biowastes and co-products for bioplastic applications
has been described in the previous section. Food biowastes can be used for the production
of biofuels [301], but the present review focuses on their application in the field of greener
materials, which has been extensively studied but is less exploited commercially, especially
the protein fraction. The selection of a suitable biopolymer source is key in the development
of any final product with a particular application, which may be chosen based not only
on its processing suitability but also on consumer requirements. For instance, animal
proteins are commonly rejected in cosmetics, despite being widely accepted in agricultural
applications [302]. Moreover, the design and development of bioplastic materials need
to bear in mind the accordance between service conditions and the final mechanical and
functional properties of the material developed. Although many researchers focus on the
mechanical properties of bio-based bioplastics, many applications (i.e., superabsorbent,
drug delivery, controlled release, etc.) do not require excellent mechanical properties
for their final usage [18,97]. Some critical requirements are demanded for these bio-
based materials when used in food applications. For instance, food quality and safety
during storage should not be compromised. Moreover, extended shelf-life and a reduced
permeability to volatile compounds (i.e., oxygen and moisture) are also pursued [303].
This section summarizes the main applications for the agri-food industry biowastes whose
end-use can be linked to the goals of the bioplastic industry. Moreover, this section also
addresses the requirements of these bio-based materials for certain applications.

5.1. Food Packaging and Coating

Apart from the specific safety and security requirements in food applications, the
new generation of packaging materials aims at biodegradability, in order to avoid accu-
mulative pollution, together with advanced extra features [304,305]. The requirements
in food packaging and coating depends on the nature of the food contained [306]. For
instance, to extend the expiration date of vegetables, respiration and transpiration rates
must be reduced during storage (i.e., controlling temperature, relative humidity, light,
and gas permeation) [307]. However, these requirements should be adapted for every
specific food application. Dairy products are mainly degraded by oxidation and microbial
growth, leading to nutrient loss, which causes color changes, as well as the appearance
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of undesirable flavors [308]. Analogous effects are observed in meat products, where the
CO2 and O2 levels should be kept in a suitable range [309]. Eventually, a wide variety of
food products are maintained frozen during its conservation, regardless of the nature of
the food matrix. Although low temperatures prevent microbial growth, a suitable package
design for food preservation is still required when freezing food products. Light and oxi-
dation promote the degradation of vitamins and pigments, destabilization of proteins, and
oxidation of lipids. Thus, package design should avoid those phenomena. Additionally,
packages for frozen food products should avoid moisture loss by water sublimation (i.e.,
low water permeability), which results in undesirable consequences such as weight loss,
the appearance of burns, and morphology changes [310].

These undesirable phenomena in different types of food products have been so far
commonly overcome by the use of synthetic polymers. However, the food packaging in-
dustry is facing a challenge in providing an adequate solution for correct food conservation
and environmental sustainability. In this sense, zein has been used for the preservation of
tomatoes, avoiding color changes [311]. This protein has been also used for fruits, showing
a reduction in weight loss, which is something expected from every coating [312]. Zein
films have been also used for extending the shelf-life of dairy products, reducing protein
oxidation [313]. Soy protein has been used in the development of coatings which prevent
peanut deterioration [314]. Gelatin has been extensively used for the manufacturing of
protein films with coating applications for the conservation of fresh products (both meats
and vegetables) [315–318]. Protein biowastes from the dairy processing industry have
also been used for the manufacture of films. Thus, sodium caseinate and whey protein
concentrate were the most common proteins for a new generation of films for food appli-
cations not only in dairy products, such as cheese, but also in other food products, such
as meat [319–321]. Keratin has been used for the coating of meat derivatives, exhibiting
good properties for the formation of films [322]. Eventually, as protein hydrophobicity is
not enough to avoid the water permeability required for some applications (e.g., frozen
products), improvements should be addressed to reduce the abovementioned side-effects
of water loss [304]. In any case, suitable values were obtained for frozen fishes [323,324].

Most functionalities of biodegradable protein-based materials find applications in
food active-packaging, including the controlled release and immobilization of substances
for specific purposes (i.e., antioxidant release, enzyme activity, gas selective permeability,
etc.) [325]. Active packages are able to protect and interact with the food they contain
by “deliberately incorporating components that would release or absorb substances into
or from the packaged food or the environment surrounding the food” [326]. Thus, these
materials can be considered as active packaging since there is an interaction between the
material and the food product contained including activities such as controlled release,
which improve its preservation [327,328]. Although some alternatives from synthetic
polymers have been proposed, bio-based active packaging also offers the advantage of
avoiding phthalate leaching typically produced in synthetic polymers [329]. Thus, the
evaluation of active-agent release from biopolymers has received outstanding attention
from some years ago, with promising applications in the food packaging industry [152].
More specifically, the efficiency of active packaging for antimicrobial activity is based on the
match between the releasing rate of the active agent and the decrease in the growth kinetics
of the target microorganism [330]. These innovative materials can extend the shelf-life of
food products, providing an increase in microbial safety. This increase in food security can
be achieved by the incorporation of antimicrobial agents into the bulk of the biopolymer
matrix or onto the biopolymer surface [331,332]. Several authors have used co-products
from the dairy industry with antimicrobial constituents (i.e., oregano, rosemary, and garlic
essential oils) for the manufacturing of edible WPI-based antimicrobial films [332]. This
same application was found for other protein-based materials such as zein [333] and
soy protein isolate [333] by adding a mixture of lysozyme and nisin. However, other
active agents can be also used. To this end, Redl et al. [334] added ascorbic acid to
confer antimicrobial properties to gluten-based bioplastics. Gelatin was also mixed with



Foods 2021, 10, 981 13 of 33

chitosan to confer antimicrobial properties [335]. Another biofunctional property, which
is typically required in food packaging, is the antioxidant activity. More fresh products
are demanded nowadays by consumers [336]. However, as abovementioned, the lipid
oxidation reactions bring undesirable off-odors and off-flavors, as well as changes in texture
and color [337]. Moreover, apart from physical changes, lipid oxidation can also generate
toxic compounds such as aldehydes [338]. However, the use of synthetic antioxidants
such as butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) should be
avoided since they have been related to undesired health side-effects [339]. Gelatin films
have been developed together with citronella oil to manufacture films with antioxidant
properties [340]. The release of carotenoids from seaweeds with proved antioxidant activity
in synthetic packaging [341] suggests that the manufacture of algae-based bioplastics might
be considered to replace the synthetic polymer if the processing method selected do no
alter them. Moreover, it can be also indicated that whey and soy protein isolates have been
used in propylene-based materials to confer antioxidant properties [342] to them, including
even antifungal ones [343].

5.2. Absorbent and Superabsorbent Materials (SAMs)

Some absorbent materials exhibit an exceptional water absorption capacity. They
are named superabsorbent materials (SAMs), provided that they can absorb an amount
of water greater than 1000% their own weight [344]. The capacity of SAMs to hold a
huge amount of water is based on their ability to convert their structure into a hydrogel
which is not dissolved when the solvent (i.e., water in most cases) is trapped onto the 3D
network [345]. The synthesis of the first fossil-based superabsorbent polymer dates back to
the late 1930s, while the first commercial SAM was marketed in 1978 [346]. However, these
synthetic polymers show very low biodegradability, and hence, their replacement would
lead to a positive reduction in the environmental impact of SAMs [347]. Carbohydrates
are key biopolymers in the manufacture of this type of materials [348–350], but many
researchers have also focused their investigations on protein biowastes and co-products
from the agri-food industry to generate biodegradable absorbent and superabsorbent
materials [97,123,351,352]. Different processing techniques have been proposed for the
manufacture of protein-based absorbent and superabsorbent materials, covering from injec-
tion molding [58,59] to casting [353]. The most important applications for these materials
are related to personal care and agriculture [354,355]. However, these materials are also
applied in the food industry, especially in the control of moisture during food storage and
preservation [328]. The interest in SAMs from the food industry is reflected by the publi-
cation of several patents aimed to use absorbent materials for food packaging [356–358].
In this sense, zein has been used for the synthesis of superabsorbent hydrogels, showing
applications as metal ion chelators, which in turn can avoid food oxidation [359]. Moreover,
co-products from the cattle industry have also been used as raw materials for the generation
of superabsorbent materials for food applications, such as whey and casein [360–362].

Due to a lower added value, the agricultural applications reported in the literature are
lower. Proteins with low-value applications such as keratin and potato protein concentrates
were proposed for the development of superabsorbent materials to be used in agricul-
ture [113,123]. More details about this end-use are shown in the following Section 5.4.

Moreover, the final end-use application is not indicated in many cases, as authors
developed SAMs with any final end-use, which includes food packaging, agriculture,
personal care, and even scaffolds for cell growth, among others. In this sense, soy protein
isolate has been widely used for the manufacture of these materials [58,59,353]. Apart from
soy protein, other proteins co-products (i.e., canola and rapeseed protein concentrates) were
also used for absorbent materials [76,113,363]. Additionally, plasma protein, a hydrophilic
co-product from the meat processing industry, has proven to be useful in the fabrication of
absorbent plastic films [91,364–366] and superabsorbent materials obtained by injection
molding [96] and even 3D printing [198]. Also from the meat industry, gelatin showed
suitable application as SAMs [367]. Eventually, the underutilized bio-resource marine
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algal seaweeds can be also converted into added-value superabsorbent materials. Thus,
apart from the formation of hydrogels with κ-carrageenan and alginate [368,369], the
protein fraction from micro- and macro-algae is suitable for the generation of absorbent
materials [119,284].

Furthermore, soy proteins have also been chemically modified, improving the super-
absorbent properties of the materials produced by the acylation with ethylenediaminete-
traacetic dianhydride (EDTAD) or succinic anhydride [59,62,363]. Other authors have also
used EDTAD to functionalize other cereal proteins, like wheat gluten, improving the initial
water absorption properties of this co-product [370].

5.3. Agriculture

Polymers have found some interesting applications in agriculture, such as controlled
release of specific micronutrients or pesticides, as porous and water-holding matrices that
avoid the critical soil drought. Moreover, some of these applications have been linked to
the superabsorbent ability of the polymers employed. In the 1980s, several companies
manufactured and commercialized composites materials based on plant biopolymers and
polyethylene aiming at simultaneously providing biodegradability and fulfilling the re-
quirements of the consumers. However, this strategy resulted in the release of polymer
chains and microplastics to the medium, which caused environmental damage due to
the toxic polyethylene residues [371]. In this way, microplastics disposed on land end
up in rivers that flow into seas, eventually contaminating aquatic environments [372].
Therefore, the reduction of sea microplastics must go through the reduction of inputs onto
the inland [373]. Microplastics are particles lower than 5 mm built from larger particles
pieces. These particles cause damage to marine species, which eventually may affect the
full food chain [374]. The removal of these small bodies is a real challenge; therefore, the
best option is to avoid its generation [373,375]. Therefore, if the aim is to increase polymer
biodegradability for agricultural applications, the path can go through the use of biopoly-
mers whose degradation does not release undesirable macro- and micro-plastics [371]. To
this end, superabsorbent biodegradable polymers have been proposed for their use in
water-saving applications as well as for the controlled release of essential nutrients for
plants [376,377]. These superabsorbent materials increase the overall porosity of clay-based
soils, being recommended for their use in dry agricultural areas to reduce the drought
stress during plant growth [378]. Moreover, plant nutrients may also be entrapped within
superabsorbent matrices for their controlled release, hindering the water losses due to
evaporation, and reducing the irrigation [379]. Although there are polysaccharide-based
materials for these applications [380–382], Capezza et al. [370] recently reported the use of
gluten co-product as raw material for the manufacture of protein-based superabsorbent
materials with agricultural applications. These authors used a crosslinking agent (i.e.,
genipin) together with EDTAD to improve probe swelling, which in turn increased the
water absorption capacity of these materials. Moreover, SAMs with agricultural applica-
tions have been generated from other proteins, such as soy [59], canola [363], zein [383],
blood plasma [95], keratin and gelatin [384], milk proteins [385,386], and seaweed [347,387].
Moreover, bioplastics can also be used for the controlled release of both micronutrients
and pesticides. This is the case of gluten-based bioplastics (releasing pesticides) [388], soy-
based bioplastics (releasing zinc and mineral nutrients) [389,390], or even zein to prevent
salt-leaching [391]. These results evidenced the potential of co- and by-products from the
agri-food industry to produce materials that can be reused in agricultural applications
with greater environmental performance. Accordingly, the life cycle of some crops may
be enhanced since they can be used to obtain co- and by-products that in turn may lead
to bioplastics that could be reused again in the first stages of their own life cycle (e.g., as
water suppliers or for nutrient delivery to enhance crop growth).
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5.4. Scaffolds

Scaffolds are temporary supporting structures which are used to generate the final
structure. In material science, scaffolds are typically used for tissue engineering. Thus,
although the properties typically found in scaffolds materials (e.g., high porosity and water
absorption) can confer them interesting features, they are only named scaffolds when
serving as supporting structure to facilitate cell growth for a certain period of time in
tissue engineering [392]. Consequently, scaffolds need to play four fundamental functions:
(i) form a complex structure which allows cells to rebuild the original 3D structure; (ii) be
temporal support of functional demands (e.g., mechanical support); (iii) enhance tissue
regeneration (i.e., the release of bioactive compounds which allow cell fixation and growth,
favoring their transport); and (iv) be able to be attached to the surrounding tissue [393,394].
The exposed surface is key for these materials since the larger the surface available, the more
cell interactions take place. Thus, the pore size and morphology can significantly influence
the performance of these materials, where optimum values should be found for different
surrounding microenvironments (where cell dimension also must be considered) [261,393].

The research and further development of protein-based scaffolds have been focused on
films, plastics, foams, gels, and even composites materials [395]. Although these materials
are developed for tissue engineering, other biomedical applications have been found, such
as drug delivery systems and biosensors [396].

Collagen/gelatin has been widely selected as raw material for the manufacture of
scaffolds, since it not only performs a supporting function but it is also involved in a
wide range of tissue functions [397]. Therefore, collagen has shown excellent properties
in scaffolds, being manufactured in different ways such as phase separation [398,399]
or electrospinning [400]. Moreover, other proteins have also been used for the develop-
ment of scaffolds. Fibrous membranes produced by electrospinning were obtained using
PLLA/keratin as raw material [401]. In this case, the presence of keratin facilitated the
interactions between osteoblasts and the membrane, favoring cell growth. Nanocomposites
from keratin/hydroxyapatite have been generated following a co-precipitation method,
showing good biocompatibility tested by in vitro tests [402]. Keratin has also been used
in combination with natural polymers (i.e., gelatin and chitosan) for tissue engineering
applications [403]. In this context, plant proteins (e.g., zein, soy protein, and wheat gluten)
can also be used as raw material for scaffolds. They provide suitable mechanical properties,
while at the same time being biocompatible. Moreover, their typically low solubility confers
them enough stability in aqueous media to be considered appropriate for tissue engineering
applications [404]. Eventually, some authors have also tested the stability of seaweeds for
the manufacture of scaffolds, being used in most cases in combination with other polymers
such as PLA and cellulose [405,406]. All these results evidence that protein biowastes and
co-products from the agri-food industry can even be employed on specific applications
such as scaffolds for cell growth.

5.5. Other Applications

Although the most important applications for bioplastics from co- and by-products
from the agri-food industry have been mentioned above, other applications can be pro-
posed. Nanoparticles from collagen-serum albumin composite have been used for drug
delivery [407]. In the biomedical field, keratin has been used as nanosuspension to analyze
cell proliferation in tissue engineering applications (as an alternative to fibronectin and col-
lagen, typically used for this purpose) [408]. Although some authors have investigated the
use of protein-based bioplastics in the textile industry, proteins typically lead to bioplastics
exhibiting a fairly low elongation and are therefore brittle, which do not convert them into
suitable raw material for textile applications [409]. This is not the case of the automotive
industry, where Mohanty et al. [162] proposed the use of soy-based composite materials
(reinforced with fibers). This same approach was found by Guilbert et al. [206] when
soy-based bioplastics were hardened with formaldehyde. Saenghirunwattana et al. [145]
proposed the use of a zein protein concentrate for the manufacture of composite materials
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with applications in construction. Even electrical properties (dielectric constant) have been
analyzed and modulated in soy-based bioplastics for electrical applications [410].

Main protein sources from biowastes together with the processing technique used and
application pursued are summarized in Table 1.

Table 1. Main protein sources from biowastes used in the development of plastic materials commented in the present review.

Source Protein Processing Technique Plasticizer/Solvent or
Carrier Application References

Wheat
gluten

Acylation glycerol Superabsorbent materials [34]

Compression moulding glycerol Horticulture (release of
pesticides) [276]

Compression moulding glycerol Packaging [29,154]

Compression moulding Water/glycerol Edible films [153]

Compression moulding glycerol Biodegradable films [275]

Compression
moulding/Injection

moulding
glycerol Disposable articles [171]

Starch Casting glycerol Food packaging films [162]

Casting glycerol Disposable articles [210]

Casting glycerol/ethanol Edible films [223]

Extrusion/Injection
moulding glycerol Superabsorbent materials [32]

Extrusion glycerol Disposable articles [34]

Extrusion glycerol Superabsorbent materials [36]

Potato

Acylation glycerol Superabsorbent materials [120]

Casting

Ethylene glycol,
propylene glycol,

glycerol, sorbitol and
polyethylene glicol

Food packaging films [46]

Bioetanol Zein

Compression and casting
glycerol (compression)
and glycerol/ethanol

(casting)

Antimicrobial packaging
films [333]

Casting glycerol/ethanol Packaging of tomatoes,
reduction of color loss [311]

Casting glycerol/ethanol Apples and pears, reduction
of water loss [312]

Casting glycerol/ethanol Reduction of oxidation in
dairy products [313]

Casting
Ethanol/Polyols

(sorbitol, glycerol and
mannitol)

Food packaging films [227]

Extrusion water/ethanol Food packaging films [51,52]
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Table 1. Cont.

Source Protein Processing Technique Plasticizer/Solvent or
Carrier Application References

Oil

Soy

Casting water Edible films [230]

Casting water and glycerol Edible films [227]

Extrusion glycerol Disposable articles [185,189]

acylation-Injection
moulding glycerol Superabsorbent materials [60,62,163]

Injection moulding glycerol Superabsorbent materials [18,58,59]

Injection moulding glycerol Horticulture (Zn
incorporated) [63]

3D printing water/gelatine and
sodium alginate Food matrix [199]

Canola/
Rapeseed

Casting glycerol Edible films [72,73]

compression moulding polyvinyl alcohol and
glycerol Disposable articles [75]

injection moulding glycerol Packaging [76]

casting

glycerol,
1,3-propanediol,

D-sorbitol, triethylene
glycol, tetraethylene

glycol

Films [79]

Sunflower compression moulding glycerol Edible films or packaging [156]

extrusion/injection
moulding water planting containers [77]

extrusion water and glycerol Edible films [80]

Animal
farming

Blood
Extrusion Water - [92]

Injection-moulding glycerol - [93]

Plasma

Casting glycerol Food wrap or coating [91,365,366]

Casting glycerol Food packaging [364]

Injection-moulding glycerol Superabsorbent materials [95–97,292]

3D printing glycerol - [198]

Keratine
Casting glycerol, water, SDS Food packaging, coating,

medicine [109]

Casting glycerol, polyethilene - [112]

Gelatine

Casting Water Packaging and coating [279]

Electrospining acetic acid and
dimethylsulfoxide Regenerative medicine [259]

Electrospining 2,2,2-trifluorothanol Biomaterials [288]

Electrospining Trifluoroacetic acid Biomaterials [260]

Electrospining Acetic acid Tissue engineering [261]

Milk
protein

Casting

Clycerol, Propylene
glycol, sorbitor,

sucrose and
polyethylene glycol

Coating, food packaging [233]

3D printing Water and sodium
caseinate Costumized food design [200,201]
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Table 1. Cont.

Source Protein Processing Technique Plasticizer/Solvent or
Carrier Application References

Animal
farming

Casein
Casting glycerol Packaging [82]

Hydrogel by
solubilization Transglutaminase Contolled release [361,362]

Whey

Casting - Food coating [319]

Casting sorbitol Active packaging [321]

Casting glycerol Food packaging [232,233,235,332]

Casting water Coating [234]

Casting glycerol Coating, edible films [376,381,387]

Freezing glycerol and sorbitol Coating [324]

Compression Water Food packaging [145]

Hydrogel by
solubilization glycerol Coating, food packaging [297]

Electrospining acetic acid Coating [265]

Fish

Casting glycerol Active packaging [340]

Casting glycerol Edible packaging [209]

Casting glycerol Food packaging [241,244]

Compression moulding glycerol Active packaging [141]

Sewage Microalgae
Compression moulding glycerol Disposable articles [116]

Injection moulding glycerol Packaging [118,284]

6. Future Trends

Findings gathered in the present review put into focus the wide versatility of bioplas-
tics manufactured from agri-food industrial biowastes or co-products, although the limits
for their applicability are still far from being fully explored by the scientific community. In
the relatively near future, conventional plastics will disappear in single-use applications,
following the European strategy for plastics in a circular economy, which aims to transform
the way plastic products are designed, used, produced, and recycled in the European
Union. Most current applications are focused on the use of lignocellulose, starch, or fats
from food biowaste, and the protein fraction is mostly relegated to low-value applications
(e.g., animal food). However, as highlighted in the several applications described above,
there is a solid scientific ground to industrially exploit those protein-rich biowastes and
co-products. Techniques like electrospinning or 3D-printing have yet to further develop
their potential to do so, and proteins which are noncompetitive with the agri-food indus-
try, such as rapeseed or keratin, may find a privileged position. However, the excess of
co-products that are only minimally used by the agri-food industry despite being edible,
such as blood from the meat industry, should be better employed in applications like those
herein presented, in agreement with a circular economy. When bioplastics generated from
biowastes and co-products such as those herein indicated are competitive, the laws of
supply and demand will help to modulate their use.
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313. Ünalan, İ.U.; Arcan, I.; Korel, F.; Yemenicioğlu, A. Application of active zein-based films with controlled release properties to
control Listeria monocytogenes growth and lipid oxidation in fresh Kashar cheese. Innov. Food Sci. Emerg. Technol. 2013, 20,
208–214. [CrossRef]

314. Han, J.; Bourgeois, S.; Lacroix, M. Protein-based coatings on peanut to minimise oil migration. Food Chem. 2009, 115, 462–468.
[CrossRef]

315. Etxabide, A.; Uranga, J.; Guerrero, P.; de la Caba, K. Development of active gelatin films by means of valorisation of food
processing waste: A review. Food Hydrocoll. 2017, 68, 192–198. [CrossRef]

http://doi.org/10.1016/j.foodhyd.2017.04.014
http://www.ncbi.nlm.nih.gov/pubmed/28867864
http://doi.org/10.1186/2194-0517-2-12
http://www.ncbi.nlm.nih.gov/pubmed/29470732
http://doi.org/10.1007/s00397-007-0165-z
http://doi.org/10.1016/j.polymertesting.2010.09.005
http://doi.org/10.1016/j.jece.2020.105017
http://doi.org/10.1007/s10924-021-02082-w
http://doi.org/10.1016/j.foodhyd.2015.08.030
http://doi.org/10.1016/j.jcs.2017.04.003
http://doi.org/10.1016/j.foodres.2018.02.052
http://www.ncbi.nlm.nih.gov/pubmed/29580516
http://doi.org/10.1016/j.compositesb.2015.10.034
http://doi.org/10.1039/C7GC03368K
http://doi.org/10.1016/j.carbpol.2010.11.040
http://doi.org/10.1016/j.jfoodeng.2007.04.008
http://doi.org/10.1186/s40508-014-0022-1
http://doi.org/10.1016/j.clindermatol.2008.04.004
http://www.ncbi.nlm.nih.gov/pubmed/18691510
http://doi.org/10.1016/j.tifs.2011.01.002
http://doi.org/10.3390/polym11122039
http://www.ncbi.nlm.nih.gov/pubmed/31835317
http://doi.org/10.3934/matersci.2021012
http://doi.org/10.3390/polym13050769
http://www.ncbi.nlm.nih.gov/pubmed/33801341
http://doi.org/10.1016/j.jfoodeng.2014.03.021
http://doi.org/10.1111/j.1365-2621.1994.tb05563.x
http://doi.org/10.1016/j.ifset.2013.08.004
http://doi.org/10.1016/j.foodchem.2008.12.030
http://doi.org/10.1016/j.foodhyd.2016.08.021


Foods 2021, 10, 981 30 of 33

316. Poverenov, E.; Zaitsev, Y.; Arnon, H.; Granit, R.; Alkalai-Tuvia, S.; Perzelan, Y.; Weinberg, T.; Fallik, E. Effects of a composite
chitosan–gelatin edible coating on postharvest quality and storability of red bell peppers. Postharvest Biol. Technol. 2014, 96,
106–109. [CrossRef]

317. Ramos, M.; Valdes, A.; Beltran, A.; Garrigós, M.C. Gelatin-based films and coatings for food packaging applications. Coatings
2016, 6, 41. [CrossRef]

318. Nagarajan, M.; Benjakul, S.; Prodpran, T.; Songtipya, P. Effects of bio-nanocomposite films from tilapia and squid skin gelatins
incorporated with ethanolic extract from coconut husk on storage stability of mackerel meat powder. Food Packag. Shelf Life 2015,
6, 42–52. [CrossRef]

319. Yangılar, F. Chitosan/whey Protein (CWP) edible films efficiency for controlling mould growth and on microbiological, chemical
and sensory properties during storage of Göbek Kashar cheese. Korean J. Food Sci. Anim. Resour. 2015, 35, 216–224. [CrossRef]
[PubMed]

320. Wagh, Y.R.; Pushpadass, H.A.; Emerald, F.M.E.; Nath, B.S. Preparation and characterization of milk protein films and their
application for packaging of Cheddar cheese. J. Food Sci. Technol. 2014, 51, 3767–3775. [CrossRef] [PubMed]

321. Zinoviadou, K.G.; Koutsoumanis, K.P.; Biliaderis, C.G. Physical and thermo-mechanical properties of whey protein isolate films
containing antimicrobials, and their effect against spoilage flora of fresh beef. Food Hydrocoll. 2010, 24, 49–59. [CrossRef]

322. Calva-Estrada, S.J.; Jiménez-Fernández, M.; Lugo-Cervantes, E. Protein-based films: Advances in the development of biomaterials
applicable to food packaging. Food Eng. Rev. 2019, 11, 78–92. [CrossRef]

323. Aguilera Barraza, F.A.; León, R.A.Q.; Álvarez, P.X.L. Kinetics of protein and textural changes in Atlantic salmon under frozen
storage. Food Chem. 2015, 182, 120–127. [CrossRef] [PubMed]

324. Rodriguez-Turienzo, L.; Cobos, A.; Moreno, V.; Caride, A.; Vieites, J.M.; Diaz, O. Whey protein-based coatings on frozen Atlantic
salmon (Salmo salar): Influence of the plasticiser and the moment of coating on quality preservation. Food Chem. 2011, 128,
187–194. [CrossRef] [PubMed]

325. Chen, Y.; Tan, H. Crosslinked carboxymethylchitosan-g-poly (acrylic acid) copolymer as a novel superabsorbent polymer.
Carbohydr. Res. 2006, 341, 887–896. [CrossRef]

326. Commission, E. EU Guidance to the Commission Regulation (EC) No 450/2009 of 29 May 2009 on active and intelligent materials
and articles intended to come into the contact with food (version 1.0). Off. J. Eur. Union 2009, L135/3. Available online:
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:135:0003:0011:EN:PDF (accessed on 29 April 2021).

327. Realini, C.E.; Marcos, B. Active and intelligent packaging systems for a modern society. Meat Sci. 2014, 98, 404–419. [CrossRef]
328. Batista, R.A.; Espitia, P.J.P.; de Souza Siqueira Quintans, J.; Freitas, M.M.; Cerqueira, M.Â.; Teixeira, J.A.; Cardoso, J.C. Hydrogel

as an alternative structure for food packaging systems. Carbohydr. Polym. 2019, 205, 106–116. [CrossRef] [PubMed]
329. Weng, W.; Zheng, H. Effect of transglutaminase on properties of tilapia scale gelatin films incorporated with soy protein isolate.

Food Chem. 2015, 169, 255–260. [CrossRef]
330. Han, J.H. 6–Antimicrobial packaging systems. In Innovations in Food Packaging; Han, J.H., Ed.; Academic Press: Oxford, UK, 2005;

pp. 80–107, ISBN 978-0-12-311632-1.
331. Appendini, P.; Hotchkiss, J.H. Review of antimicrobial food packaging. Innov. Food Sci. Emerg. Technol. 2002, 3, 113–126.

[CrossRef]
332. Seydim, A.C.; Sarikus, G. Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and

garlic essential oils. Food Res. Int. 2006, 39, 639–644. [CrossRef]
333. Padgett, T.; Han, I.Y.; Dawson, P.L. Incorporation of food-grade antimicrobial compounds into biodegradable packaging films. J.

Food Prot. 1998, 61, 1330–1335. [CrossRef] [PubMed]
334. Redl, A.; Gontard, N.; Guilbert, S. Determination of sorbic acid diffusivity in edible wheat gluten and lipid based films. J. Food Sci.

1996, 61, 116–120. [CrossRef]
335. López-Caballero, M.E.; Gómez-Guillén, M.C.; Pérez-Mateos, M.; Montero, P. A chitosan–gelatin blend as a coating for fish patties.

Food Hydrocoll. 2005, 19, 303–311. [CrossRef]
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