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Abstract: The aim of this work was to compare selected physicochemical properties of air dried
‘Golden Delicious’ apples, pretreated either by high-pressure processing (HPP), ultrasound (US) or
pulsed electric field (PEF). Following parameters of pretreatment were used: HPP–400 MPa for 15 min,
US–21 kHz, 180 W for 45 min, PEF–1 kV/cm, 3.5 kJ/kg. The quality of materials was evaluated
by their rehydration properties, hygroscopicity, color and total phenolic content. To compare the
effectiveness of the utilized methods, determined properties were expressed as relative comparison
values against the reference sample obtained without any pretreatment in the same conditions.
The performed research demonstrated that properties can be shaped by the application of proper
pretreatment methods. For instance, PEF was shown to be the best method for improving water
uptake during rehydration, whereas HPP was the most effective in decreasing hygroscopic properties
in comparison with untreated dried apples. Among the investigated methods, HPP resulted in the
deepest browning and thus total color difference, while the effects of US and PEF were comparable.
For all pretreated dried apples, the total phenolic content was lower when compared with reference
material, though the smallest drop was found in sonicated samples.

Keywords: high hydrostatic pressure; HPP; electroporation; PEF; sonication; US

1. Introduction

Despite drying being one of the oldest food-preservation and -processing methods, it
is still to one of the most popular techniques used in food technology. The global market
for dehydrated foods is constantly growing. It is estimated that, in the coming years, it will
grow with a CAGR (compound annual growth rate) of 5.3–7.4% [1,2]. Nevertheless, drying
as a heat and mass transfer-based process belongs to one of the most energy consuming
unit operations applied in food industry, with a share of 12–20% of total energy used in
production processes [3,4]. The progress of drying “solid-like” food can be enhanced by
the rupture of the cellular structure of the material, and such a technological aim can be
achieved by pretreatment of the material. Pretreatment can be performed using mechanical,
thermal or nonthermal techniques [5–8]. High pressure processing (HPP), ultrasounds (US)
and pulsed electric field (PEF) treatments are considered to be the most popular and most
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promising, among nonthermal processing methods, that can be applied to also enhance the
mass- and heat-transfer processes [9].

HPP treatment usually involves the treatment of solid and liquid food by pressure, atf
100–800 MPa. Such treatment may result in microorganisms’ and enzymes’ partial or total
inactivation, without any (or with negligible) adverse effect on bioactive compounds [10].
Currently, this method is mainly applied at commercial scale, for preservation of juices
and smoothies [11]. This is related to the fact that HPP impacts on polymeric structures,
stabilized by noncovalent bounds, such as proteins or carbohydrates, but does not have any
effect on covalent bounds. High pressure also induces temporary volume changes which,
together with changes to the secondary and tertiary structures of proteins, may result in
the irreversible loss of cellular structure integrity [12]. The increase of the permeability
of cell membranes facilitates mass transfer. Hence, it has been demonstrated previously
in literature that HPP can enhance the drying of plants’—such as carrots, apples, green
beans [13] or pineapples [14]. The main drawback of HPP as a method, in general, is the
high cost of equipment and its batched character.

US treatment (sonication) is another example of emerging, nonthermal technology.
Ultrasounds are mechanical waves, vibrating at frequencies of 0.02–100 MHz. These
vibrations can stimulate liquids to inertial and non-inertial cavitation [15,16]. In the case of
inertial cavitation, bubbles are formed grow, their volume increases and, at some point,
the implode, which generates a shock wave. Usually, for inertial cavitation to happen,
the acoustic pressure amplitude must be higher that a particular threshold value. When
bubbles do not collapse violently, but instead oscillate in size and volume, the cavitation
is non-inertial [17]. Depending on cavitation, the microstructural alterations of tissue
material may vary. However, currently it is believed that both types of cavitation may
improve membrane permeability [18]. A phenomenon that is closely related to cavitation
and which can occur in tissue material is called the “sponge effect”. Mechanical waves that
travel throughout material induce oscillating rarefaction and compression of the treated
material. Those mechanical changes of the material can be associated with the formation of
so-called microchannel promoting of mass transfer within materials exposed to acoustic
pressure [19,20]. In the literature, there are many examples of ultrasound’s utilization
this way– from extraction and emulsification [21,22], through freezing [23], to osmotic
dehydration [16,24,25]. Sonication has been also reported to intensify the drying progress
of different tissue materials, such as those of the blackberry [26], raspberry [6], pear [27]
or carrot [28]. One of the most important advantages of ultrasound is its relatively low-
cost equipment, needed to perform the treatment. However, the main drawback of the
sonication of porous material is most probably its low depth of penetration, which makes
this method only suitable for thin products [29].

PEF treatment involves the utilization of external high-electric-field-intensity short
pulses for the treatment of food placed between two electrodes. The exposition of cellular
biological systems for PEF leads to reversible or irreversible electroporation. This phe-
nomenon increases the permeability of cell membranes due to the formation and growth of
transmembrane pores and/or rupture of cell continuity [30]. There are many examples of
successful PEF application in food processing [31]. Ruptured cellular structure results in
better extraction of different compounds [32], enhanced freezing [33], osmotic dehydra-
tion [34] or preservation of juices [35]. PEF has been also implemented at the industrial
scale, mostly for processing potatoes [36]. The literature also provides examples of the pos-
itive impacts of PEF pretreatment on drying kinetics and quality of product. For instance,
recently it has been demonstrated that PEF reduces the drying time of parsnips [37] and
onions [38]. Moreover, the application of PEF can positively influence the quality of dry
material, as was exemplified using mango [39]. In comparison with HPP, PEF is a cheaper
method, and it can be applied using continuous modes. One of the biggest advantages of
PEF is its volumetric character, which makes this technique unique when compared to US.
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HPP, US and PEF allow achieving similar technological aims though different mech-
anism of action. Thus, the aim of this work was to compare selected physicochemical
properties of air-dried ‘Golden Delicious’ apples, pretreated either by HPP, US or PEF.

2. Materials and Methods
2.1. Materials

‘Golden Delicious’ apples were used in this research. Only healthy-looking apples
with similar dimensions and similar color, without any mechanical injuries, were used.
The apples were stored at a temperature of 4–5 ◦C and. before each experiment, were
withdrawn from cold storage and left to equilibrate at room temperature, before being
washed with potable water.

2.2. Technological Methods

Samples were pretreated, before drying, using HPP, US or PEF, using the parameters
listed in Table 1. The parameters of pretreatment used in the study were selected based
upon preliminary experiments (data not shown) related to electrical conductivity and
mechanical-properties measurements. Depending on the method, because of technological
limitations, samples were either cut into 5 mm thick slices (US, and control) or treated as
whole (PEF, HPP) and sliced directly, before drying, into the same-sized cuts.

Table 1. Basic parameters of pretreatment methods. applied prior to convective drying.

Pretreatment Method Parameters

HPP 400 MPa, 15 min
US 21 kHz, 180 W, 45 min
PEF 1 kV/cm, 3.5 kJ/kg

2.2.1. High-Pressure Processing (HPP)

The treatment of raw whole apples with high pressure was performed in a high-
pressure press CYX 6/0103 (ŽĎAS join stock company, Zdar on the Sasau, Czech Republic),
which is presented in Figure 1. The volume of the chamber is 2 L, the inner diameter of
the chamber is 90 mm, the height is 320 mm and the maximum achievable pressure is
450 MPa. The raw materials were placed in plastic PA/PE bags and filled with potable
water (20–25 ◦C). The bag was then sealed, with a minimum of air inside, and placed in a
chamber partially filled with water. Then the upper lid was placed on the chamber and
secured with the press frame. The pressure and pressure-holding time were controlled
by the system. A pressure of 400 MPa and a holding time of 15 min were chosen for the
experiments, based on preliminary research. The temperature of the chamber contents
ranged from 21 to 25 ◦C.
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2.2.2. Ultrasounds (US)

Sonication was applied for 45 min, using an ultrasound bath (MKD-3, MKD Ultra-
sonics, Warsaw, Poland) working at a frequency of 21 kHz and power of 180 W (internal
dimensions: 240 × 140 × 110 mm), which corresponded to the ultrasound intensity of
1.8 W per gram of apple tissue. The bath was filled with distilled water of room temper-
ature (20 ± 1 ◦C). The material was placed in the baker, containing tap water at room
temperature (20 ± 1 ◦C). The ratio between water and material was 1:4. After sonication,
apple slices were separated from the water using a sieve and blotted with tissue paper. The
parameters of sonication were selected based on preliminary tests.

2.2.3. Pulsed Electric Field (PEF)

A pulsed electric field was generated by the PEF Pilot system (Elea Vertriebs- und
Vermarktungsgesellschaft GmbH, Quakenbrück, Germany) at an electric field strength
of 1.0 kV/cm and an energy input of 3.5 kJ/kg. The system provided monopolar, near-
rectangular pulses with a width of 4 µs. Whole apples (ca. 250 g) were placed in the
treatment cell and filled with tap water (21 ± 1 ◦C) up to 1 kg. Afterwards, the chamber
was closed with a special lid to ensure that all apples are covered were completely in
water. The gap between the stainless-steel electrodes was 24 cm. After application of
PEF, the material was removed from the chamber, dried with tissue paper, and cut into
5 mm-thick slices. The parameters of treatment were selected based on preliminary tests
as aforementioned.

The specific energy input Wp was calculated based on the following equation [40]:

Wp = (U·I·t·n)/m (1)

where n is the number of pulses; m is the mass of the treated samples (kg); U is the voltage
(V), t is the width of the pulse (s) and I is the current (A).

2.2.4. Convective Drying

Untreated and pretreated apples were subjected to air drying (convective drying—
CD) in a prototype laboratory dryer (Warsaw, Poland or Prague, Czech Republic) at a
temperature of 70 ◦C and air speed of 1.5 ± 1 m/s. The mass of the apples was monitored
throughout the process, using a balance coupled to the computer that served as a data
logger. Drying was performed until the apples achieved constant mass at least for 15 min,
and drying time was expressed as drying needed to reach relative moisture ratio MR of 0.02.

Moisture ratios were calculated using following equation [41]:

MR = uτ/u0 (2)

where u0 is the initial moisture content [kg H2O/kg d.m] and uτ is the moisture content at
τ moment of the drying [kg H2O/kg d.m].

2.3. Analytical Methods
2.3.1. Dry Matter Content (DM)

Dry matter content was determined using the gravimetrical method according to
AOAC procedure [42]. The analyses were done in triplicate.

2.3.2. Water Activity

Water activity was measured at 25 ± 1 ◦C, using calibrated instruments (AW Sprint,
Novasina; AquaLab, Decagon, Munich, Germany) at least in triplicate.

2.3.3. Rehydration Properties

One slice of dried material was added to a beaker with 100 mL of distilled water at
20 ◦C for 1 h [43]. After this time, the sample fluid was filtered through a sieve and filter
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paper. Subsequently, the sample was weighed, and the dry matter was determined. The
experiment was repeated at least three times.

According to the equations below, rehydration properties were expressed as dimen-
sionless values of rehydration rate (X) and soluble solids (SSL) losses as a function of
rehydration time.

X = urτ/u0 (3)

SSL = (mτ · dmτ)/(m0 · dm0) (4)

where mτ is the mass of rehydrated material in time τ of the process [g], m0 is the initial
sample mass of rehydrated material [g], urτ is mass of the water in the sample after time of
rehydration τ in [kg H2O·kg dm−1]; (unit means kg of water per kg of dry mater), m0 is
mass of water in fresh sample [kg H2O·kg dm−1] and dmτ, dm0 are dry matter contents in
samples after rehydration time τ, and in dried samples.

2.3.4. Hygroscopic Properties

The hygroscopic properties (H72h) of the dried sample were determined by sorption
of water vapor by samples placed in an environment with a water-activity value of one for
72 h [43], and expressed as change in material–weight ratios, after 72 h, according to the
following equation:

H72h = m72h/m0 (5)

where: m72h is the mass of material after 72 h of sorption [g], m0 is the initial mass of the sam-
ple. The experiment was performed at least at three replicates for each analyzed sample.

2.3.5. Color

The optical properties of apples were measured by a reflectance method in CIE L*a*b*
scale (CM-5, Konica Minolta, Japan). D65 source of light, 8◦ angle and a CIE 2◦ standard
observer were set during the measurements [44]. The analysis was repeated at least five
times for each analyzed variant. Based on the obtained color coordinates, the total color
difference (TCD) was calculated:

TCD = ((∆L*)2 + (∆a*)2 + (∆b*)2)0.5 (6)

where: ∆L*, ∆a*, and ∆b* are the differences of L*, a*, and b* between untreated or treated
dried samples and fresh (raw) apple.

2.3.6. Total Phenolic Content

Total phenolic content was determined according to the methodology described by
Nowacka et al. [45], in at least two replicates, for each of the tested variants. In brief, 2 g
of dried material was mixed with 80% (v/v) aqueous ethanol solution and homogenized.
Then the homogenized material was boiled, and, after cooling, the extract was filtered to
the 50 mL volumetric flask. Then ethanol solution was added to the line obtaining 50 mL
of extract. The total phenolic content was measured using 0.18 mL of extract, which was
mixed with 4.92 mL of distilled water, 0.3 mL of Folin–Ciocalteau’s reagent, and after 3 min
of 0.6 mL of sodium carbonate. The samples were thoroughly mixed between additions
of reagents. Samples were stored for 1 h in the dark, and absorbance was measured at
750 nm using spectrophotometer (Helios Gamma, Thermo Fisher Scientific, New York, NY,
USA) against sample without addition of extract (blank sample). The obtained results were
expressed in mg-of-gallic-acid-equivalents per 100 g of dry matter.

2.4. Statistical Methods

Statistical analysis was performed using TIBCO company software (STATISTICA pro-
gram, version 13, Palo Alto, CA, USA) and Excel (Microsoft, USA) software. Comparison
of results between untreated and treated samples was performed using the student’s t test.
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Moreover, cluster Analysis (CA), using Ward’s agglomeration method, and principle com-
ponent analysis were performed (PCA), taking into account all evaluated relative values.

3. Results and Discussion
3.1. Drying Time

Figure 2 presents the reduction of drying time by HPP, US and PEF application. The
biggest reduction was found for the process preceded by PEF treatment. In this case drying
was shorter by 11.4%, as compared with the reference process. The literature data about
the impact of PEF on hot air-drying kinetics is ambiguous. Arevalo et al. [46] did not
find any significant impact of PEF on drying time, whereas Wiktor et al. [47] previously
demonstrated that electric treatment may decrease convective drying up to 13%. In turn,
for other matrices such as carrots the enhancement of drying by PEF reached even 30% in
comparison with untreated material [48]. Despite that drying in all cases was carried out
at 70 ◦C the parameters of PEF treatment were different which influent obtained results.
Moreover, the physical properties of raw materials subjected for treatment also contributes
to the effectiveness of electroporation.
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Figure 2. Drying time reduction of HPP, US and PEF treated apples as calculated in comparison with
untreated material drying. RD indicates statistically significant difference, NRD indicates statistically
non-significant difference in comparison with untreated dried material (Student’s t test, α = 0.05).

Ultrasounds decreased dehydration time by 8.4% in comparison with control oper-
ation. The difference in drying time was significant, from a statistical point of view, for
PEF and US alike. More effective process of water removal from apples by ultrasounds
application was also stated by Galvão et al. [49] and Nowacka et al. [50]. In both cases,
authors explain their results by microchannel formation, which facilitates mass transfer
during water evaporation. The reduction of drying time by the application of US was
also demonstrated to be effective for matrices other than apples. For example, Abbaspour-
Gilandeh et al. [51] showed that US, applied before drying, makes the drying of hawthorn
fruits shorter regardless of the drying techniques used. Similar results were also reported
by Taghinezhad et al. [52] for kiwi fruits drying.

The reduction of drying time reached 6.1% when HPP was applied prior to water
evaporation. However, the difference was not significant from statistical point of view.
In the literature there are some rare examples of HPP’s impact on the drying kinetics of
apples. Yucel et al. [13] showed that pressure, applied prior when drying, can decrease
the drying time of apples significantly. The size of effect depended on temperature–
the higher the temperature, the less visible was the impact of HPP. For instance, when
temperature was 85 ◦C, drying lasted 60.75 and 60.21 min for untreated and HPP (200 MPa,
45 min), respectively. Thus, the results presented in this work are in accordance with data
presented previously.
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The comparison of the drying times of apples pre-treated by different non-thermal
technologies indirectly implies which method and which mechanism of action most proba-
bly causes the more severe changes in microstructure. Based on that data, PEF is the most
effective in drying enhancement, due to its volumetric character and permeabilization of
cell membranes by electroporation process and phenomenon.

3.2. Dry Matter, Water Activity, Rehydration, and Hygroscopic Properties

Raw apple was characterized by high water content. The dry matter was equaled to
13.9 ± 0.1% (data not shown). Drying resulted in a significant increase in the dry substance
content for each of the materials and dry matter was in the range of 88.9 to 93.2%. The
use of high pressure, ultrasound, and pulsed electric field treatment before drying did not
cause any significant changes in the dry matter content compared with the apples that
were not pretreated. The results of these tests are presented in Table 2 expressed as relative
values of the untreated dried material.

Table 2. Relative values of water activity, dry matter content, rehydration and hygroscopic properties of dried apples
pretreated with different methods, calculated in reference to control (untreated, dried) material.

Pretreatment Method
Relative Difference in Comparison with Control Material [%]

X SSL H72h aw DM [%]

HPP −2.13 RD 9.14 RD −5.51 RD 4.82 RD 0.45 NRD
US −2.84 NRD 0.4 NRD 0.75 RD −4.42 RD −0.54 NRD
PEF 28.57 RD −6.76 RD 0.84 NRD −7.23 RD 0.76 NRD

RD indicates statistically significant difference, NRD indicates statistically non-significant difference in comparison with untreated dried
material (Student’s t test, α = 0.05).

Water activity is a parameter that determines the course of many biochemical pro-
cesses in food caused by the growth of microorganisms. Water activity below the level
of 0.6 prevents the growth of microorganisms and the stability of drought during storage
can be maintained [28]. Dried materials were characterized by water activity in the range
of 0.228 to 0.249 (data not shown), which was much below the value of 0.6. The samples
treated with different pretreatment methods (HHP, US, PEF) significantly differ from un-
treated dried samples Table 2. In the case of HHP treatment, slightly higher water activity
was noticed in the dried material in comparison with untreated dried samples, while for
US- and PEF-treated samples, water activity was lower compared with intact dried samples
by about 4.42 and 7.23%, respectively.

Table 2 shows also data related to reconstitution (X-rehydration rate and SSL-soluble
solids loss) and hygroscopic properties (H72h) dried for apples pretreated with different
methods, expressed as relative values calculated regarding the control material (dried,
without treatment). Rehydration is a process opposite to the drying process. During
rehydration, water enters dried tissues, and the soluble solids of the dry substance move
into the water. As a result of rehydration, the weight and volume of the dried materials
increase. The changes in tissue structure during the drying process, as well as in pretreat-
ment methods, effects their ability to bind water and inhibit the restoration of the original
volume of the raw material [28,53,54]. Its reconstitution properties are essential for the
dried material [55]. In the case of the samples subjected to the HHP, US and PEF treatments
and convective drying, various changes were observed, depending on the applied pre-
treatment methods. For HHP treated samples, the dried material was characterized by a
significantly lower rehydration rate (X) of about 2.13% and higher soluble solids loss (SSL)
of about 9.14%. The results do not confirm previous research by Belmiro et al. [56], which
noticed better rehydration properties (up to 2.1 times higher rehydration rate) for dried
beans treated with HHP prior drying.

US application resulted in lower rehydration rates and almost unchanged SSL, how-
ever, the results were statistically nonsignificant in comparison with untreated dried
material. Usually, in tissue material, ultrasound application affects microstructural changes,
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and an increase of water uptake during the rehydration process is observed. For example,
for carrots subjected to sonication in ethanol solution (up to 3 min), followed by convec-
tive drying, the rehydration rate increased up to 19% in comparison with an intact dried
sample [28]. Also, for US treatment, prior freeze-drying of button mushrooms, Brussels
sprouts and cauliflower resulted in higher rehydration properties [57]. However, with
the increasing time of rehydration, a decreasing rate is observed due to the saturation of
the material in water [50]. In the case of apple tissue, the treatment was much longer and
lasted 45 min. This might negatively influence the microstructure and cause tissue damage,
resulting in lowered rehydration ability.

For the sample subjected to PEF before drying, a significant increase in rehydration
rate and decrease of SSL were observed. Additionally, Fauster et al. [58] observed higher
rehydration capacity, up to 50%, for PEF pretreated freeze-dried strawberry and red bell-
pepper samples. The possible explanation for these better rehydration properties is that
electroporation phenomena caused tissue changes and increased the number of pores.
Similar effect was also noticed for PEF-treated red bell pepper with prior freeze-drying [59].
As Parniakov et al. [60] stated, PEF application effects shrinkage reduction during the
drying process, preserving capillary structures, and affecting rehydration properties.

Hygroscopic materials show the ability to adsorb water in a humid environments,
and this causes changes in water content and affects the shelf life of dried materials [41,43].
The structure of the material determines this property, thus in dried apples pretreated with
HHP, US and PEF, changes in hygroscopic properties were observed. Generally, porous
material shows good hygroscopic properties [28]. The results reveal that only HHP and
US significantly changed hygroscopic properties after 72 h of water vapor adsorption.
HHP reduced the water vapor adsorption capacity by about 5.51%, which is good, due
to the fact that lower water adsorption positively effects the stability of the dried product
during storage. In the case of sonicated samples, slightly but significantly increased the
water vapor adsorption capacity was observed, while for PEF-treated samples, hygroscopic
properties did not significantly differ from untreated dried apples. These results are not in
line with those of Rybak et al. [59], who found that US and PEF employed before freeze-
drying resulted in an increase of about 42 to 48% in water-vapor adsorption ability. In turn,
Zubernik et al. [61] reported that air-dried apple adsorbed 2–3.5-times less water vapor
when previously subjected to sonication in ethanol solution (up to 3 min), in comparison
with dried untreated tissue. However, in comparison with treatment in ethanol without
US, the differences were not significant. Perhaps, the longer US treatment time applied in
the current study contributed to significant changes in water-vapor adsorption.

3.3. Color

The color of food is generally measured using L*a*b* system, in which L* indicates
lightness, a* indicates the color from green (−a*) to red (a*) and b* indicates the color from
blue (−b*) to yellow (b*). Based on the alteration of the color descriptors, especially a* and
b* parameters, it is possible to predict pigment changes or the occurrence of enzymatic or
nonenzymatic browning reactions [62].

The relative difference of L*, a*, b* color parameters and total color difference (TCD)
between treated and untreated apple tissue are summarized in Table 3 and shown in
Figure 3. The changes of the color descriptors were dependent on the type of applied
treatment. For instance, the HPP treatment caused significant deterioration of each color
parameter, causing darkening of tissue and increase of both a* and b* chromatic parameters.
However, the greatest changes were observed in the case of a* parameter, whose value
increased after HPP from 3.81 to 10.70, which corresponded to the relative difference of
180.84%. A similar tendency was observed in the case of PEF treatments, for which the
highest changes of a* descriptor was noticed, causing a shift in its value from −2.10 to
5.30. The relative difference was than −352.38%. Furthermore, dried PEF-treated apples
were characterized by significantly lower L* and significantly higher a*, while the b* value
and TCD remained unchanged. Sonication, instead, contributed to significant change of
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only the a* descriptor. A lower negative value of −2.70 was noted, after US, in comparison
with the untreated value (−2.10). Importantly, ultrasound waves did not contribute to the
significant darkening of the apples, which probably depended on the disruption of the
cells and leakage of their cellular content, which occurred in the HPP and PEF treatments
but was less intense for the US treatment. Such results fit previously described results
regarding the mechanism of action of ultrasound, which may cause some alterations of
cellular structure but without complete degradation of the cell membrane and vacuoles [63].
Wibowo et al. [64] observed significantly higher lightness of the cloudy apple juice after
both HPP and PEF treatments in comparison with untreated juice. Moreover, the PEF
contributed also to statistically significant increase of a* parameter, whereas HPP increased
the b* value significantly. The authors explain that higher L* value caused by PEF was due
to partial inactivation of polyphenol oxidase (PPO) and peroxidase (POD) and thermal
effect (the outlet temperature was up to 74 ◦C). However, the enzyme activity after HPP
was statistically unchanged, and thus, probably, browning also occurred nonenzymatically
after both PEF and HPP. In turn, in the case of apple tissue var. Ligol a significant darkening
(decrease of L*) of PEF-treated apples, especially at higher electric field intensity (3 and
5 kV/cm), was noted [65]. Some authors suggest that PEF promotes darkening of the tissue
due to higher release of PPO and the substrates of enzymatic browning [66]. The higher
a* in dried PEF-treated apples, obtained in current study, confirms these assumptions.
Fijalkowska et al. [53] reported a significant increase of L*, a* (shift from negative to positive
values) and b* values in dried apples, after 30 min of sonication at 21 kHz in, comparison
with dried untreated tissue of the Idared variety. The browning reactions’ intensities are
dependent on the variety of apple and Golden Delicious is characterized by a less-intense
browning phenomenon [67]. The largest difference in total color difference in comparisons
of untreated dried material was found for HPP-treated apples; it was significantly higher,
by 103.64%, which limits utilization of this method for drying pretreatment [65].

Table 3. Relative values of color parameters of dried apples pretreated with different methods calculated in reference to
control (untreated) material.

Pretreatment Method
Relative Difference in Comparison with Untreated Material [%]

L* a* b* TCD

HPP −21.52 RD 180.84 RD 11.02 RD 103.64 RD
US −6.33 NRD 28.57 RD 12.14 NRD 3.08 NRD
PEF −10.55 RD −352.38 RD 1.43 NRD 3.85 NRD

RD indicates statistically significant difference, NRD indicates statistically non-significant difference in comparison with untreated dried
material (Student’s t test, α = 0.05).
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Figure 3. Air-dried apples untreated and treated with HPP, US and PEF.

3.4. Total Phenolic Content

The application of pretreatment, despite its nonthermal character, resulted in the
significant degradation of phenolics in hot air-dried products (Figure 4). The lowest
retention of phenolics was found in the case of HPP-treated material, where the loss of total
phenolic content, compared with untreated dried apples, was 42.6%. In turn, the lowest
degradation of phenolics (17.1%) was found for apples dried with the assistance of US. PEF
pretreated dried apples exhibited a total phenolic content lower by 33.6% when compared
with the reference material. It is reported that HPP can influence the oxidoreductive
enzymes in plant origin material and inhibit residual activity of polyphenol oxidase (PPO)
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or peroxidase (POD) by 1–33% [68]. However, vast majority of research deals with either
juice or enzyme extracts [69], whereas the inhibition of enzymes in solid-like matrices may
be different.
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Figure 4. Relative total phenolic content (TPC) in dried apples, pretreated by different methods
and calculated in comparison with untreated dried samples. RD indicates statistically significant
difference, NRD indicates statistically non-significant difference in comparison with untreated dried
material (Student’s t test, α = 0.05).

Research performed on peaches showed that PPO activity decreases after HPP, and
vacuum packaging from 232 to 106 UE/mg directly after treatment and from 192 to
113 UE/mg after 21 days of storage at 10 ◦C [70]. Considering that similar situations
can apply for apple tissues, the partial inactivation of PPO, rupture of the tissue due to
volume changes, degradation of cellular structure and subsequent drying may result in
such high degradation of phenolics in dried apples. Similar explanation can be considered
as reliable for PEF-treated material, for this method also was reported to cause partial
PPO inhibition [70] and, as explained previously, leads to the rupture of microstructures.
However, some research indicates that PEF may lead to higher inhibition of PPO and POD
than HPP [64] which could partially explain the lower degradation of phenolics found for
PEF treated dried apples. Another important factor that can influence such results is the
time of treatment. Here, the pressure-holding time, in the case of HPP, was 15 min, whereas
the application of PEF lasted less than 1 min. Also, other existing articles in this field
confirm the proposed explanation. In fact, there are publications that show that HPP and
PEF can lead to a decrease of phenolics in fresh apples [65,71]. Subsequent exposition of
such treated materials for conditions that favor oxidation—as it takes place during drying—
may only intensify this change. As aforementioned, these results, alongside drying kinetics,
indirectly demonstrate that sonication led to the smallest changes in cellular structure,
which manifested the lowest degradation of phenolics in the final product. It has to
be emphasized that US can also inhibit the activity of oxidoreductive enzymes present
in food [72] which, as previously explained for PEF and HPP, can affect the stability of
phenolics during drying.

3.5. Principle Component Analysis and Cluster Analysis

Figure 5 presents the results of PCA in a form of a BiPlot. According to this analysis,
the first component (PC1) explained more 65.61% of the variability of the results, while
the second (PC2) explained the rest. PC2 was mostly associated with the dry-matter
content (DM) and relative water content during rehydration (X), whereas PC1 concerned
water activity, soluble solids loss (SSL) and hygroscopicity (H72h). Based on the positions
of investigated samples and their characteristics it can be stated that PEF material was
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distinguished from others by its water adsorption capability during rehydration (X), HPP by
total color change (TCD) and water activity (aw) and US by total phenolics content (TPC).
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Cluster Analysis (CA) allowed to determine the two investigated groups: one con-
sisted of PEF- and US-treated variants, whereas the second HPP-treated variants (Figure 6).
In turn, the distance, which corresponds to dissimilarity, between PEF- and US-treated
samples was 79%, meaning that samples subjected to the PEF and US treatments were
more like each other than they were like HPP-treated material. Hence, the results of CA
correspond to the results of PCA.
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4. Conclusions

HPP, US and PEF can be used to modify the course of drying and quality of dried
products. Among these methods, PEF was the most efficient in reducing drying time or
increasing of water adsorption. HPP application prior to drying did not lead to significant
reduction of air-drying time, caused the largest color change (browning) of the dried
material and the biggest reduction of phenolics, in comparison with untreated material.
The high cost of HPP equipment, and its above-listed drawbacks, show that HPP is
not necessarily a superior drying-pretreatment method. Nevertheless, the selection of a
pretreatment method should be made based on the desired properties of final product and
its practical application.
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