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Abstract: Oolong tea is a semi-fermented tea that is popular among people. This study aims to
establish a classification method for oolong tea based on fluorescence hyperspectral technology(FHSI)
combined with chemometrics. First, the spectral data of Tieguanyin, Benshan, Maoxie and Huangjin-
gui were obtained. Then, standard normal variation (SNV) and multiple scatter correction (MSC)
were used for preprocessing. Principal component analysis (PCA) was used for data visualization,
and with tolerance ellipses that were drawn according to Hotelling, outliers in the spectra were
removed. Variable importance for the projection (VIP) > 1 in partial least squares discriminant
analysis (PLS–DA) was used for feature selection. Finally, the processed spectral data was entered
into the support vector machine (SVM) and PLS–DA. MSC_VIP_PLS–DA was the best model for
the classification of oolong tea. The results showed that the use of FHSI could accurately distin-
guish these four types of oolong tea and was able to identify the key wavelengths affecting the tea
classification, which were 650.11, 660.29, 665.39, 675.6, 701.17, 706.31, 742.34 and 747.5 nm. In these
wavelengths, different kinds of tea have significant differences (p < 0.05). This study could provide a
non-destructive and rapid method for future tea identification.

Keywords: oolong tea; classification; spectroscopy; chemometrics

1. Introduction

Tea is one of the most popular nonalcoholic beverages in the world and is widely
loved by people [1]. Oolong tea belongs to semi-fermented tea, which is one of the most
popular beverages in China [2]. According to a report on China’s tea consumption market
in 2021, the output of five of six traditional Chinese tea categories, except yellow tea,
increased by varying degrees. The output of oolong tea was 287,200 tons, with an increase
of 9400 tons over last year [3]. Oolong tea has certain health functions, such as anti-ageing,
anti-atherosclerosis and the prevention of diabetes, and it even affects weight loss [4]. There
are many types and brands of oolong tea, and the price of different kinds of tea varies
greatly. Tieguanyin is the best oolong tea and the most expensive oolong tea on the market.
Therefore, illegal businessmen often use ordinary oolong tea (similar in appearance to
Tieguanyin) to counterfeit Tieguanyin for sale and deceive consumers, which seriously
endangers the order of the tea market [5]. Ordinary oolong teas include Benshan, Maoxie
and Huangjingui, which are similar in appearance to Tieguanyin and often appear in the
market as an alternative tea to Tieguanyin [6]. The price of Tieguanyin is usually tens or
even hundreds of times higher than that of ordinary tea [7]. Therefore, it is very necessary
to classify oolong tea [5].

The traditional identification of tea varieties usually relies on human sensory evalua-
tion. However, sensory evaluation has some obvious drawbacks [8]: Relying heavily on
human subjective consciousness, the judging process is time-consuming and may damage
the tea samples. For large batches of samples, this method is not conducive to large-scale
testing, and even professional judging experts can only test a limited number of samples
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per day [9]. With the development of testing technology, chemical analysis methods are
becoming increasingly common [10], such as gas chromatography–mass spectrometry (GC–
MS) [11,12], inductively coupled plasma mass spectrometry (ICP-MS), and atmospheric
solids analysis probe–mass spectrometry (ASAP–MS) [6]. Tan et al. [6] reported that they
used ASAP–MS to authenticate Chinese oolong tea. The results showed that it was possible
to classify oolong tea using ASAP–MS and PCA–K-nearest neighbor (KNN) models with
high accuracy of up to 100%. Wang et al. [13] reported an aroma-based method for distin-
guishing different grades of Nongxiang Tieguanyin. Unknown samples can be classified by
comparing the spatial distribution of unknown samples with known standards in PCA or
hierarchical cluster analysis (HCA). Even if these chemical analysis methods are accurate,
this work of identifying teas is still time-consuming and complex and requires professionals
to complete. In addition to chemical analysis methods, the use of sensors is also a good way
to identify tea varieties [14]. The electronic tongue and electronic nose [15] mimic mam-
malian species identification through taste and smell, and this approach yields qualitative
information about the sample by responding nonspecifically to the chemical of interest
and analyzing its response through an appropriate pattern recognition procedure [16].
Chen et al. [17] reported an improved classification of oolong tea with different varieties by
combining two novel artificial sensing tools (i.e., gustatory sensors and olfactory sensors).
The results show that the discrimination capability of the combined system is superior
to that obtained with the two sensors systems separately, and eventually, linear discrimi-
nant analysis (LDA) achieved a 100% classification rate by cross-validation. This method
achieves high accuracy; however, the validation of this method is subject to many uncer-
tainties during the tea testing, with the possibility of temperature and humidity changes
and aroma volatilization, which requires a high experimental environment. In addition,
this method may damage the structure of tea samples. Because of the shortcomings of the
above methods, it is urgent to develop a rapid and nondestructive detection method [18].

As a nondestructive testing method, spectroscopy has been widely used in tea species
identification and quality testing [19,20]. Firmani et al. [21] coupled NIR spectroscopy
with PLS–DA and soft independent modelling of class analogies (SIMCA). Both provided
satisfactory results in discriminating PGI samples from the other teas and adulterated
Darjeeling. Ren et al. [22] reported that a visible-near-infrared (Vis-NIR) spectrometer and
support vector machine (SVM)-based kernels were used for the qualitative categorization of
black tea. It demonstrated that Vis-NIR spectroscopy can be a rapid, inexpensive, efficient,
alternative method for predicting the quality of black tea.

Fluorescence hyperspectral imaging (FHSI) technology breaks through the traditional
analytical methods to obtain images and fluorescence spectral information of samples [23],
providing a new idea for nondestructive and rapid detection [24]. FHSI has been applied
to mineral identification [25], apple quality detection [26], rice origin identification [27]
and contamination monitoring and classification of cotton [28]. Therefore, the combination
of FHSI and tea classification has great research potential. This technique is used to
obtain a fluorescent hyperspectral image of tea by shining incident light at a specific
wavelength, which causes the absorption of light from the ground state to the excited
state and immediately excites the emitted light [3]. The method has a short detection
time and does not damage the sample itself, making it a good detection tool for species
differentiation due to the specificity of the sample spectra [3].

In this study, the fluorescence hyperspectral images of four oolong teas (a total of
216 tea samples) have been acquired. The extracted spectral data have been preprocessed
by MSC and SNV and visualized by PCA, and the outliers have been screened out by
drawing tolerance ellipses according to Hotelling. Then, the feature wavelengths with
VIP > 1 in PLS-DA have been selected, and finally, the processed spectra have been input
into two discriminant models, SVM and PLS–DA, for the prediction of classification results.
In addition, this study also analyzes the key wavelengths that could affect the classification
of oolong teas.
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2. Materials and Methods
2.1. Tea Samples

Tieguanyin is usually difficult to distinguish from Huangjingui, Benshan and Maoxie
in actual sales. These are some of the reasons we chose Tieguanyin and these three types of
oolong teas. First, by appearance, all the selected teas have a dense particle appearance.
Huangjingui is slightly more distinguishable than the other three teas in colour, with a more
pronounced yellow colour. For Maoxie, some of it has white hairy clusters in appearance,
but this feature does not appear in all teas. Benshan is a close relative of Tieguanyin, known
as the brother of Tieguanyin, and is one of the four well-known oolong teas in China.
Second, in terms of economic value, Tieguanyin sells for hundreds or even thousands of
RMB per 500 g in the market, while other teas sell for no more than a hundred RMB per
500 g.

All samples for this experiment were obtained from Anxi County, Quanzhou City,
Fujian Province, China. To ensure the accuracy of the samples, tea samples were purchased
from trusted merchants, and professional tea appraisers were invited for identification.
After the identification was completed, the tea samples were sent to the fluorescence
hyperspectral laboratory for spectral data acquisition. A total of 216 oolong tea samples
(Each type has 54 samples) were obtained. Each sample weighed 5 g and was packaged in
individual bags, and all samples were kept in a cool and dry environment.

2.2. Data Acquisition

The GaiaFluo(/Pro)-VH-HR series fluorescence hyperspectral test system produced
by Jiangsu Dualix Technology Co., Ltd.(Wuxi, China) The system consists of a dark box,
a xenon light source, an excitation filter, an emission filter, a hyperspectral camera and
supporting software. The hyperspectral camera has a spectral range of 400–1000 nm and
a resolution of 2.8 nm. There are five excitation filters (357, 390, 452, 534 and 628 nm)
and five fluorescence filters (475, 495, 530, 570 and 610 nm). It was found that the 390 nm
excitation filter was better able to cut off the input of other wavelengths. After several times
of fluorescence filter selection, it was found that the fluorescence intensity began to show a
significant wave at 500 nm, so the 475 nm fluorescence filter was finally selected, and the
separation of the fluorescence signal from other parasitic light could be better accomplished
under this filter, thus capturing the best fluorescence image [29]. Then, spectral data of ROI
were extracted through ENVI 5.3.

2.3. Spectral Preprocessing

The fluorescence hyperspectral imaging system was used to obtain the spectral data
of the four oolong teas, as shown in Figure 1a,b. Since the selected fluorescence filter was
475 nm, the figure shows that the data were filtered in the wavelength before 475 nm, and
the spectral data between 475–1100 nm were finally retained. Before data modelling, it is
crucial to preprocess the spectral data, which can effectively reduce noise and baseline drift
in the spectra. In this study, the spectra were preprocessed using multiple scatter correction
(MSC) and standard normal variation (SNV). MSC is performed by linearly fitting each
spectrum to a reference spectrum, separating the additive and multiplicative effects of the
measurement. It is an important step in correcting for scattered light based on different
grain sizes. SNV is a mathematical transformation of log(1/R) spectra to remove slope
variations and correct for scattering effects. Each spectrum is first centred on the spectral
value, and then the centre spectrum is scaled according to the standard deviation calculated
for each spectral value [30].

2.4. Principal Component Analysis

Principal component analysis (PCA) is a commonly used multivariate statistical
method [13] that is performed by generating a set of principal components that are linear
transformations of the original variables; these new principal components are orthogonal
to each other and ranked according to the explained variance [31]. PCA scoring plots are
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often used for visualization and can provide a clear view of the sample distribution. In
addition, in the PCA score plot, the tolerance ellipse is drawn according to Hotelling, and
the observations far from the ellipse are outliers so that the distribution of the data in the
lower dimension can be observed by PCA, and the outliers in the sample can be excluded
from it [32].
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(c) spectra after MSC; (d) spectra after SNV.

2.5. VIP (Variable Importance for the Projection) in PLS–DA

With a total of 126 wavelengths in the spectral data, there may be a large amount
of redundant information in high dimensions, which is not conducive to modelling. In
order to exclude the interference of irrelevant variables, the key wavelengths that affect the
classification effect are identified. PLS–DA, as a stable discriminant statistical method, is
suitable for cases with a large number of explanatory variables, double covariance, a small
number of sample observations and high interference noise. Additionally, VIP in PLS–DA
is a method that can quantify the contribution of each variable to the classification [13].
Used to explain the significance of X and the variables associated with Y, the VIP for each
wavelength position is calculated by weighting the sum of squares of the PLS loading
weights with the sum of squares explained in each model component [8], and the sum of
squares of all VIPs is equal to the model. The sum of squares of all VIPs is equal to the
number of terms in the model. Hence, the average VIP is equal to 1. VIP values larger
than 1 indicate “important” X-variables, and values lower than 0.5 indicate “unimportant”
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X-variables. The interval between 1 and 0.5 is a gray area, where the importance level
depends on the size of the data set. [33]. The larger the VIP, the more significant the
difference between the different kinds of oolong tea is. In this study, those with VIP > 1
were considered to be the important contributors to tea classification.

2.6. Classification Methods

This study is designed for the classification problem of oolong tea. Two classification
methods, PLS–DA and SVM, are chosen for model building. PLS–DA [34], as a stable
discriminant statistical method, is suitable for cases with a large number of explanatory
variables, double covariance, a small number of sample observations and high interference
noise. SVM is a classification method that dominates in solving small samples and nonlinear
and high-dimensional data [23].

2.7. Evaluation Index

In this paper, the performance of the model is evaluated using accuracy, recall and
precision sensitivity [35,36]. They are defined in Equations (1)–(3).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Recall =
TP

TP + FN
(2)

Precision =
TN

TN + FP
(3)

where TP is true positive, TN is true negative, FP is false positive, FN is false negative.
Pretreatment, PCA and PLS–DA(VIP) were performed using SIMCA v14.1 (Soft In-

dependent Modelling by Class Analogy, Umetrics, Umea, Sweden). All classification
models were built-in Python 3.8. ANOVA was performed using SPSS v21.0 (SPSS Inc.,
Chicago, IL, USA).

3. Results and Discussions
3.1. Spectral Characteristics

Figure 1 shows the spectral curves of oolong tea, where 1(a) is the average spectra of
the four teas. The figure demonstrates the relationships between fluorescence intensity and
the spectral wavelengths of the four teas, indicating that all of them belong to the oolong
tea family and have similar internal compositions and roughly the same overall spectral
trends. There is a clear distinction between the spectral wavelengths of 500–850 nm, in
which the fluorescence intensity of Tieguanyin is higher than the other three teas, which is
influenced by catechins, theaflavins and anthocyanins [5]. In the interval of 650–850 nm, the
fluorescence intensity of Tieguanyin is lower than the other three teas, while Huangjingui is
a slightly yellow tea among the four kinds of tea, and the fluorescence intensity is twice as
high as that of Tieguanyin. The spectra are bimodal in the 600–800 nm interval, appearing
at 690 nm and 735 nm, respectively [3]. This is where the influence of the pigments in the tea
is most likely, mainly as a result of the combined effects of chlorophyll and carotenoids [3].
Figure 1b is a three-dimensional plot of the spectral curve, in which the distribution between
the spectral curves can be seen more visually. Figure 1c,d are the spectral curves after SNV
and MSC pretreatment, respectively. The noise interference is significantly reduced in the
pretreated spectra.

3.2. Division of Calibration Set and Prediction Set

A total of 216 samples were collected, and the data were divided into 2 parts. In order
to improve the generalization ability of the model and avoid the bias introduced by manual
data segmentation, the current common data division method includes random selection
(RS), Kennard–Stone (KS) and sample set partitioning based on joint x-y distances (SPXY)
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algorithm. Luo et al. [37] reported that the data set divided by the KS algorithm was more
prone to overfitting than the SPXY algorithm, and the SPXY algorithm was developed
based on the KS algorithm, so this study uses the SPXY algorithm to divide the samples.

3.3. Data Distribution and Feature Selection

Based on the 104 effective wavelengths of the collected fluorescence hyperspectral
information, the two-dimensional characteristics of the four oolong teas are shown in
Figure 2: (a) is the PCA of raw spectra, (b) is the PCA of spectra after MSC, and (c) is
the PCA of spectra after SNV. In the PCA score plot, each “sample point” represents a
sample. The distance between the sample point and origin represents the degree, which is
interpreted by PC1 and PC2. The more similar the tea leaves are, the closer the distribution
of tea samples will be.

In Figure 2a, the first two principal components (PC1 and PC2) accounted for 78.9% of
the total variance, with the highest variations of 54.2% and 24.7%, respectively. In Figure 2b,
the first two principal components (PC1 and PC2) accounted for 94.6% of the total variance,
with the highest variations of 78.1% and 16.5%, respectively. In Figure 2c, the first two
principal components (PC1 and PC2) accounted for 93.5% of the total variance, with the
highest variations of 78.8% and 14.7%, respectively. The total contribution of PC1 and PC2
to the variance of MSC and SNV was over 90%, which indicates that the first two PCs are
sufficient to explain the total variance of the dataset.

In the PCA score plots of the original spectral data and the preprocessed spectral
data, PC1 and PC2 were the first two new variables after the dimensionality reduction
from the original spectra, and the score plots were orthogonal and the two variables were
independent of each other. Tieguanyin and Benshan are located in the second and third
quadrants, while Huangjingui and Maoxie are located in the first and fourth quadrants.
The clear separation of Tieguanyin and Benshan was mainly due to the difference in PC2,
and the clear separation of Huangjingui and Maoxie was mainly based on the joint action of
PC1 and PC2. However, after pretreatment, the separation results of the four teas gradually
became obvious, with Maoxie concentrated in the first quadrant, Benshan concentrated
in the second quadrant, Tieguanyin concentrated in the third quadrant, and Huangjingui
concentrated in the fourth quadrant. Tieguanyin and Benshan were still mixed on the left
side of the y-axis regardless of whether they were pretreated. These phenomena indicate
that PCA can better separate Huangjingui and Maoxie, but Tieguanyin and Benshan are
not well distinguished in the PCA.

Noise may be presented in the sample and thus may make subsequent results in-
accurate. In the PCA score plot, tolerance ellipses are plotted according to Hotelling.
Observations far from the ellipse are outliers. From Figure 2, the outliers were searched,
and all samples outside the ellipse were excluded as outliers. According to the markers,
among 216 samples, there were 5 outliers in Tieguanyin, 1 in Maoxie (Maoxie was mainly
distributed in the first quadrant, and in the preprocessed graph PCA score plot, there was 1
sample in the 3rd quadrant, so that point was excluded), 3 in Benshan and 5 in Huangjingui,
leaving 202 samples at last as input for the subsequent model.

Among the 202 samples screened, there were 104 spectral wavelengths, but not every
wavelength played an important role in the subsequent model building. In order to
eliminate the interference of irrelevant variables and find out the key wavelengths affecting
the classification of oolong tea, the effective wavelengths were selected using the ranking
of important variables in PLS–DA, in which the wavelengths with VIP > 1 were taken as
the wavelengths carrying important information. Figure 3 shows the distributions of all
the variables in each wavelength after the selection of important variables by PLS–DA for
the original spectra and the preprocessed spectra. For the un-preprocessed spectral data,
43 features were selected in 104 wavelengths, and 35 and 33 features were selected in MSC
and SNV, respectively. These selected wavelengths are relatively evenly distributed, mainly
between 600–800 nm, indicating that the key wavelengths affecting oolong tea varieties in
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the spectral analysis are in this range. These selected wavelengths will be used as input for
the subsequent classification models.
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3.4. Establish Classification Models of Oolong Tea

Table 1 shows the classification results of oolong tea. In all classification results, PLS–
DA has higher accuracy than SVM in both calibration and prediction sets. The accuracy
of the original spectra and the prediction set of the preprocessed data were 97.22%, 100%
and 96.67% in SVM and 98.91%, 100% and 100% in PLS–DA, respectively, while precision
and recall were positively proportional to the correspondent accuracy. The prediction of
Maoxie was found poor in SVM, and the prediction of Tieguanyin was poorer in PLS–DA,
but the prediction improved under both models after preprocessing. Thus, preprocessing
is necessary for performing oolong tea classification.

Table 1. Classification results for oolong tea (Tie represents Tieguanyin, Mao represents Maoxie,
Huang represents Huangjingui, Ben represents Benshan. Total represents the average accuracy,
precision and recall rate of each kind of tea).

Model Preprocessing Variables Class
Calibration Set Prediction Set

Accuracy Precision Recall Accuracy Precision Recall

SVM RAW

104
(none

selection)

Tie 95.83% 100.00% 96.00% 100.00% 88.00% 100.00%
Mao 100.00% 100.00% 100.00% 88.89% 100.00% 89.00%

Huang 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Ben 100.00% 92.00% 100.00% 100.00% 100.00% 100.00%

Total 98.96% 98.00% 99.00% 97.22% 97.00% 97.25%

43
(VIP > 1)

Tie 100.00% 87.00% 100.00% 100.00% 82.00% 100.00%
Mao 100.00% 100.00% 100.00% 88.89% 89.00% 89.00%

Huang 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Ben 71.43% 100.00% 71.00% 80.00% 100.00% 80.00%

Total 92.86% 96.75% 92.75% 92.22% 92.75% 92.25%
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Table 1. Cont.

Model Preprocessing Variables Class
Calibration Set Prediction Set

Accuracy Precision Recall Accuracy Precision Recall

SNV

104 (none
selection)

Tie 92.86% 100.00% 93.00% 100.00% 100.00% 100.00%
Mao 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Huang 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Ben 100.00% 80.00% 100.00% 100.00% 100.00% 100.00%

Total 98.21% 95.00% 98.25% 100.00% 100.00% 100.00%

33
(VIP > 1)

Tie 100.00% 100.00% 100.00% 100.00% 88.00% 100.00%
Mao 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Huang 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Ben 100.00% 100.00% 100.00% 86.67% 100.00% 87.00%

Total 100.00% 100.00% 100.00% 96.67% 97.00% 96.75%

MSC

104 (none
selection)

Tie 91.67% 100.00% 92.00% 100.00% 88.00% 100.00%
Mao 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Huang 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Ben 100.00% 83.00% 91.00% 86.67% 100.00% 87.00%

Total 97.92% 95.75% 95.75% 96.67% 97.00% 96.75%

35
(VIP > 1)

Tie 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Mao 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Huang 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Ben 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

PLS-DA

RAW

104
(none

selection)

Tie 100.00% 92.00% 100.00% 95.65% 100.00% 96.00%
Mao 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Huang 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Ben 84.62% 100.00% 85.00% 100.00% 91.00% 100.00%

Total 96.15% 98.00% 96.25% 98.91% 97.75% 99.00%

43
(VIP > 1)

Tie 96.67% 97.00% 97.00% 96.67% 97.00% 97.00%
Mao 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Huang 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Ben 90.00% 90.00% 90.00% 90.00% 90.00% 100.00%

Total 96.67% 96.75% 96.75% 96.67% 96.75% 99.25%

SNV

104
(none

selection)

Tie 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Mao 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Huang 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Ben 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

33
(VIP > 1)

Tie 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Mao 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Huang 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Ben 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

MSC

104
(none

selection)

Tie 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Mao 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Huang 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Ben 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

35
(VIP > 1)

Tie 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Mao 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Huang 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Ben 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
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Table 1 also shows the classification results after feature selection (VIP > 1 in PLS–DA).
In the SVM, the overall accuracy of the prediction set after direct feature selection of the
original spectra was 92.22%, and the overall precision and recall were 92.75% and 92.25%,
respectively. The overall accuracy, precision and recall after SNV were 96.67%, 97.00% and
96.75%, respectively; after MSC, all the indexes were 100%. Under the PLS–DA model, the
overall accuracy of the prediction set after direct feature selection of the original spectra
was 96.67%, and the overall precision and recall were 96.75% and 99.25%, respectively;
after SNV and MSC, all the indexes were 100%. These results are superior to the results
of the same method in this report [23]. From the above analysis, it can also be seen that
PLS–DA is more effective than SVM in classifying oolong tea. The effect of wavelength
feature selection after preprocessing is better than that of feature selection directly from
the original spectra. Comparing the two preprocessing methods, it can be found that MSC
obtained 100% accuracy in both classification models after feature selection. Therefore,
MSC_VIP_PLS–DA was selected as the best classification model for this study.

3.5. Characteristic Wavelength Analysis

In order to verify the key wavelengths for tea classification among these features,
PLS–DA was used for the key wavelength selection of VIP > 1. Table 2 shows the original
spectral data and the preprocessed spectral data after PLS–DA, among which there are
16 identical selected feature wavelengths, namely, 489.54, 634.89, 639.95, 645.03, 650.11,
655.2, 660.29, 665.39, 670.49, 675.6, 701.17, 706.31, 711.44, 716.58, 742.34 and 747.5 nm. These
wavelengths were further analyzed for significant differences between different tea samples
using ANOVA (p < 0.05). Table 3 shows the results of ANOVA. The fluorescence intensities
with the same wavelengths of these different teas were significantly different (p < 0.05)
at 650.11, 660.29, 665.39, 675.6, 701.17, 706.31, 742.34, 747.5 nm. These wavelengths were
combined with the mean spectra as shown in Figure 4, from which it can be concluded
that the fluorescence intensities of the corresponding wavelengths are consistent with the
ANOVA results and the selected wavelengths can represent the differences between oolong
tea varieties. According to the analysis of spectral curves in Section 3.1, the differences
between these spectra were found to be caused by different internal components, including
catechins, theaflavins, anthocyanins, chlorophylls and carotenoids. The key wavelengths
here are also mainly concentrated between 650 and 750 nm and thus are consistent with the
results of the previous spectral analysis. In [3], the authors used three different wavelength
selection methods including BOSS, VISSA and MASS algorithms to screen the wavelengths
of different grades of Tieguanyin, and the wavelengths selected by these methods were also
concentrated in the range of 600–800 nm, which is consistent with the results obtained in
this study and demonstrates the feasibility of using fluorescence hyperspectral techniques
in the classification of oolong tea. Therefore, this study can provide key wavelengths for
oolong tea classification, and these wavelengths play a key role in the classification model.
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Table 2. The wavelengths selected for VIP > 1 in PLS–DA.

Preprocessing Methods No. Selected Wavelength

RAW 43

479.65; 484.59; 489.54; 494.49; 634.89; 639.95;
645.03; 650.11; 655.2; 660.29; 665.39; 670.49;
675.6; 696.06; 701.17; 706.31; 711.44; 716.58;
726.86; 732.03; 737.17; 742.34; 747.5; 752.65;

872.69; 877.95; 883.22; 888.51; 893.79; 914.95;
930.88; 936.2; 941.5; 946.84; 952.16; 957.5; 962.84;
968.16; 978.86; 984.23; 989.57; 994.94; 1011.05

MSC 35

489.54; 604.51; 609.56; 614.61; 619.69; 624.75;
629.81; 634.89; 639.95; 645.03; 650.11; 655.2;
660.29; 665.39; 670.49; 675.6; 680.7; 685.83;

690.94; 696.06; 701.17; 706.31; 711.44; 716.58;
737.17; 742.34; 747.5; 757.85; 763; 768.2; 773.39;

778.55; 783.75; 788.95; 794.15

SNV 33

489.54; 609.56; 614.61; 619.69; 624.75; 629.81;
634.89; 639.95; 645.03; 650.11; 655.2; 660.29;
665.39; 670.49; 675.6; 680.7; 690.94; 696.06;

701.17; 706.31; 711.44; 716.58; 742.34; 747.5;
752.65; 757.85; 763; 768.2; 773.39; 778.55; 783.75;

788.95; 794.15;

Table 3. ANOVA results for each wavelength.

Wavelength/nm 489.54 634.89 639.95 645.03 650.11 655.2 660.29 665.39

Tieguanyin 231.56 ± 24.01 a 231.77 ± 16.31 a 231.85 ± 16.18 a 254.21 ± 16.59 a 317.14 ± 17.33 a 484.37 ± 17.93 a 897.98 ± 20.66 a 1772.93 ± 25.47 a

Maoxie 240.07 ± 14.20 a 249.03 ± 10.93 a 253.06 ± 11.19 b 276.64 ± 11.26 b 339.49 ± 10.54 b 507.87 ± 12.00 a 923.06 ± 15.42 b 1793.24 ± 26.15 b

Huangjingui 234.42 ± 13.73 a 233.23 ± 10.53 b 240.62 ± 10.61 c 266.39 ± 11.15 c 330.84 ± 11.34 c 484.58 ± 12.33 b 845.42 ± 15.34 c 1584.60 ± 22.11 c

Benshan 253.42 ± 29.82 b 246.92 ± 21.95 b 250.95 ± 21.97 c 278.50 ± 21.93 c 350.06 ± 23.24 d 528.76 ± 24.87 c 954.03 ± 29.64 d 1845.04 ± 51.84 d

Wavelength/nm 670.49 675.6 701.17 706.31 711.44 716.58 742.34 747.5

Tieguanyin 3058.43 ± 35.10 a 4015.49 ± 37.25 a 1421.99 ± 30.72 a 1389.86 ± 31.68a 1441.51 ± 34.26 a 1541.62 ± 36.67 a 1348.80 ± 44.45 a 1150.73 ± 41.73 a

Maoxie 3074.16 ± 40.44 b 4062.58 ± 44.93 b 1496.39 ± 33.07 b 1471.07 ± 33.73 b 1534.77 ± 34.12 a 1650.03 ± 34.87 a 1443.74 ± 33.87 b 1247.50 ± 30.70 b

Huangjingui 2708.93 ± 35.92 b 3672.91 ± 43.78 c 1715.80 ± 29.71 c 1674.04 ± 29.10 c 1734.17 ± 29.06 b 1859.20 ± 30.27 b 1691.45 ± 45.21 c 1453.68 ± 40.66 c

Benshan 3142.46 ± 87.62 c 4103.93 ± 99.52 d 1446.08 ± 57.81 d 1410.60 ± 59.42 d 1455.16 ± 64.79 c 1546.21 ± 71.97 c 1282.70 ± 66.33 d 1086.56 ± 57.35 d

Data represent the mean ± standard deviation. Statistical analysis was carried out by analysis of variance and
post-Duncan test, and different lowercase letters (a–d) were used to indicate the importance of statistical signals
(p < 0.05). The same letter means there is no significant difference between the teas, and different letters mean
there is a significant difference.

Foods 2022, 11, x FOR PEER REVIEW 12 of 15 
 

 
Figure 4. Distribution of key wavelengths in the average spectra. 

4. Conclusions 
In this study, we not only accurately classified oolong tea but also explored the key 

wavelengths in the spectra that affect the classification more profoundly. In the process of 
model building, two preprocessing methods were used to denoise the original spectra, 
and the spectral data after preprocessing were used to improve the model accuracy in the 
building of SVM and PLS–DA classification models. To further reduce the influence of 
redundant wavelengths on the model, PLS–DA (VIP > 1) was used to select the wave-
lengths, and the selected wavelengths were then used to build the two classification mod-
els, and finally, MSC_VIP_PLS–DA was the best model for this classification. To explore 
the key wavelengths affecting the model, ANOVA was performed on the characteristic 
wavelengths, and the results showed that the fluorescence intensities were significantly 
different at 650.11, 660.29, 665.39, 675.6, 701.17, 706.31, 742.34 and 747.5 nm (p < 0.05), 
which corresponded to the spectral curves; it was determined that these wavelengths 
were the key ones in the classification of oolong tea. 

These results suggest that the combination of FHSI and chemometrics is a promising 
method for the classification of oolong tea, and the exploration of significant differences 
in wavelengths of oolong tea can identify the key wavelengths affecting tea classification 
in spectral data at a deeper level. Future work will investigate the relationships between 
fluorescence spectra in more teas and the internal quality of teas, to bring spectroscopic 
methods and tea-related research to the forefront. 

Author Contributions: Conceptualization, Y.H.; methodology, Y.H.; software, Y.H.; validation, 
Z.K., R.F. and Y.W.; formal analysis, Y.H. and J.S.; investigation, Y.W.; resources, Z.K.; data curation, 
Y.H.; writing—original draft preparation, Y.H. Y.W.; writing—review and editing, Z.K. and J.G.; 
visualization, Y.H.; supervision, Z.K.; project administration, Y.H.; funding acquisition, Z.K. All au-
thors have read and agreed to the published version of the manuscript. 

Funding: This work was supported by the subject double support program of Sichuan Agricultural 
University (Grant NO. 035-1921993093). 

Figure 4. Distribution of key wavelengths in the average spectra.



Foods 2022, 11, 2344 12 of 14

4. Conclusions

In this study, we not only accurately classified oolong tea but also explored the key
wavelengths in the spectra that affect the classification more profoundly. In the process
of model building, two preprocessing methods were used to denoise the original spectra,
and the spectral data after preprocessing were used to improve the model accuracy in the
building of SVM and PLS–DA classification models. To further reduce the influence of
redundant wavelengths on the model, PLS–DA (VIP > 1) was used to select the wavelengths,
and the selected wavelengths were then used to build the two classification models, and
finally, MSC_VIP_PLS–DA was the best model for this classification. To explore the key
wavelengths affecting the model, ANOVA was performed on the characteristic wavelengths,
and the results showed that the fluorescence intensities were significantly different at 650.11,
660.29, 665.39, 675.6, 701.17, 706.31, 742.34 and 747.5 nm (p < 0.05), which corresponded
to the spectral curves; it was determined that these wavelengths were the key ones in the
classification of oolong tea.

These results suggest that the combination of FHSI and chemometrics is a promising
method for the classification of oolong tea, and the exploration of significant differences
in wavelengths of oolong tea can identify the key wavelengths affecting tea classification
in spectral data at a deeper level. Future work will investigate the relationships between
fluorescence spectra in more teas and the internal quality of teas, to bring spectroscopic
methods and tea-related research to the forefront.
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SPXY Sample set partitioning based on joint x-y distances
ANOVA Analysis of variance
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