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Abstract: Arsenic is a metalloid with natural and anthropogenic sources and its inorganic form
is toxic to humans. Rice is highly consumed worldwide and is prone to arsenic contamination;
therefore, this study evaluated the inorganic arsenic content of 70 Portuguese rice samples. These
were analysed through inductively coupled plasma mass spectrometry (ICP-MS) with a detection
limit of 3.3 µg kg−1. The average contamination was of 29.3 µg kg−1, with brown and short rice
presenting higher values than white and long rice. The highest concentration, 100 µg kg−1, equalled
the maximum residue limit (MRL) for rice destined for infants’ consumption. The estimated daily
intake (EDI) surpassed the benchmark dose (lower confidence limit 10%) (BMDL10) of 0.3 µg kg−1 of
bw/day considering children in the 95th percentile of rice consumption and the worst-case scenario
concentration. However, other sources also contribute to the EDI and some population groups can
exceed the BMDL10.

Keywords: arsenic; rice; environmental contaminants; estimated daily intake; risk assessment

1. Introduction

Modern agriculture practices have increased productivity, but at high environmental
costs. The increased use of chemical compounds has led to serious pollution problems
across the planet, causing different environmental issues, such as the contamination of
metals and metalloids in food chains, jeopardizing food safety. Food and water are the
most common sources of human exposure to metals and metalloids [1,2].

Among these toxic compounds is arsenic, a metalloid or semi-metal with several natu-
ral sources like minerals, rocks, soils and sediments formed from these arsenic-containing
rocks, as well as geothermal and volcanic phenomena. Moreover, it is a chemical element
used as a glass clarifier, in fireworks and in the pesticide industry. Arsenic has different
chemical forms, including organic and inorganic species, with the later presenting higher
toxicity [3–6].

Inorganic arsenic is considered a carcinogen, belonging to Group 1 of the International
Agency for Research on Cancer (IARC), because long-term exposure is associated with
an increased risk of several carcinomas, including skin, bladder, lung, kidney, liver and
prostate [4]. Additionally, there is emerging evidence of causing skin lesions, neurotoxicity,
cardiovascular diseases, diabetes and negative impacts on foetal and child development [7].
Human exposure to inorganic arsenic occurs mainly by the consumption of groundwater
naturally containing high levels of inorganic arsenic, food prepared with this water, food
crops irrigated with water sources with high arsenic content or that were treated with
phosphate-based fertilizers and pesticides [6,8].

In areas where arsenic is naturally present in high levels, the foods that generally
contribute mostly to daily intake are cereals and beans, namely rice [8]. Rice (Oryza sativa
L.) feeds approximately 50% of the world population [9] and is one of the most cultivated
and consumed cereals in the world [10]. According to the Food and Agriculture Organi-
zation (FAO), in 2018, around 517.5 million tons of rice were produced worldwide [11].
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While Europe is not self-sufficient in rice production and is the third largest importer in
the world, Portugal, along with Italy, Spain and Greece, is one of the European countries
with the highest production and consumption of rice per capita [11–13]. Portugal pro-
duces 160,794 Tonnes of rice per year and the average consumption is 15.9 kg per person
per year [14].

Rice is a widely used source of carbohydrates during weaning due to its availability,
pleasant taste, nutritional value and relatively low allergenic potential. In addition, rice and
derived products, such as starch, flour and syrup are used in different baby foods [15]. Rice
is not consumed as harvested; it undergoes processing including several stages: Drying to
reduce the moisture content of the paddy (harvested rice), cleaning of impurities, removing
of the husk, milling to remove hulls and brans (for white rice) and separation of cracked
rice (Figure S1, Supporting Information) [16].

The cultivation conditions and the plant’s morphology favour the absorption of arsenic
and its accumulation in the grain [1]. The concentration varies according to the soil in
which the rice is grown and the type of rice [15]. Numerous investigations have shown that
rice grains in arsenic endemic areas contain more than 90% inorganic arsenic [17]. Most of
the inorganic arsenic in rice is concentrated in the husk and bran, with concentrations 10
to 20 times higher than the rice grain [15]. Therefore, polished rice is expected to contain
lower concentrations of arsenic than whole grains, since the outer layer of the rice was
removed [18].

Other authors, worldwide, have reported average concentrations up to 350 µg kg−1 of
inorganic arsenic [19], with Portuguese rice presenting averages up to 300.8 µg kg−1 [20].
Therefore, public health actions are needed to reduce human exposure to arsenic, particu-
larly in areas with naturally high levels in groundwater [8].

In 2015, a regulation was established concerning the maximum levels of inorganic
arsenic in foodstuffs, adding limits in rice and rice products. The limit for uncooked white
rice is 0.20 mg kg−1, for stewed rice is 0.25 and 0.10 mg kg−1 for rice for the production of
infant food and young children (Table 1) [21].

Table 1. Maximum residue limits (MRLs) for arsenic (inorganic) in rice and rice products (Regulation
2015/1006).

Foodstuff Maximum Residue Limit
(mg kg−1)

Non-parboiled milled rice (polished or white rice) 0.20

Parboiled rice and husked rice 0.25

Rice waffles, rice wafers, rice crackers and rice cakes 0.30

Rice destined for the production of food for infants and
young children 0.10

There are several spectroscopic analytical methodologies for determining metals that
allow to extend the scale of concentration of elements to levels of ppm, ppb or even
ppt, and perform multi-elemental analysis. The analytical methodologies reported for
the determination of inorganic arsenic in rice are in decreasing limits of detection order:
Atomic absorption spectrometry with flame (FAAS), with graphite chamber (GFAAS) and
with hydride generation (HG-AAS), and inductively coupled plasma mass spectrometry
(ICP-MS) [20,22,23]. Additionally, other techniques such as pulse differential voltammetry
and square wave voltammetry, both used with the anodic stripping mode are also suitable
for the determination of arsenic in rice [24].

This work aimed to detect and quantify inorganic arsenic in different types of rice
available in Portugal, such as white vs. brown and long vs. short rice, from diverse
production regions. Moreover, the risk assessment was performed evaluating the hazard of
the exposure of inorganic arsenic for children and adults.
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2. Materials and Methods
2.1. Sampling

A total of 70 samples were collected; 48 were sampled from a rice factory located
in Coimbra District (Portugal) during the months of September and October 2019 and
22 samples were acquired from Portuguese supermarkets in January 2020 (Table S1, Supple-
mentary Materials). The factory samples were collected at the factory entrance, still in shell.
To obtain the samples in the proper form for the analysis, it was necessary to proceed with
their husking (48 samples) and subsequently the blanching of half of them (24 samples)
(Figure S1 Supplementary Materials).

Of the 70 samples analysed 41 (59%) were of white rice, and 29 (41%) of brown rice.
Discriminating by size, 22 (31%) samples were of long grain (8 agulha, 10 basmati, jasmine
and thai and 4 black, vaporized and wild rice) and 48 (69%) were of short grain (47 were
carolino and 1 sushi rice). Sorting by the small Portuguese rice production regions: 39 (56%)
with origin in Mondego (between Coimbra and Figueira da Foz), 10 (14%) from the Tejo
(between Chamusca and Salvaterra de Magos) and Sado (Alcácer do Sal) river and 21 (30%)
samples of unknown origin.

2.2. Standards, Chemicals and Materials

Solution of arsenic analytical standard (1003 ± 7.0 mg L−1), under the form of H2AsO4
with 99.999% purity, was purchased from CPAChem (Bogomilovo, Bulgaria) while super-
pure nitric acid (68%) was acquired from Carlo Erba (Milan, Italy). Ultrapure Milli Q water
was daily obtained through a Millipore (Molsheim, France) equipment.

2.3. Digestion Procedure and Analysis

In a 50 mL Falcon tube, 5.00 g of ground rice samples were added of 50 mL of nitric acid
(1%). After vortexing for 10 min and ultrasound extraction for 15 min it was centrifuged for
15 min, at 2880× g. The supernatant was then filtered in a vacuum pump and the extracts
were analysed by inductively coupled plasma mass spectrometry (ICP-MS).

Detection of inorganic arsenic was performed on the ICP-MS XSERIES-2 equipment,
Thermo Fisher Scientific (Waltham, Massachusetts, EUA), at 1370 W (m/z 75) (Table S2,
Supplementary Materials). A correction equation was used in order to eliminate possible
interferences of chlorides present in the samples. Before analysis, all the extracts were
diluted 5 times with 0.5% HNO3. An internal scandium (Sc) standard (m/z 45) was used at
a concentration of 25 µg L−1.

2.4. Risk Assessment Calculation

The risk assessment was performed by calculating the percentage of the arsenic intake
regarding the selected benchmark dose (BMDL) [25].

The estimated daily intake (EDI) was calculated through a deterministic method [26]
using the equation: EDI = (Σc) (CN−1 D−1 K−1), where Σc is the sum of the compound in
the analysed samples (µg kg−1), C is the mean annual intake estimated per person of rice
and rice products, N is the total number of analysed samples, D is the number of days in a
year, and K is the body weight (kg).

According to the last report of the “National Food Survey and Physical Activity, IAN-
AF 2015–2016”, the adult population annual on average consumed 25.1 kg of rice per capita
and children 19.1 kg year−1. As for the 95th percentile, the annual consumption was 47.9
and 62.8 kg year−1 for children and adults, respectively [27].

The mean body weight considered for the Portuguese children (2–12 years) and the
adult population was 24 and 69 kg, respectively [28].

As for arsenic risk assessment, the EFSA Panel on Contaminants in the Food Chain
established a BMDL10 (benchmark dose lower confidence limit 10%, representing the lower
bound of a 95% confidence interval on a BMD (benchmark dose) corresponding to a 10%
tumour incidence) between 0.3 and 8 µg kg−1 bw/day for an increased risk of cancer
of the lung, skin and bladder, and skin lesions [7]. The risk assessment was performed
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both for children and adults by comparing the EDI (assuming different scenarios: Average
consumption, higher consumption, average contamination, the highest contamination
(worst-case scenario)) with the BMDL10 value of 0.3 µg kg−1 bw/day.

2.5. Statistical Analysis

Complete statistical analysis was performed using GraphPad Prism (6.01, GraphPad
Software, Inc., San Diego, CA, USA). To test whether the datasets were of Gaussian distri-
bution, D’Agostino–Pearson normality test was used. Since all of the datasets were not
normally distributed, with non-homogeneous variances, nonparametric tests were applied.
For the evaluation of each type of premade baby food, Kruskal–Wallis test with Dunn’s
post-test were used. For the comparison between white and brown rice and for short and
long rice samples, Mann–Whitney test was performed. The statistical significance level was
set to p < 0.05 [29].

3. Results
3.1. Validation of the Analytical Methodology

Validation was performed to assure the fitness for purpose of the analytical method
for the determination of inorganic arsenic in rice (Table S3, Supplementary Materials).
Analytical quality control encompassed different performance criteria such as linear range,
method detection limit (MDL), method quantification limit (MQL), accuracy and precision
features [25].

Linearity was studied using standard solutions of arsenic in 0.5% HNO3 at the follow-
ing concentrations: 0.2, 0.4, 0.8, 1.0, 2.0 and 5.0 µg L−1, which correspond in the samples to
a range of concentrations between 10 and 250 µg kg−1. The correlation coefficient obtained
was 0.99997. In order to validate the calibration curve, a blank and two standards at 0.2
and 1.0 µg L−1 were evaluated, obtaining the results of 0.21 and 1.04 µg L−1, respectively.

The MDL and MQL were calculated using the mean and standard deviation of
10 blanks using the formulas: MDL = mean + 3.3 x standard deviation;
MQL= mean + 10x standard deviation. The obtained MDL and MQL were 3.3 µg kg−1 and
10 µg kg−1, respectively.

Five recovery tests were carried out in spiked samples in order to assess the accuracy
and precision of the method, with recoveries of 99%, 114%, 106%, 111% and 89% (average
of 103.8%). The precision of the method was 10.8%.

For additional quality control, two concentrations of the standard calibration curve
(0.2 and 0.8 µg L−1) were analysed each 10 samples and at the end of the session. A
correction equation was used in the samples to account for the interference of chloride.

Each sample was analysed three times and, to match the analytical methodology
criteria, the relative standard deviation in each sample was below 10%, in concentrations
over the MQL, and 15% in sample concentrations between the MDL and the MQL.

3.2. Occurrence of Inorganic Arsenic in Rice Samples

The total frequency of detection for inorganic arsenic in rice was 81% (57 samples)
with an average of 29.3 µg kg−1. No sample presented concentrations above the established
maximum residue limits (MRLs). However, there was one sample with a concentration
that equalled the MRL (100 µg kg−1) for rice destined to the production of food for infants
and young children.

When comparing white and brown rice, the detection frequency was 100% for brown
and 68.29% for white rice (Figure 1). The average concentration of inorganic arsenic in
brown and white rice samples was 47.07 and 16.73 µg kg−1, respectively. The highest
concentration of arsenic was found in one brown rice sample (100 µg kg−1). A statistical
difference between these two groups was observed, with p < 0.0001.
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Figure 1. Detection frequency (%), average and maximum concentrations (µg kg−1) of inorganic
arsenic in white and brown rice.

The higher presence of inorganic arsenic in brown rice confirms the data presented by
other authors and that the outer layers of rice contain higher concentrations of arsenic [30].

Comparing long and short rice, a higher detection frequency (90%) and average
concentration (89.6 µg kg−1) was found for short rice (Figure 2). On the other hand, long
rice presented a detection frequency of 64% and an average concentration of 24.5 µg kg−1.
A statistical difference (p = 0.041) was also found between these two types of rice. While
no justification for these results was found, besides the small differences in composition,
namely in starch concentration, other authors reported the same pattern [19,31].
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Figure 2. Detection frequency (%), average and maximum concentration (µg kg−1) of inorganic
arsenic in long and short rice.

Regarding the origin of the rice, the detection frequency was 100% for the Tejo and
Sado, 89.74% for the Mondego and 57.14% for the unknown origin (Figure 3). The group
that obtained the highest average concentration originated in the Tejo and Sado followed by
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Mondego and the samples with unknown origin. There was a statistical difference between
the Tejo and Sado group and the unknown origin group, with p < 0.0044.
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inorganic rice from different origins.

The asymmetries in the obtained results could be related to different soil compositions
in terms of rocks and minerals in the different regions and to the climatic conditions that
influence the existence to a greater or lesser extent of arsenic in the waters. Additionally,
anthropogenic contamination, namely from the use of pesticides and industries along the
rivers, can also contribute to arsenic concentration in the near river waters [32].

3.3. Comparison with Other Studies

The results obtained in the present study were clearly lower when compared with
other scientific published works (Table 2), even when comparing with data from similar
regions [20]. From the results presented by other authors we highlight the concentrations
found in rice for infant consumption, where levels ranged from 70 to 162 µg kg −1 [23,33,34].
Table 2 shows that, in most of the studied countries, the arsenic concentration in rice
frequently surpassed the MRLs. Additionally, in some of them, even the average values
were higher than the respective MRLs, namely in Spain and Portugal. This highlights the
importance of these studies, since some countries are not complying with the established
legislation.
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Table 2. Occurrence of arsenic in rice across the world.

Type of Rice Country Year Number of Samples Detection
Frequency (%)

Range and Standard
Deviation
(µg kg−1)

Mean Concentration
and Standard Deviation

(µg kg−1)
References

Long
Scotland a 2014 44 b 100 NA 94 ± 1 [22]
Scotland a 2014 44 b 100 NA 52 ± 10 [22]
Scotland a 2014 44 b 100 NA 61 ± 4 [22]

Long-Agulha Spain 2007 39 b 97 NA 350 ± 16 [19]
United States of America 2003 40 b NA 33–271 NA [33]

Long-Agulha brown Spain 2007 39 b 97 NA 230 ± 20 [19]

Long-Basmati

Scotland a 2014 44 b 100 NA 53 ± 7 [22]
Scotland a 2014 44 b 100 NA 69 ± 9 [22]

Punjab, India 2014 10 b 100 NA 12.0 ± 5.48 [20]
India 2007 39 b 97 NA 67 ± 1 [19]

Belgium a 2018 5 100 19 ± 8–48 ± 21 30 ± 10 [35]

Long-Basmati Brown Spain 2007 39 b 97 NA 148 ± 4 [19]

Long-Steamed Iberian Peninsula 2016 11 100 22–70 83 (median) [30]

Long-Thai Thailand 2007 39 b 97 NA 175 ± 8 [19]
Belgium a 2018 7 100 63 ± 16–147 ± 37 77 ± 32 [35]

Long-Thai jasmine

Scotland a 2014 44 b 100 NA 64 ± 3 [22]
Scotland a 2014 44 b 100 NA 62 ± 3 [22]

NA 2014 10 b 100 NA 85.5 ± 10.39 [20]
Thailand 2014 10 b 100 NA 62.6 ± 6.21 [20]

Medium grain Spain 2007 39 b 97 NA 367 ± 4 [19]
United States of America 2003 40 b NA 46–114 NA [33]

Medium
grain-Brown Spain 2007 39 b 97 NA 145 ± 5 [19]

NA-Baby rice United Kingdom 2014 29 100 63–268 NA [30]
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Table 2. Cont.

Type of Rice Country Year Number of Samples Detection
Frequency (%)

Range and Standard
Deviation
(µg kg−1)

Mean Concentration
and Standard Deviation

(µg kg−1)
References

NA-White
Switzerland a 2018 27 NA 5.6–188 94 [36]

New Zealand and Australia a 2019 36 100 40–100 70 [23]
Belgium a 2018 7 100 67 ± 18–245 ± 64 172 ± 81 [35]

NA-Brown

Scotland a 2014 44 b 100 NA 137 ± 5 [22]
Iberian Peninsula 2016 20 100 53–47 157 (median) [30]

Switzerland a 2018 4 NA 117–172 152 [36]
New Zealand and Australia a 2019 21 85 <20–120 90 [23]

Belgium a 2018 5 100 119 ± 32–243 ± 67 167 ± 47 [35]

NA-Infant Rice

China 2011 14 100 52–247 114 ± 15 [34]
USA 2011 5 100 93–159 125 ± 14 [34]

United Kingdom 2011 5 100 107–267 162 ± 29 [34]
Spain 2011 7 100 10–111 85 ± 10 [34]

New Zealand and Australia a 2019 15 100 40–140 70 [23]

NA-Polished Iberian Peninsula 2016 113 100 27–75 71 (median) [30]

Short-Carolino

Tejo, Portugal 2014 10 b 100 NA 300.8 ± 31.79 [20]
Mondego, Portugal 2014 10 b 100 NA 242.6 ± 32.97 [20]

Portugal 2014 10 b 100 NA 217.5 ± 15.94 [20]
Tejo, Portugal 2014 10 b 100 NA 224.3 ± 32.97 [20]

Short-Japanese Scotland a 2014 44 b 100 NA 99 ± 5 [22]

Short-Paella
Scotland a 2014 44 b 100 NA 70 ± 3 [22]
Scotland a 2014 44 b 100 NA 67 ± 3 [22]

Short-Risotto
Scotland a 2014 44 b 100 NA 120 ± 18 [22]
Scotland a 2014 44 b 100 NA 114 ± 10 [22]

Italy 2014 10 b 100 NA 53.2 ± 8.21 [20]
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Table 2. Cont.

Type of Rice Country Year Number of Samples Detection
Frequency (%)

Range and Standard
Deviation
(µg kg−1)

Mean Concentration
and Standard Deviation

(µg kg−1)
References

Long
Scotland a 2014 44 b 100 NA 94 ± 1 [22]
Scotland a 2014 44 b 100 NA 52 ± 10 [22]
Scotland a 2014 44 b 100 NA 61 ± 4 [22]

Long-Agulha Spain 2007 39 b 97 NA 350 ± 16 [19]
United States of America 2003 40 b NA 33–271 NA [33]

Long-Agulha brown Spain 2007 39 b 97 NA 230 ± 20 [19]

Long-Basmati

Scotland a 2014 44 b 100 NA 53 ± 7 [22]
Scotland a 2014 44 b 100 NA 69 ± 9 [22]

Punjab, India 2014 10 b 100 NA 12.0 ± 5.48 [20]
India 2007 39 b 97 NA 67 ± 1 [19]

Belgium a 2018 5 100 19 ± 8–48 ± 21 30 ± 10 [35]

Long-Basmati Brown Spain 2007 39 b 97 NA 148 ± 4 [19]

Long-Steamed Iberian Peninsula 2016 11 100 22–70 83 (median) [30]

NA-Not available; a—Samples purchased at supermarkets in the respective countries, without information on the country of origin of the sample; b—Total of the studied samples, not specific to the type of rice.
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The concentrations obtained for the white rice samples were lower when compar-
ing with other authors where average concentrations varied between 70 µg kg−1 and
172 µg kg−1 [23,32,35,36]. The same pattern was observed for the brown rice samples, since
other authors found concentrations of arsenic between 90 µg kg−1 and 230 µg kg−1 [19,30].
Additionally, like in the present study, due the arsenic concentration in bran and husk,
brown rice presented higher arsenic concentrations.

Comparing the results of short and long rice, the pattern observed by other authors
is similar to that found in the present study, with short rice presenting higher average
(151 µg kg −1, average of all short rice studies) than long rice (99 µg kg −1, average of all
long rice studies) [19,20,22,35].

The countries with the reported highest average concentrations were Spain, with a
concentration of 367 ± 4 µg kg−1 (medium rice) and 350 µg kg−1 (long rice), followed by
Portugal with 300.8 µg kg−1 (short rice) [19,20]. In contrast, lower average concentrations
were reported by India (Punjab), with a concentration of 12.0 µg kg−1, and Scotland, with
52 µg kg−1 [20,22]. In a previous study carried out in Portugal, inorganic arsenic was
determined in rice, with origin in the same regions of Tejo and Mondego. The average
concentrations of inorganic arsenic were similar in both regions with samples from Tejo river
presenting an average concentration of 224.3 µg kg−1 and Mondego with 242.6 µg kg−1 [20].
These values are much higher than the ones obtained in the present study, 51.1 µg kg−1 for
the Tejo River and 26.84 µg kg−1 for the Mondego River. These differences are probably
due to the different sampling years, separated by five years, which can greatly impact the
arsenic concentration in rice.

3.4. Risk Assessment

The risk assessment was performed assuming arsenic concentrations in rice of 29.3 and
100 µg kg−1 (average and worst-case scenario, respectively); 19.1 and 25.1 kg (children
and adults, respectively) as average annual rice consumption, 47.9 and 59 kg (children
and adults, respectively) as 95th percentile of annual rice consumption; and an average
weight of 24 and 69 kg (for children and adults, respectively). Using this data, it can be
observed that the EDI surpassed the BMDL10 of 0.3 µg kg−1 of bw/day for children when
considering the worst-case scenario contamination and the 95th percentile rice consumption
(182.3%) (Figure 4).
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Figure 4 shows that when using the worst-case scenario for the concentrations of
arsenic found in rice the EDI approaches or surpasses the BMDL10, namely for children
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that have a higher consumption rate of rice per kg of body weight. When using average
contamination concentrations, the higher value was 53.4% for children using the 95th
percentile of rice consumption.

Using the average exposure to inorganic arsenic for children we can observe that, as
expected, the percentage was higher for brown rice (34.2%) than for white rice (12.2%).
Moreover, short grain had a higher percentage (22.9%) than short grain (17.8%). Regarding
the regions, Tejo and Sado presented clearly higher percentages (37.1%) than Mondego
(19.5%) and unknown origin (17.1%).

Observing the present results, there is low risk to consumers through the exclusive
consumption of rice, considering that only using the scenario of 95th percentile of rice
consumption and the highest contamination found, the children EDI surpassed the lowest
BMDL. However, there are groups for which their exposure is higher, thus increasing
the risk associated. This is the case for gluten intolerant people, celiacs, for whom the
impossibility of consuming cereal-based foods entails rice as an alternative. Rice being
the alternative to cereal-based pasta, its consumption is higher by celiacs than that by a
non-celiac person. If it is assumed that the consumption of rice by celiacs is approximately
double that of a non-celiac person the EDI will also duplicate.

Additionally, there are also other sources of inorganic arsenic in food (fish, molluscs,
water) that should also be included for a more accurate risk assessment [4,7]. This can be
observed in certain ethnic groups that have a daily exposure of inorganic arsenic in a diet of
about 1 µg kg−1 bw/day, and also in high consumers of algae-based products that can have
a dietary exposure to inorganic arsenic of about 4 µg kg−1 bw/day [7]. These products,
namely seaweeds, are becoming part of the Western populations’ diet (consumption of
sushi for example), particularly due to their health benefits and essential elements [37,38].
The increased seaweed consumption in the last few years highlights that the exposure to
contaminants, namely metals and metalloids, through non-traditional foods is a growing
reality that should be accounted for [39].

In 2009, EFSA estimated that national exposures to inorganic arsenic through food
and water in 19 European countries ranged from 0.13 to 0.56 µg kg−1 bw/day for average
consumers, and from 0.37 to 1.22 µg kg−1 bw/day for the 95% percentile, values that are
higher than the BMDL10 (0.3 µg kg−1 bw/day) [7]. In 2014, EFSA estimated the average
food exposure to inorganic arsenic among infants and the values ranged from 0.20 to
1.37 µg kg−1 bw/day. The food exposure average among the adult population (including
adults, the elderly) ranged from 0.09 to 0.38 µg kg−1 bw/day, values that also surpassed
the BMDL10. EFSA also confirmed that grains and cereals were the class of food that
contributed the most for these values [40].

These values suggest that there are multiple sources of inorganic arsenic in food and
water and that the BMDL10 value is easily surpassed by the EDI on several occasions. This
highlights the importance of determining the inorganic arsenic in food and water, namely
on grains and cereals, the main contributors for EDI of this contaminant.

4. Conclusions

Organic and inorganic arsenic is mainly present in water, originating from different
sources, with foods that are irrigated with large amounts of water, such as rice, accounting
for a greater exposure when compared to other cereals.

In this study, the identification and quantification of inorganic arsenic in rice was
performed by ICP-MS. The methodology used proved to be adequate, allowing for an MDL
of 3.3 µg kg−1 and a MQL of 10 µg kg−1, while the accuracy of the method ranged between
89% and 114%.

The results obtained showed that of all the analysed samples contained inorganic
arsenic, however, none above what is stipulated by law for inorganic arsenic present in
rice. It is also concluded that the brown rice samples are the ones that present the highest
average of inorganic arsenic (47.1 µg kg−1). Short rice had higher average concentration
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(31.5 µg kg−1) than long rice (24.5 µg kg−1). Among the different regions of origin in Portu-
gal Tejo and Sado region presented the highest amount of inorganic arsenic (51.1 µg kg−1).

Considering the risk assessment carried out, it can be concluded that only in very
specific cases (children in the 95th percentile of rice consumption and worst-case scenario
concentration) the BMDL10 (0.3 µg kg−1 of bw/day) is surpassed by the EDI.

It should be noted that rice is not the only source of inorganic arsenic. Therefore, other
sources that also contribute to the daily intake should also be considered for a correct risk
assessment. Additionally, there are population groups that present a higher risk to the
exposure of inorganic arsenic like children, celiac people, some ethnic groups and high
consumers of algae-based products that can highly exceed the BMDL10.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11030277/s1, Table S1: Sample characterization; Table S2:
Arsenic detection settings, in the ICP-MS XSERIES-2, ThermoUnican equipment; Table S3: Validation
results for the analytical methodology; Figure S1: Preparation of white (A) and brown (B) rice
samples.
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