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Abstract: In this study, a system was designed that can encapsulate and deliver gallic acid (GA),
which was composed of polysaccharide polymers based on sodium alginate (SA), carboxymethyl
chitosan (CCT), and cellulose nanofibers (CN) and was assisted by porous starch. The compositions
were characterized by rheology and zeta potentials, and the results showed that the materials used
in this study could effectively guarantee the stability of the system. The morphology and chemical
structure of the beads were characterized by SEM and FT-IR, the results indicated that the addition of
CCT could effectively reduce the cracks and pores on the surface of the beads, which was beneficial
to the encapsulation and delivery of GA. Moreover, the results of the swelling rate, release tests, and
antioxidant tests also proved the effectiveness of the system. The pH response effect of SA/CN/CCT
(SCC) beads and the protection of GA were superior, and the release rate of GA in simulated
gastric fluid (SGF) was only 6.95%, while SA and SA/CN (SCN) beads reached 57.94% and 78.49%,
respectively. In conclusion, the interpenetrating network polymers constructed by SA, CCT, and CN,
which, combined with porous starch as a coating layer, can achieve the embedding and the delivery
of GA.

Keywords: porous starch; sodium alginate; cellulose nanofiber; carboxymethyl chitosan; gallic acid;
small-intestine-targeted delivery

1. Introduction

Due to changes in global diet, the incidence of obesity is increasing worldwide as is the
incidence of glucose and lipid metabolism disorders, which are closely related to cardiovas-
cular diseases, diabetes and fatty liver [1,2]. Gallic acid (3,4,5-trihydroxybenzoic acid, GA),
a common dietary polyphenol, is widely found in foods such as tea and mango [3]. GA can
ameliorate diet-induced glucose and lipid metabolism disorders through the regulation
of energy metabolism and adipocyte differentiation and by promoting glucose absorption
and utilization while increasing insulin sensitivity [4]. GA can also regulate the level
of blood glucose and blood lipids by inhibiting the intestinal digestion and absorption
of fat, reducing lipid synthesis and accumulation, and regulating gluconeogenesis and
glycolysis [5]. Meanwhile, GA promotes mitochondrial energy metabolism and prevents
DNA damage caused by a high-fat diet [6]. GA have many physiological functions; how-
ever, GA performs poorly in terms of bioavailability and stability and is easily destroyed;
moreover, the application of GA is limited by its tendency to auto-oxidize and form dimer,
oligomer, and polymers in aqueous solution [7]. In addition, GA is sensitive to the human
digestive system environment, and the small intestine is difficult to efficiently transport
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GA, while the human diet environment is more complex; before reaching the absorption
zone of GA, GA is very likely to be complexed into various degrees of polymerization by
the upper digestive system, stomach, etc., or directly degraded to cause a great deal of
loss [7]. In terms of the bioavailability of phenols, monomers have a higher absorption
rate than polymers. Porous starch (PS) has abundant pores from the surface to the interior
of the granule, which means it has a strong capacity for adsorbing GA monomers. The
adsorption by PS may reduce the formation of GA polymers; therefore, the bioavailability
of GA may increase as GA maintains the monomer’s condition [8]. However, PS would
be almost completely hydrolyzed in the gastrointestinal (GI) tract, so it is difficult for the
carried cargos to reach the target zone [9].

Sodium alginate is an anionic polysaccharide found in brown algae. Its carboxyl
groups can cross-link with divalent cations (such as calcium ions) and form insoluble
calcium alginate, which has been widely used in drug-delivery systems [10]. Cellulose
nanofiber (CN) is a nano-level polymer material prepared from natural cellulose, which
is usually defined as ultra-fine fiber with diameter < 100 nm and which has excellent
mechanical properties and biodegradability [11]. The polyhydroxyl structure of CN can
enhance the gel strength of hydrocolloids, such as protein gel by binding forces [12].
Therefore, the nanocellulose may strengthen the mechanical structure of sodium alginate
gels, prevent the gel from rupture due to vigorous peristalsis of the GI tract, and help
achieve sustainable release of the contents [13]. Surface positively charged chitosan can
form gels with multivalent anions, such as alginate, by ionic cross-linking. Carboxymethyl
chitosan (CCT) is a chitosan derivative with carboxymethyl substituents on both the amino
and primary hydroxyl groups of the chitosan; as an amphoteric electrolyte, CCT can switch
the surface charge between positive and negative when the environmental pH changes,
so it can cross-link with non-toxic polyvalent anions such as sodium alginate to form gels,
and it has been proven that CCT is highly water-soluble and pH-sensitive [14,15]. SA,
CN and CCT can traverse the upper GI tract; then, they are decomposed by intestinal
digestive enzymes secreted by the abundant bacteria in the GI tract. As the decomposition
proceeds, the cargos are continuously released from the PS particles to achieve local target
delivery. Polysaccharide-based microcapsules have robust capsule walls and rapid and
sensitive response behavior, suggesting their great potential for targeted slow-release
delivery [16]. Ca2+-SA based gels prepared by external gelation have been widely used in
the food and pharmaceutical industries as a novel delivery vehicle for bioactive substances;
nevertheless, hitherto, the effect of sodium alginate-nanocellulose-chitosan gels on the
tolerance of gallic acid against auto-oxidation and self-aggregation in GI fluid has been
rarely investigated [17].

This study revolves around the construction of a natural complex polysaccharide
delivery system. Through the adsorption of GA by PS, the porous starch–GA assemblies
are secondarily encapsulated to achieve targeted delivery and slow release of GA in the
human intestine, using the pH sensitivity and mechanical properties of natural complex
polysaccharide packages for protection purposes.

2. Materials and Methods
2.1. Materials

Porous starch (BET Surface Area: 17.3639 m2/g, BJH Adsorption cumulative vol-
ume of pores between 1.7000 nm and 300.0000 nm width: 0.021031 cm3/g) were pur-
chased from Kangze Biotechnology Co., Ltd. (Xi’an, China). GA, SA (medium viscosity),
CCT (BR, CAS: 83512-85-0), pepsin (1:15,000), and pancreatin from porcine pancreas (USP,
CAS: 8049-47-6) were purchased from Aladdin Inc. (Shanghai, China). CN was purchased
from Qihong Technology Co., Ltd. (Guilin, China).

2.2. Loading PS with GA

The loading process was performed according to a previously published protocol [18].
Dissolve the GA in distilled water and sonicate for 10 min to obtain a clear solution
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(10 mg/mL). Afterwards, PS powder was added to the GA solution (1.5:1, g/mL), and
encapsulation was conducted at room temperature under magnetic shaking (85-1 Aohua
Instrument, Changzhou, China). After shaking for 12 h, the slurry was centrifuged at
4000× g for 15 min, and the absorbance of the supernatant was measured at 760 nm with
a UV–Vis spectrophotometer (TU 1810 SPC). The amount of GA was determined by the
Folin–Ciocalteu assay [7] using a standard curve. The sediments were dried at 40 ◦C for
12 h and then stored in a desiccator. The encapsulation efficiency (EE) and loading capacity
(LC) were calculated by the following Equations (1) and (2):

EE (%) =
M0 − Ms

M0
× 100% (1)

LC (%) =
MG

MT
× 100% (2)

where M0 is the total weight of GA in the slurry, Ms refers to the weight in the supernatant,
MG is the weight of the PS/GA, and MT is the total weight of the PS/GA.

2.3. Preparation of Beads

The beads were prepared according to the method of our group [18]. SA, CCT, and
CN powders were weighed accurately and poured into distilled water with high-speed
shearing. The PS/GA (PG) powders were dissolved in water and physically mixed with
polysaccharide interpenetrating network polymers (PIPNs). Then, the mixed solution was
degassed under vacuum, and the solution was further extruded through a syringe (5 mL)
into the CaCl2 solution (2%, w/v). The freshly formed beads were immersed in the acidic
CaCl2 solution for 30 min to promote complete gelatinization, and then, all beads were
washed with distilled water twice. The GA content in the CaCl2 solution was determined
to calculate the loss of GA [7].

Based on the single-factor experiments, four material variables were screened out (the
concentration of CaCl2, SA, CN, and CCT). According to the Box–Behnken design, twenty-
nine experimental runs were performed. The Design Expert 11.0 software (Stat-Ease, Inc.,
Minneapolis, MN, USA) was used to establish the mathematical progress. The optimum
composition of the wall materials was determined by regression equation analysis.

2.4. Zeta-Potential

The zeta-potential of the GA, PS, PG, pure hydrocolloid solutions, and PIPNs/GA
solutions were measured on a zeta potential analyzer (Zetasizer Nano S90, Malvern In-
struments, Malvern, UK) according to the method of Zhou et al. [19]. The solutions were
diluted 100 times with ultra-pure water before determination. All the measurements were
performed in triplicate at 25 ◦C.

2.5. Rheology

The apparent viscosity of different samples was determined on a Thermo HAAKE Ro-
tation Rheometer (HAAKE MARS 40, Karlsruhe, Germany) equipped with 35 mm parallel
steel plates, and the gap between plates was 2.00 mm. SA solution (2.0 w/v%), SCN (SA/CN)
solution (2 w/v% SA, 0.5 w/v% CN), SCT (SA/CCT) solution (2 w/v% SA, 0.5 w/v% CCT),
and SCC (SA/CN/CCT) solution (2 w/v% SA, 0.5 w/v% CN, 0.5 w/v% CCT) were pre-
pared, and the relationship between the apparent viscosity and shear rate (0.1~100 s−1)
was evaluated.

2.6. Characterization of PG and Beads
2.6.1. Texture Analysis

The texture profiles of the fresh beads were analyzed on a TA-XT plus texture analyzer
(TA.XT.Plus texture analyzer, Stable Micro Systems, Godalming, UK) at 25 ◦C according
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to the method of Guo et al. [20]. Beads were compressed twice (1 mm/s) to 50% of their
original heights by a load cell and a cylinder probe (P/36R, Stable Micro Systems).

2.6.2. Scanning Electron Microscopy (SEM)

The freeze-dried beads were glued to the plate with double-sided adhesive and then
sprayed with gold. The morphological characteristics of the samples were observed and
photographed (Supra 55, Zeiss, Oberkochen, Germany) with an accelerating voltage of
10 kV [21].

2.6.3. Fourier-Transform Infrared Spectroscopy (FT-IR) Analysis

To characterize the intermolecular interaction between SA, CCT, and CN as well as the
hydrogen bond interaction between PS and GA, spectrograms were acquired using a FT-IR
(TENSOR 27, Bruker Optics, Ettlingen, Germany) equipped with a deuterated triglycine
sulfate detector. The dried powders of samples were compressed with KBr to form a disc
shape that was scanned from 4000 to 400 cm−1 at a resolution of 4 cm−1. The absorption
spectrum was obtained after denoising and baseline correction.

2.6.4. Thermogravimetric Analysis (TGA)

The thermal stability of the beads and the PG powders were analyzed on a simulta-
neous thermal analyzer (Netzsch STA 449C, Aldridge, UK). Samples (10 mg) were placed
on an aluminum pan (sealed immediately) and heated from 30 ◦C to 600 ◦C at a rate of
20 ◦C/min.

2.7. Swelling Rate

The pH sensitivity of beads was evaluated by measuring the swelling behavior accord-
ing to the method of Sun et al. [22]. Dried SA, SCN, SCT, and SCC beads were precisely
weighed (10 mg) and swollen at 37 ◦C under pH 1.2, 6.8, and 7.4 solutions, which were
composed of HCl, KCl, Na2HPO4, and NaH2PO4, for 8 h in total. The swollen beads were
weighed immediately after removing the liquid adhered. The swelling rate of the beads
was calculated according to Equation (3):

Swelling rate (%) =
Wt − Wo

Wo
× 100% (3)

where Wt is the weight of swollen beads at time t, and Wo is the initial weight of the beads.

2.8. Antioxidant Activity of PG and Beads

The antioxidant activity of the samples was estimated by their ability to scavenge
DPPH radical (2,2-diphenyl-1-picrylhydrazyl), as previously described by Sun et al. [22].
Beads (0.05 g) were suspended in Milli-Q water (15 mL) for 4 h and then centrifuged at
4000× g for 10 min. The supernatants (2.0 mL) were added to DPPH solution (2.0 mL,
2mM). The absorbances of the sample DPPH-ethanol solution, DPPH-ethanol solution, and
the sample ethanol solution were read as A0 and A1.

The results were expressed in percentage of inhibition (PI) of the DPPH radical
(Equation (4)):

PI (%) =
A0 − (AS − A1)

A0
× 100% (4)

2.9. In Vitro Release Study

The in vitro simulated digestion was carried out according to the method of Sun et al. [22].
The dried beads (100 mg) were immersed in different simulate digestive fluids (simulated
gastric fluid (SGF)/simulated intestinal fluid (SIF)/simulated colonic fluid (SCF)) and
Milli-Q water under gentle stirring (100 rpm) at 37 ◦C. Aliquots (1.0 mL) were taken at
desired intervals, and an equivalent volume of fresh medium was supplemented. Then,
the concentrations of GA were detected by the Folin–Ciocalteu assay [7].
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The cumulative percentage of GA release was estimated under simulated gastrointesti-
nal conditions by first incubating in a solution at pH (1.2) for 2 h at 37 ◦C under constant
shaking (100 rpm), then in a solution at pH (6.8) for an additional 2 h, and finally in a
solution at pH (7.4). The above steps were repeated on other beads.

Under simulated GI tract conditions, the cumulative GA release percentage was
estimated by incubation at 37 ◦C under constant shaking (100 rpm) in a solution (pH 1.2)
for 2 h firstly, then a solution (pH 6.8) for an additional 2 h, and lastly a solution (pH 7.4)
for 2 h as well. The above procedures were repeated on the other beads.

2.10. Statistical Analysis

All the assays were replicated three times. Analyses of variance were evaluated by
Duncan’s multiple-range test (p < 0.05) using SPSS 24.0 (SPSS Inc., Chicago, IL, USA), and
the data are reported as mean values ± standard deviations. Origin Pro 9.0 (Origin Lab,
Northampton, MA, USA) was used for data processing and chart creation.

3. Results and Discussions
3.1. Optimization of Encapsulation Efficiency
3.1.1. Optimization of Loading PS with GA

An effective delivery system requires significant encapsulation efficiency and loading
capacity. Hence, it is important to assess the encapsulation efficiency and loading capacity
of a novel delivery system [22]. The weight ratio of PS to the GA as well as the encapsulation
time and temperature were optimized to obtain an acceptable loading capacity (LC). The
LC increased as the ratio of GA to PS increased from 0.2 to 0.66, reaching a maximum of
320.05 mg/g at room temperature for 12 h. A homothetic result was previously reported
by our group [18], whose encapsulation efficiency of PS to doxorubicin peaked at 95.27%
when the ratio of PS to doxorubicin was 0.75. Similar trends were previously reported for
the adsorption of porous corn starch to methyl blue [23] and the adsorption of procyanidins
to chitosan-modified porous rice starch [24].

3.1.2. Optimization of Wall Material Composition

Based on the results of single-factor experiments, twenty-nine experiments were
designed, and Box–Behnken design was performed to optimize the wall material composi-
tions, and coded values and corresponding actual values of the optimization parameters
used in response surface analysis are shown in Table 1.

Table 1. Coded values and corresponding actual values of the optimization parameters used in
response surface analysis.

Level
Factors

A-CaCl2 (%) B-SA (%) C-CN (%) D-CCT (%)

−1 1.0 1.5 0.4 0.5
0 2.0 2.0 0.5 1.0
1 3.0 2.5 0.6 1.5

SA: sodium alginate, CN: cellulose nanofibers, CCT: carboxymethyl chitosan.

Regression analysis was used to evaluate the experimental factor coding and results,
and a significance test was conducted (Table 1). The encapsulation efficiency could be
explained by quadratic regression as follows (Equation (5)):

Y (%) = 55.04 + 3.21 ∗ A − 3.73 ∗ B − 6.12 ∗ C + 3.94 ∗ D − 4.40 ∗ AB − 1.63 ∗ AC − 5.06 ∗ AD − 0.8375 ∗ BC + 1.06 ∗ BD
+1.06 ∗ CD − 8.11 ∗ A2 − 4.84 ∗ B2 − 4.17 ∗ C2 − 0.2177D2 − 3.73 ∗ A2B + 5.23 ∗ A2C − 4.70 ∗ A2D
−0.4325 ∗ AB2 − 0.4800 ∗ AC2 + 4.85 ∗ B2C − 5.00 ∗ B2D + 2.39 ∗ BC2

(5)

where Y is the encapsulation efficiency for the beads, and A, B, C, and D are the coded variables.
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The results of analysis of variance (ANOVA) for encapsulation efficiency of beads
are summarized in Table 2. The F-value and p-value of the model were 9.05 and 0.0057,
respectively, suggesting the significance of the model. The lack-of-fit was non-significant
(p > 0.05), indicating that the encapsulation efficiency of wall materials can be accurately
predicted using the quadratic model. C, AD, A2, B2, and C2 were found to be extremely
significant terms, and B, D, AB, A2C, A2D, B2C, and B2D were significant model terms.
The lack-of-fit was not significant relative to the pure error, as the corresponding F-value
was 9.05. In addition, the coefficient of determination (R2) was 0.9708, and the low values
of the coefficient of variation (5.50%) and adequate precision (11.3654) indicated a good
model fit [25].

Table 2. Analysis of variance for encapsulation efficiency of beads.

Source Sum of Square df Mean Square F-Value p-Value Significance a

Model 1381.7 22 62.8 9.05 0.0057 ***
A-CaCl2 41.22 1 41.22 5.94 0.0507 *

B-SA 55.8 1 55.8 8.04 0.0297 **
C-CN 149.82 1 149.82 21.59 0.0035 ***

D-CCT 62.25 1 62.25 8.97 0.0241 **
AB 77.35 1 77.35 11.15 0.0156 **
AC 10.63 1 10.63 1.53 0.2621 *
AD 102.62 1 102.62 14.79 0.0085 ***
BC 2.81 1 2.81 0.4044 0.5483 *
BD 4.45 1 4.45 0.6417 0.4536 *
CD 4.49 1 4.49 0.6478 0.4516 *
A2 427.04 1 427.04 61.55 0.0002 ***
B2 151.8 1 151.8 21.88 0.0034 ***
C2 112.6 1 112.6 16.23 0.0069 ***
D2 0.3073 1 0.3073 0.0443 0.8403 *

A2B 27.86 1 27.86 4.02 0.0919 *
A2C 54.81 1 54.81 7.9 0.0307 **
A2D 44.18 1 44.18 6.37 0.0451 **
AB2 0.3741 1 0.3741 0.0539 0.8241 *
AC2 0.4608 1 0.4608 0.0664 0.8052 *
B2C 47.09 1 47.09 6.79 0.0404 **
B2D 50.1 1 50.1 7.22 0.0362 **
BC2 11.45 1 11.45 1.65 0.2463 *

Residual 41.63 6 6.94
Lack of Fit 16.79 2 8.4 1.35 0.3559 *
Pure Error 24.83 4 6.21
Cor Total 1423.33 28

R2 0.9708
Adj R2 0.8635
Pred R2 −0.7264

Adequate precision = 11.3654, cv = 5.50%. a * No significant difference (p > 0.05), ** Significantly different (p < 0.05),
*** Extremely significantly different (p < 0.01).

The three-dimensional response surfaces were built to explain the interactions from
the four variables and determine the optimal combination. A clear interaction among CaCl2,
SA, CN, and CCT was observed (Figure 1). The optimal concentration calculated from
the regression equation (Equation 5) for the maximal predicted encapsulation efficiency
(54.41%) was acquired: 2.37% CaCl2 (w/w), 2.19% SA (w/w), 0.43% CN (w/w), and 1.17%
CCT (w/w). After validation, the encapsulation efficiency was found to be 56.57%, showing
96.19% agreement. Therefore, the optimal beads preparation scheme optimized by this
model is reliable.
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Figure 1. Response surface of the effects among various factors on the encapsulation efficiency of
beads. (A) Interaction of CaCl2 and SA; (B) Interaction of CaCl2 and CN; (C) Interaction of SA and
CN; (D) Interaction of SA and CCT; (E) Interaction of CN and CCT; (F) Interaction CCT and SA. SA:
sodium alginate, CN: cellulose nanofibers, CCT: carboxymethyl chitosan, EE: encapsulation efficiency.

3.2. Characterization of PG, PIPNs and Beads
3.2.1. Zeta-Potential

As one of the important indications of charged polymers, zeta-potential reflects the
interpenetration of the biopolymers, and the charged nature is the most significant [26,27].
The zeta-potentials of GA, PS, PG, SA, CN, CCT, and other polysaccharides are shown in
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Figure 2. When dissolved in water, GA was negatively charged and had a zeta-potential
of −4.3 mV. After encapsulation with PS, GA was stabilized (a lower zeta-potential of
PG). Though the zeta-potential of PG was higher than that of PS, the stability of PG still
needs further improvement. The zeta-potential of SA, CN, and CCT was −54.9, −45.8,
and −58.1 mV, respectively, and that of the physical mixture of SA and CN (SCN) was
−45.5 mV, slightly higher than any single polysaccharide solution. After the addition
of CCT and physical interpenetrating process, the zeta-potential of SCN decreased to
−60.43 mV, revealing that the SCC system was extremely stable. The zeta-potential of
SCC/PG system was increased slightly to −51.73 mV. The behavior of individual biopoly-
mers is influenced by the presence of other biopolymers in solution once they are mixed
and interpenetrated, as mutual masking of surface charges might occur among the multiple
polymer solutions [28]. The results of zeta-potential analyses showed that the SCC could
effectively provide protection for GA and ensure the stability of the system. Meanwhile, the
coating layer provided by SCC and PS could guarantee the bioavailability of GA to some
extent when GA suffers from extreme pH and peristalsis of gastrointestinal environment.

Figure 2. Zeta-potential of GA, PS, PG, pure hydrocolloid solutions, and PIPNs/GA solutions.
Different lowercase letters indicate significant differences. GA: gallic acid, PS: porous starch, SA:
sodium alginate, CCT: carboxymethyl chitosan, CN: cellulose nanofibers, PG: PS/GA, S/CN: SA/CN,
PIPNs: polysaccharide interpenetrating network polymers, SCC: SA/CN/CCT.

3.2.2. Rheology

The rheological characteristics of wall material influence physical properties of micro-
capsules. Therefore, we investigated the rheological properties of different wall materials
(Figure 3). All four pastes were categorized as non-Newtonian fluids with shear thinning
specific to pseudoplastic fluids. With the increase in shear rate, the viscosity of SCT, SCN,
and SCC showed a rapid decreasing trend compared with SA solution. The addition of
CN significantly increased the viscosity, while the addition of CCT performed inversely.
The possible reason might be that CN have large aspect ratio and the ability to form inter-
penetrating network structures by hydrogen bonding, which give CN both the rigidity of
ordered (crystalline) regions and the flexibility of disordered (amorphous) regions; these
CN network structures can unravel and align parallel to the flow direction when the CN is
in suspension, which can be used to explain the high degree of shear thinning exhibited by
the SCN solution in this study, a similar phenomenon is observed in other solutions [29].
As the viscosity reflects the molecular movement of a viscoelastic body, and different vis-
cosities indicate differences in the molecular structure, long and heavily twisted molecular
chains result in high flow resistance and viscosity [30]. Polymer solutions of lower viscosity
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easily form small beads during the gelation process, whereas higher viscosity solutions tend
to form larger ones. Therefore, particle size bound up with wall material pastes viscosity,
and this result finds support in beads sizes.

Figure 3. Flow curves of SA (sodium alginate), SCT (SA/CCT), SCN (SA/CN), and SCC
(SA/CN/CCT) solutions.

3.2.3. Morphology of Beads

The morphology of lyophilized beads was observed by SEM (Figure 4). All kinds
of dry beads have diameters in the range of 1300–1800 µm. During the dehydration, the
beads formed irregular, uniform spheres with no aggregation, as the wall material shrank
inward and collapsed partially. The surface texture of SA bead was rough, with some
cracks and wrinkles (Figure 4a,b). The addition of CN narrowed the cracks and made the
surface dense (Figure 4c,d). Images of the SCN and SCC beads showed that the beads did
not shrink or swell with core-removal, likely due to the mechanical stability provided by
the CN network [31]. The surface became smoother and denser by the addition of CCT
(Figure 4a,e,g) with fewer cracks. Due to the polyhydroxy hydrophilic structure of CN,
the pores and cracks on the bead surface did not improve after the beads had undergone
the vacuum freeze-drying process; therefore, the SCT bead without CN showed a better
performance in terms of surface density, and the same results were reported by Zhang
et al. [32], who found the gel spheres would wrinkle with a higher CNF content. The sizes of
beads were in the range of 1.5 ± 0.2 mm. The SCT bead was the largest, while the SCC bead
and SCN bead were smaller, which indicated that the introduction of CN and CCT could
enlarge the size of beads. This result was consistent with previous findings Shi et al. [33]
and Li et al. [14]. Under 5000× magnification, it is clear that the addition of CCT formed
a complete interpenetrating network, smoothing the originally SA surface (Figure 4b,f,h).
These changes might result from the interactions between CCT chains and SA chains as
well as the interactions between CCT chains and CN chains from interpenetrating and
physical interweaving [22]. According to Shi et al. [33], the SA bead changed from a cracked,
homogeneous structure to a core-layer and density model after blending with CCT. This
effect was believed to play an important role in its release behavior.
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Figure 4. Scanning electron micrograph and surface morphology of (a,b) SA bead, (c,d) SCN bead,
(e,f) SCT bead, and (g,h) SCC bead.

3.2.4. FT-IR

The FT-IR spectra of PS, GA, PG, as well as four types of beads are presented in
Figure 5. The characteristic peaks of PS showed no obvious change before and after the
adsorption of GA, which was because the adsorption process did not result in any molec-
ular structure changes of the starch [24]. Therefore, there were no new chemical bonds
formed between GA and PS. The results suggested that GA was mainly adsorbed through
nonbonded interactions, such as the hydrogen bond’s interaction with PS [34]. In addition,
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the FT-IR spectra of the four beads showed strong and broad absorption bands in the range
of 3100–3500 cm−1, indicating the large quantities of associated hydroxyl groups in these
molecules [35]. The FT-IR results indicated the molecular compatibility among SA, CN,
and CCT.

Figure 5. FT-IR spectra of (1) GA, (2) PS, (3) PG, (4) SA/PG beads, (5) SCN/PG beads, (6) SCT/PG
beads, and (7) SCC/PG beads.

3.2.5. Thermostability

The thermogravimetric (TG) curves for the PS, PG powders, and four types of beads
are displayed in Figure 6. Both PS and PG powders began to lose weight at about 100 ◦C,
which was ascribed to the loss of bound water [36]. The cracking temperature of PG was
approximately 300 ◦C, and the cracking process was not completed step by step, which
might indicate that GA was adsorbed in the internal pores of PS. Additionally, the pyrolysis
rate and the pyrolysis temperature of the PS obtained after the addition of GA was lower,
which proved that GA entered the porous structure and interacted with starch through
intermolecular forces. The weight losses of the four types of beads were observed in three
degradation stages: (i) the mass of SA beads, S/CN beads, S/CCT beads, and SCC beads
decreased from 50 ◦C to 230 ◦C by 13.3%, 13.2%, 12.8%, and 12.4%, respectively, as a result
of water evaporation; (ii) from 230 ◦C to 330 ◦C, mass decreased by 43.7%, 41.9%, 40.2%,
and 38.0%, respectively; and (iii) from 330 ◦C to 600 ◦C, mass decreased by 57.2%, 57.1%,
55.5%, and 53.3%, respectively. The last two stages corresponded to the release of additional
water bound through polar interactions with the carboxylate, amine, and sulfate groups
of SA, CNF, and CCT, respectively, as well as decomposition of the cyclic products and
subsequent release of CO2 molecules from polysaccharides [22].

The formation of PIPNs improved the thermal stability of the beads relative to the
original materials because of the cross-linking between SA and Ca2+ and the favorable
electrostatic interactions between the opposite charges of the individual biopolymers.
Further evidence was that the temperature required for half weight loss increased from
approximately 400 ◦C for SA beads to 442 ◦C for the SCT beads and to 480 ◦C for the SCC
beads. These differences between the thermograms of beads and pure native polymers
confirm the presence of ionic interactions that could bring about the formation of new
physical structures (PIPNs) with different thermal characteristics.
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Figure 6. TG curves of PS, PG, SA beads, SCN beads, SCT beads, and SCC beads.

3.3. Texture Analysis

The definition and numerical calculation method of each index in Table 2 refers to
the specification of the instrument. The value where the maximum deformation occurred
during the first compression is the hardness of the beads, which reflects the gel strength of
the beads and also represents the number and compactness of the gel network structure
of wall materials. The product of hardness and cohesion, the value of which can be
expressed as stickiness, is the energy required to chew a semi-solid food to a swallowing
state. Resilience refers to the ratio of the height or volume of the deformable sample to the
pre-deformation condition after the deformation force is removed by compression [37,38].

Table 3 shows that CN played an important role in all textural parameters studied.
All the samples showed significant difference (p < 0.05) in hardness. Additionally, these
parameters, mainly hardness, increased with the addition of CN. Since CN can provide
hydroxyl groups, which contribute to the stability of calcium alginate cross-linking, the
hydroxyl groups in CN can form hydrogen bonds with water molecules and then fix free
water, resulting in a polymer environment for gelation, which affects the textural properties
of the bead [39].

Table 3. Texture profile analysis of beads.

Samples Hardness (g) Adhesiveness (g·s) Resilience Cohesiveness Springiness Gumminess (N)

SA beads 84.28 ± 1.01 c −0.35 ± 0.02 a 25.59 ± 1.23 a 0.58 ± 0.03 a 70.94 ± 0.30 a 48.81 ± 3.17 c

SCN beads 72.90 ± 5.29 c −0.40 ± 0.13 a 25.32 ± 0.49 a 0.58 ± 0.02 a 74.16 ± 5.58 a 41.97 ± 3.08 c

SCT beads 102.32 ± 6.24 b −0.11 ± 0.36 a 22.24 ± 1.21 b 0.54 ± 0.01 a 57.47 ± 4.85 b 55.26 ± 3.33 b

SCC beads 147.15 ± 5.47 a −0.63 ± 0.65 a 25.01 ± 0.82 a 0.59 ± 0.02 a 62.49 ± 2.70 b 86.11 ± 3.10 a

Values in the same column with different letters are significantly different (p < 0.05).

It has been reported that the gel strength of hydrophilic colloids such as pectin [31] and
protein [17] can be enhanced by the non-covalent binding force spring from the polyhydroxy
structure of CN [12]. With better mechanical properties, the beads are more likely to stay
intact after passing through the GI tract.

3.4. Swelling Rate

Generally, the swelling behavior of the wall material of the beads is regarded as a
manifestation of the pH sensitivity of the beads [40]. Figure 7 shows the swelling rates of
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the beads prepared from different wall materials in different pH buffers. After being soaked
at buffer (pH 1.2) for 0.5 h, the wall materials showed different degrees of swelling behavior.
The maximum expansion rate is 203.80%, and the expansion rate of the remaining beads is
also greater than 150%. After being immersed at buffer (pH 1.2) for 2 h, the swelling ratio
of the beads did not increase significantly compared to 0.5 h. The swelling behaviors might
because strong hydrogen bonds form between the -COOH and -OH groups of CCT and CN
and the -OH groups of SA and other -OH groups in the solution when the samples were
immersed in the acidic medium [15]. The swelling ratio of the beads greatly increased when
transferred to buffer (pH 6.8). After 0.5 h, the swelling ratio of SCN beads was the lowest
(1378.60 ± 19.08%), whereas the highest ratio was the SCT beads (1512.30 ± 26.94%). With
the extension of time, the expansion rate of all beads showed an upward trend. After being
soaked for 2.5 h, the swelling rate of SA beads reached its highest point; after being soaked
for 3, 4, and 6 h, the SCN, SCT, and SCC beads reached their highest points, respectively.

Figure 7. The effect of pH on the swelling rate of SA, SCN, SCT, and SCC beads.

After reaching the maximum swelling, the wall materials began to fall apart. The SA
beads cracked in the fastest and most thorough manner, with losing nearly 20% of their mass
after 6 h. Similar swelling behavior of SA was reported by George et al. [41]. Likewise, the
other three kinds of beads showed similar behavior but with delayed initial disintegration
times and reduced degrees of fragmentation. The dramatic swelling of SCT beads and
SCC beads could result from greater repulsion among CCT chains with -COO− groups,
as the -COOH groups are more deprotonated under alkaline environment. Meanwhile,
the -COOH groups of alginate could also be ionized, providing a more negatively charged
surface to the alginate molecule [15]. Therefore, the results implied that the wall material
consisting of sodium alginate/carboxymethyl chitosan/cellulose nanofiber (S/C/C) was
pH-sensitive and that the beads made by S/C/C could be used for delivering drugs or
food ingredients that are unstable in the GI tract.

3.5. Release Analysis

The cumulative release profiles of GA from five kinds of beads were investigated,
which were shown in Figure 8. The release rates of GA from SCC and SCN beads in SGF
were 7.84% and 78.49%, respectively.

This fits well with our previous report [18] and can be explained by the attachment
of some GA to the surface of the beads, which are covered by an extremely thin layer of
polymer. Another similar release behavior was observed according to Lopes et al. [42]
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study: nisin was rapidly released from phosphatidylcholine, phosphatidylcholine-pectin,
and phosphatidylcholine-polygalacturonic acid nanoliposomes during the initial phase
of the in vitro digestion simulation assay. Meanwhile, it was clear that the release rates
of GA from SCT and SCC beads in SGF were much lower than SA and SCN beads. A
possible reason might be the stable structure of core and the dense layer prevent the beads
from disintegration. The release of GA was further observed for all formulations in SGF
and eventually plateaued in SCF. Approximately 20% of GA was retained in SCC beads,
whereas only less than 5% were retained in the SA, SCN, and SA-GA beads. The results
support the notion that CCT strengthens the gel structure and helps realize sustained
release of GA. Additionally, the release process may be related to matrix swelling, as we
discussed in Section 3.4, and the swelling behavior of the wall material is regarded as
a manifestation of the pH sensitivity, which could speed up/slow down the GA release
process [40].

Figure 8. Cumulative release profiles of GA from the beads in SGF (pH 1.2), SIF (pH 6.8), and SCF
(pH 7.4). SA, SCN, SCT, and SCC beads were loaded with PG. SA-GA beads were loaded with GA.

3.6. Antioxidant Activity of PG and Beads

The encapsulation efficiency and PI of all types of beads are shown in Table 4. After
dehydration and suspension of the beads in water for 4 h, GA was released in suspension.
Given that the wall material underwent structural degradation after suspension in water,
the value of PI in suspension reflected the protective efficiency of the wall material to the
contents. Hence, by measuring the PI of suspension, the protective activities of different
beads to GA could be verified. There were significant differences in the antioxidant
activities of the beads. The SCC beads showed the lowest antioxidant capacity but the
highest encapsulation efficiency, which demonstrated the addition of CCT and CN with
SA, as the wall material did play a role in the protectiveness of GA in order to maintain the
bioavailability during the delivery process.

Da Rosa et al. [43] studied the encapsulation of GA by chitosan, β-cyclodextrin, and
xanthan gum, and the encapsulated GA showed no loss of antioxidant capacity and different
characteristics from the pure GA, confirming the techniques used. Sun et al. [44] studied
the microencapsulation and antimicrobial activity of carvacrol in a pectin-alginate matrix,
and after destroying the pectin-alginate matrix, the free radical inhibition percentages for
encapsulated phenolic extract still reached 89.96%, which was similar to the results in
this study.
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Table 4. Encapsulation efficiency and antioxidant activity by DPPH (2,2-diphenyl-1-picrylhydrazyl) method.

Encapsulation Efficiency (%) Percentage of Inhibition (PI) (%)

GA 94.90 ± 0.86
PG 91.47 ± 0.70

SA beads 40.61 ± 0.68 87.16 ± 0.33
SCN beads 42.36 ± 0.73 82.86 ± 1.09
SCT beads 48.65 ± 0.64 72.48 ± 1.19
SCC beads 56.46 ± 0.48 61.00 ± 0.99

4. Conclusions

In the study, gallic acid was successfully loaded into PS, and the SCC beads containing
the GA-loaded PS successfully traversed the simulated stomach, indicating that the delivery
system constructed in this study is able to protect GA from extreme pH environments and
that the majority of the loaded GA could reach the small intestine. This study demonstrates
the effectiveness of this biocompatible drug delivery system. The dosage of PG powder
added to the coating solution could be increased, and the beads can be freeze-dried,
allowing further applications for the addition of bioactive molecules in food. This study
provides basic theoretical information for the design of small-intestine-targeted delivery
systems using PS and SCC as coating layers. In addition, this system can be used to deliver
other bioactive molecules with poor oxidative stability in acidic environments and high
solubility in aqueous solutions.
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