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Abstract: Understanding the dynamics of the grain yield gap (YGAP) and its causative factors is
essential for optimizing the layout of grain production and addressing the food crisis, especially
in countries with a huge population and less cultivated land, such as China. In the study, a spa-
tial analysis- and machine learning-based framework for YGAP analysis was developed, taking
Hunan Province, China, as an application. The results showed that the average YGAP in Hunan
Province gradually narrowed from 1990 to 2018, and the YGAPs narrowed in 116 counties. Of which,
26 counties narrowed by more than 4 t ha−1, 58 counties narrowed from 2–4 t ha−1, and 32 counties
narrowed within 2 t ha−1. Additionally, we found that the GDP per capita (GDPPC), sunshine hours
(SH), per capita annual net income of farmers (PCAI), and rural electricity consumption (REC) play a
key role in YGAP change, and the importance of human investment to the YGAP decreased, while
socioeconomic environment became the dominant factor that influenced grain production. Compre-
hensively, the relatively great potential for grain yield growth was generated in sixty-four counties,
which are mainly located in the northern, central, and southern Hunan. The findings suggest that it is
necessary to consider the trends of economic development in rural areas and population migration in
agricultural management. This work provides insights into yield gap dynamics and may contribute
to sustainable agricultural management in Hunan Province, China, and other similar regions.

Keywords: yield gap; spatiotemporal variations; food security; determinants; machine learning

1. Introduction

Grain production capacity and food security have been wide concerns in the era of
population boom, climate change, and environmental degradation [1–5]. Many scholars in
developed countries have researched the sustainability and resilience of the food system
since the 1990s, and it is concluded that a food system gathers all the elements (environment,
people, inputs, processes, infrastructures, institutions, etc.) and activities that relate to the
production, processing, distribution, preparation, and consumption of food and the outputs
of these activities [6,7]. In 2015, zero hunger, which advocates sustainable agricultural
development promotion to ensure global food security, was introduced as one of the UN’s
sustainable development goals (SDGs) [8–10]. However, the food crisis remains and, to
a certain extent, has been even worse since 2017 [11]. Affected by global socioeconomic
and health events such as the COVID-19 pandemic, food supply chains, trade, and food
environments are getting more vulnerable [12,13], and more than 155 million people are
suffering from food insecurity [14]. Meanwhile, it is reported that more than 1.3 billion
tons of food are thrown away along the entire food supply chain worldwide each year,
especially in developed countries. Specifically, in developed countries (1.4 billion people),
670 million tons (Mt) of food is discarded, and less than 630 Mt is discarded in developing
countries (6.2 billion people) [15–17]. In this context, initiatives to promote a resilient
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agricultural food system are unprecedentedly advocated [11]. Some scholars stated that
the current food system is problematic because of alleged low productivity, especially in
developing countries [13]. Indeed, there is a large gap in grain crops between developing
and developed countries. For instance, the yield per unit of rice in China is more than
110 kg lower than that of Australia, the yield per unit of wheat is nearly 300 kg lower than
that of New Zealand, the yield per unit of corn is only 60% of that of the United States, and
the yield per unit of soybean is less than 60% of that in the United States [18]. Therefore,
it is necessary to move beyond rehabilitating and increasing agricultural production to
addressing the whole food system to link humanitarian assistance and longer-term support
to sustainable livelihoods and resilience [6].

The Chinese government and scholars have made efforts to approach high-quality
cultivated land and increase the sown area of grain to gain more food [19–21]. Policies such
as cultivated land balance, land consolidation, and a high standard of basic cultivated land
that aim to promote strict cultivated land protection have also been approached [22–24].
However, it remains hard work to address cultivated land degradation in both scale and
grain production capacity under rapid urbanization and industrialization [25]. Low grain
yields in major cereal crops, notably maize, rice, and wheat, have been generally gener-
ated in areas suffering from resource and environmental constraints [26–28]. Moreover,
promoted by the policies addressing the decreasing birth rate, the population growth,
and, as a result, the increase in food consumption will be largely increased in the next
decades [29–32]. Food security is a major issue facing Chinese agriculture [20,32–34]. Com-
prehensively, increasing grain productivity without cultivated land expansion is critical to
address these problems.

It is noteworthy that initiatives to increase the grain yield in regions that show a large
yield gap (YGAP), namely the gap between potential yield (YP) and actual farm yield
(YAFM), are advocated. The definition of YGAP was firstly made by De Datta (1981) and
has been enriched during the past decades. Concepts related to YGAP, mainly including
potential yield (YP), exploitable yield potential (YEP), potential farm yield (YPFM), and
actual farm yield (YAFM), have been widely discussed [28,35–38]. Among these definitions,
YP is the maximum yield that can be obtained under the climatic and soil conditions in
a specific area. YEP reflects the maximum yield achievable in a test field under superior
cultivation management practices. YPFM represents the maximum yield to be obtained at
the current cultivation level by the farmer. In contrast, YAFM is the actual yield under the
current farming practices [38–40]. Generally, production constraints are highly dependent
on local management practices and agroecological location [41]. Of which, YP is mainly
determined by natural conditions (e.g., light, temperature, water, soil, etc.) and genetic
characteristics of crops. While the influence mechanism of YAFM is relatively complex,
it is mainly decided by the land use conditions, the inputs of labor, technology, capital,
etc. The inputs are conducive to improving the land use conditions, promoting cultivated
land quality, and finally enhancing YAFM, while the willingness of farmers to input in
agricultural activities is largely determined by the socioeconomic environment [38]. Hence,
it can be seen that it is very difficult but crucial to explore the key factors that narrow the
yield gap.

In recent years, studies on the YGAP have continuously deepened. The research
object has expanded from major grain crops (rice, wheat, and corn) [42–44] to potatoes [45],
sugarcane [46], rapeseed [47], quinoa [48], cassava [49,50], apples [51], bovine milk [52,53],
and cowpeas [54]. While in terms of research method, field surveys, statistical methods,
crop simulation models, and remote sensing technology have been integrated to fully
utilize the advantages of each method in YGAP research, and insight has been derived
through targeted case studies [55–57]. All of these have deepened the cognition of yield
gap research. However, findings documented in existing literature are variable due to
differences in research scales and methods. Specifically, most studies have been conducted
at the field, provincial, regional, and national levels [58–61], ignoring the mesoscale such as
the county level. Compared to the latter three scales, the field survey study can achieve
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more precise data and results. It is helpful to guide agricultural production in practice.
Existing literature revealed that cultivation and management measures such as increasing
fertilization, irrigation, and planting density have an important contribution to the increase
in yield and then narrow the yield gap [62–65]. However, the field survey method is hard
to promote within a large region because of the limits of finances and time. While using
remote sensing and statistical data to research YGAP at macro-scales such as provincial,
regional, and national, can quickly understand their trends and help strategic decisions
making [66–68]. For instance, previous studies have revealed that the YGAP is particularly
large in developing countries where smallholder farming dominates the agricultural land-
scape, especially in rainfed systems, suggesting that the increase in grain production in
these regions is easier than in other places [53,69,70], but large-scale studies are difficult
to guide grain production activities directly. Comprehensively, the YGAP study at the
mesoscale is needed. Meanwhile, some studies reported that limiting factors to production
are region-specific and depend on socio-economic and agro-ecological location; therefore,
it is necessary to understand the primary causes of yield gaps to allow for more effective
research and policy efforts aimed at improving grain production capacity [38,41].

Furthermore, considering many policies, such as spatial planning and agricultural
industry planning, are implemented at the county level in China, and Deng et al. [20]
reported that among the major rice-producing provinces, the greatest opportunity for yield
improvement mainly occurs in Hunan, Heilongjiang, and Jiangxi in China. Meanwhile,
to the best of our knowledge, a limited number of studies have examined the factors
influencing the YGAP, especially from spatial and temporal perspectives at the county level.
Hence, to develop a methodology framework from a geographical perspective for regional
yield gap analysis and apply it to verify its effectiveness, Hunan Province, which is a major
grain-producing base in China, was selected as a study area.

Specifically, we analyzed the spatiotemporal evolution characteristics of crop YGAPs
and the corresponding determinants in Hunan Province based on various data (e.g., remote
sensing data, meteorological data, and socioeconomic data) and methods (e.g., spatial
analysis, spatial statistics, and random forest model). The specific objectives of this study
are (a) to better understand the spatiotemporal evolution and clustering characteristics of
the YGAP at the county level, (b) to determine the factors influencing the yield gap change
(YGC), and (c) to identify areas with a high potential to narrow the YGAP and propose
strategies to increase the grain yield. This study provides new insights into the application
of YGAP research.

2. Materials and Methods
2.1. Study Area

There are thirteen provinces among the main grain-producing areas of China, includ-
ing Liaoning, Hebei, Shandong, Jilin, Inner Mongolia, Jiangxi, Hunan, Sichuan, Henan,
Hubei, Jiangsu, Anhui, and Heilongjiang (Figure 1a). Hunan, located in Central China and
the middle reaches of the Yangtze River, between 108◦47′–114◦15′ E and 24◦38′–30◦08′ N,
covers an area of 211,800 square kilometers and contains 14 municipalities and 122 coun-
ties or districts (Figure 1). It exhibits a humid continental subtropical monsoon climate
with suitable agricultural production conditions (e.g., light, heat, and water resources),
and is an important rice production base in China. The main grain cropping system
in Hunan Province is double cropping with rice (early-season rice and late-season rice)
(Figure 1b) [71]; however, an increasing number of farmers have preferred to plant rice in
the middle of the two seasons in recent years (Figure 2a). In 2019, the area sown with rice
accounted for approximately 90% of the total food crop planting area in Hunan (Figure 2a),
and the rice yield reached 26.39 million tons, of which early-season rice accounted for
7.19 million tons, and late-season rice accounted for 8.1 million tons of the total rice yield.
The yield per unit area of early-, middle- and late-season rice exceeded 6000 kg ha−1 in 2019
(Figure 2b). In 2020, the grain sown area in Hunan amounted to 4755 thousand hectares,
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and the total grain production reached 30.15 million tons, accounting for 4.51% of the grain
yield in China.

Figure 1. The location (a) and the cropping systems of Hunan Province (b).

Figure 2. Sown area (a) and yield (b) of the crops planted in Hunan Province, China during 1949–2019.
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2.2. Data Sources

Land use data with a spatial resolution of 30 m for 1990, 2000, 2010, and 2018 were
provided by the RESDC, Chinese Academy of Sciences (http://www.resdc.cn, accessed on
1 December 2019). These data adopt a three-level classification system, which divides land
into six primary categories, namely, cultivated land, woodland, grassland, water area, urban
and rural construction land, and unused land, and 25 secondary categories, such as paddy
fields and dryland areas. The detailed introduction can be seen in reference [72]. DEM
data with a spatial resolution of 12.5 m were obtained from the Advanced Land Observing
Satellite (ALOS), which is known in Japan as DAICHI and was developed by the Japan
Aerospace Exploration Agency (JAXA, https://global.jaxa.jp, accessed on 13 March 2021).
The rainfall, air temperature, sunshine hour, and solar radiation intensity data in 1990, 2000,
2010, and 2018 originated from the China Meteorological Data Network Service Centre
(http://data.cma.cn, accessed on 13 February 2021) and National Tibetan Plateau Data
Center (http://data.tpdc.ac.cn, accessed on 13 February 2021). Socioeconomic data (e.g.,
grain yield, human population, rural labor, etc.) were obtained from the Hunan Statistical
Yearbook and Hunan Rural Statistical Yearbook of the corresponding year. Administrative
district data were derived from basic national geodatabases.

2.3. Methods
2.3.1. Framework for YGAP Analysis and Application

Theoretically, the yield gap is determined not only by natural conditions (e.g., the
physical conditions of cultivated land and the climate) but also by human investments,
such as irrigated infrastructure, technology, and capital [53,69,73–76]. The former aspect
determines the grain production potential, and the latter aspect determines the actual grain
outputs. When the exploitation level of the potential yield is low, the latter factor may be
more important than the former factor. However, all the limiting factors vary over time and
space, and the same investment does not produce the same benefits over places. Thus, to
optimize the pattern and improve the efficiency of grain production, we need to understand
some questions, such as how the yield gap changes, which factors determine the changes
in the yield gap, and where and how we can close the YGAP. Therefore, a methodology
and analysis framework was developed based on a geographic research perspective [77] in
this study (Figure 3).

Figure 3. The overall methodological framework for yield gap analysis.

http://www.resdc.cn
https://global.jaxa.jp
http://data.cma.cn
http://data.tpdc.ac.cn
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Firstly, the yield gap in each county in 1990, 2000, 2010, and 2018 was calculated. Then,
we analyzed the characteristics of yield gap dynamics (e.g., the distribution, clustering, and
evolution) with the methods of spatial analysis and spatial statistics. Finally, we selected
several indicators that may affect the yield gap and determined the importance of these
factors. Therefore, we summarized the variation mechanism of the grain yield gap over the
past three decades and examined approaches to identify where we can close the YGAP in
the future.

2.3.2. Estimating the YP

The YP represents the maximum yield value achievable of the best cultivar when
grown with optimal agronomy and without manageable biotic and abiotic stresses under
natural resource and cropping system conditions in the specific area [28]. Methods for
estimating the YP are crucial to YGAP research [39,40,78]. Generally, there are three methods
for YP estimation, including field experiments, maximum farmer yield determination, and
crop model simulation [39,57]. The former two methods are conceptually and operationally
simple but exhibit notable experimental data requirements, high experimental costs, and
high time costs. The latter method can consider more scenarios and treatments, but precisely
quantifying all management measures in actual production is difficult to achieve [59,79–81].
Comprehensively, the YP for rice and corn was estimated by step revision model under
the restrictions of light, temperature, water, and soil [82–86], which is referenced to the
Agro-Ecological Zones modeling framework (AEZ) [87,88].

Considering the double cropping system is the main farming system in grain produc-
tion in Hunan Province (Figures 1b and 2a) as well that the early-season rice, late-season
rice, spring corn, and autumn corn are planted between April and October. Hence, the grain
potential yields (i.e., rice, corn) were estimated during their growing period (May to Octo-
ber) [82–86]. Equations (1)–(4) were adopted to calculate the photosynthetic production
potential (YQ), light-temperature production potential (YT), climatic production potential
(YW), and soil production potential (YS) in each cultivated land pixel, respectively.

YQ =
1× 105

C
× F×Q× E (1)

YT =
T
30
×YQ (2)

YW = f (w)×YT (3)

YS = f (s)×YW (4)

According to previous studies [82–86], C is the calorific value of the dry matter in
Equation (1), which is set to 4.25 kcal g−1 [82–86,89]. F is the utilization rate of light
energy, with a value of 3% [82–86,90]. Q is the total solar radiation in units of kcal cm−2.
E is the crop economic coefficient, and its value is generally between 0.35 and 0.5 for
most grain crops, such as wheat, rice, and corn [82–86]. Given that rice and corn are the
main grain crops in Hunan Province and that the planting area of rice exceeds 90% of
the total grain planting area, a value of 0.4 is considered in this study. T in Equation (2)
is the average temperature. The f (w) in Equation (3) is the water correction coefficient.
Because there is sufficient rainfall in Hunan Province, the rainfall exceeds the amount of
evapotranspiration; thus, f (w) is assigned a value of 1 in this study. In Equation (4), f (s) is
the soil correction coefficient, and we employed the shared data as calculated based on soil
properties, including the elevation, pH, fertility, slope, and soil texture [86].

2.3.3. Calculating YGAP and YGC

In this study, YGAP represents the difference between potential yield (YP) and actual
farmer yield (AFM), and it can effectively reflect the future grain production improvement
capacity [28,38]. Equations (5) and (6) were adopted to characterize the YGAP in productiv-
ity per hectare (t ha−1) and the relative yield gap (RYGAP) at the county level, respectively.
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Moreover, considering that the variations in the yield gap correspond to the external factors
changing over time and space, we calculated the YGC (Equation (7)) in each county and
then used it to identify the determinants of YGC in the later analysis.

YGAP = YS−YFARM (5)

RYGAP =
YGAP

YS
× 100% (6)

YGC = YGAPi,t+1 −YGAPi,t (7)

where YS and YFARM in Equation (5) are the average values of the potential grain yield
and actual farmer yield, respectively. RYGAP in Equation (6) is the relative yield gap.
YGAPi,t and YGAPi,t+1 in Equation (7) are the yield gaps at the beginning and end in
unit i, respectively, of the period. A positive value of YGC indicates that the yield gap is
increasing; in contrast, a negative value demonstrates that the yield gap is closing. It is
important to note that all the above indicators are county-level statistics.

2.3.4. Exploring Spatiotemporal Variations of YGAP

To explore the basic features of the YGAP dynamics over time and space, the methods
of spatial statistics and spatial autocorrelation were adopted in this study. In particular,
spatial autocorrelation analysis can reflect the spatial correlation characteristics via the
index [37]. We first conducted a hot spot analysis to identify whether YGAP variations
were clustered or dispersed based on their location. In addition, we recognize that the state
of geographical events may be closely related to the state of the YGAP variation during
historical periods; that is, YGC has a space and time lag effect. Thus, the bivariate spatial
correlation method [91–93], which is typically considered to be the correlation between one
variable and the spatial lag of another variable, was adopted to explore the relationship
between the YGCs during different periods.

2.3.5. Investigating Determinants of YGC

The YGAP is determined not only by natural conditions but also by human invest-
ments [1,26,28]. That is, climatic factors, land quality, tillage, sowing, fertilization, irrigation,
and field management all affect yield gap changes [69,73–76]. In general, the main factors
influencing the potential yield are natural factors, including terrain, soil, climate (e.g., solar
radiation, temperature, rainfall, and CO2 in the environment), and genetic crop characteris-
tics [1]. In contrast, the factors largely impacting the actual farm yield are socioeconomic
factors, human investments, and market influences, such as agricultural labor, cropping
systems, tillage methods, seed quality, fertilization, irrigation, drainage, and local poli-
cies [37,94–96]. These are the direct factors influencing the crop YGAP. Hence, it is crucial
to understand which factors determine the yield gap change (YGC) to further close the
YGAP in the future.

The spatial variations in YGAP are significantly correlated with changes in these
factors over time and space [26]. Hence, in this study, we adopt the YGC as the dependent
variable and choose 27 factors, including climate, topographic, socioeconomic, and human
investment factors (Table 1), as independent variables to determine the main influencing
factors of the YGAP. It should be noted that the mean values of all variables are statistically
significant at the county level.
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Table 1. Description of the variables.

Variable Category Variables Units Data Sources

Dependent variable Yield gap change (YGC) tons per hectare Calculated with Equation (7)

Climatic factors

Sunshine hours (SH) hours China Meteorological Data Service
Centre (http://data.cma.cn, accessed

on 13 February 2021) and National
Tibetan Plateau Data

Center (http://data.tpdc.ac.cn,
accessed on 13 February 2021)

Solar mediation
intensity (SMI) watt per kilometers

Temperature (Temp) ◦C

Precipitation (Prec) mm

Socioeconomic factors

Rural household
population (RSP) ten thousand people Hunan Provincial Bureau of Statistics

Land development
degree (LDD) % Resource and Environmental Science

Data Center (RESDC)
Population urbanization

rate (UR) % Hunan Provincial Bureau of Statistics

Farm labor (FL) ten thousand people Hunan Provincial Bureau of Statistics
Gross domestic product (GDP)

per capita (GDPPC) CNY per capita Hunan Provincial Bureau of Statistics

Ratio of the agricultural
GDP (RAGDP) % Hunan Provincial Bureau of Statistics

Per capita annual net income
of farmers (PCAI) RMB per capita Hunan Provincial Bureau of Statistics

Land use conditions

Elevation of cultivated
land (DEM) m

Advanced Land Observing
Satellite-1 (ALOS), Japan Aerospace

Exploration Agency
Slope of cultivated

land (Slope) degree ALOS, Japan Aerospace
Exploration Agency

Area ratio of paddy
fields (RPF) % Chinese Academy of Sciences

Number of patches (NP) – Chinese Academy of Sciences
Patch density (PD) number per hectare Chinese Academy of Sciences

Largest patch index (LPI) – Chinese Academy of Sciences
Cultivated land quality

level (CLPL) level Department of Natural Resources
of Hunan

Human investment

Proportion of the sown area of
grain crops (PSAGC) % Hunan Provincial Bureau of Statistics

Multiple cropping index of
grain crops (MCI) % Hunan Provincial Bureau of Statistics

Agricultural practitioners per
area (APPA) person per hectare Hunan Provincial Bureau of Statistics

Rural electricity
consumption (REC) ten thousand watt Hunan Provincial Bureau of Statistics

Amount of fertilizer per
area (FPA) tons per hectare Hunan Provincial Bureau of Statistics

Tractor-plowed area (TPA) ha Hunan Provincial Bureau of Statistics
Irrigated area (IA) ha Hunan Provincial Bureau of Statistics

Power of agricultural
machinery per area (PAMPA) kilowatt per hectare Hunan Provincial Bureau of Statistics

Area of soil testing and
formula fertilization (ASFF) hectare Hunan Provincial Bureau of Statistics

Note: all indicators are obtained or calculated from the corresponding data of 1990, 2000, 2010, and 2018.

To better explore the determinants associated with the spatial variation in the YGC, we
conducted random forest analysis, a machine learning method that has been widely used
to examine the importance of influencing factors and screen the independent variables in
modeling studies [77,97]. In this study, it was adopted to detect the relative importance
of each impact factor (Table 1) in explaining the YGC at the county level. Considering
the idea that the YGC process is dynamic, drivers should also be considered according to

http://data.cma.cn
http://data.tpdc.ac.cn
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their inherent temporal and spatial dynamics. Consequently, we could identify invalid
and dominant factors. Additionally, given that data on certain counties are absent, and
agriculture is not the main industry in urban areas, the abovementioned places were
eliminated. Finally, ninety-five counties were selected to analyze the influencing factors of
the YGC. It is worth noting that we employed scores to characterize the importance, and
the score value ranged from 0 to 1. The higher the value, the more important the factor is.
Moreover, we considered the top ten factors in terms of their importance as the key factors
and calculated the percentage according to the category and number of these factors to
reflect their contribution to YPC. The higher the percentage is, the greater the influence on
the YGC.

3. Results
3.1. Recent YGAP Trends in Hunan Province
3.1.1. Spatiotemporal Pattern of YGAP

From 1990 to 2018, the YGAP in Hunan Province continued to narrow, with the average
value changing from 8.57 to 5.84 t ha−1, a decrease of approximately 31.86%. Specifically,
the minimum YGAP value did not significantly change after 2000, but the maximum value
continued to rise. The maximum value mainly occurred in certain economically well-
developed areas no longer producing grain crops, such as Furong District in Changsha
city. In 2018, among the 122 counties, there were 25 counties with YGAP values lower than
3 t ha−1, largely in western Hunan. Thirty-eight counties attained YGAP values between
3 and 6 t ha−1, mainly in central and southern Hunan. Forty-three counties exhibited YGAP
values between 6 and 9 t ha−1, mostly in northern Hunan. Two counties achieved YGAP
values over 12 t ha−1 (Table 2 and Figure 4).

Table 2. Statistical information on YGAP in Hunan Province from 1990 to 2018.

Year
YGAP (t ha−1) <3 t ha−1 3–6 t ha−1 6–9 t ha−1 9–12 t ha−1 ≥12 t ha−1

Maximum Minimum Mean Number Ratio Number Ratio Number Ratio Number Ratio Number Ratio

1990 14.82 1.63 8.57 3 2.46% 25 20.49% 28 22.95% 58 47.54% 8 6.56%
2000 13.54 0.11 5.95 23 18.85% 37 30.33% 43 35.25% 16 13.11% 3 2.46%
2010 15.06 0.24 5.74 31 25.41% 21 17.21% 56 45.90% 13 10.66% 1 0.82%
2018 17.28 0.15 5.84 25 20.49% 38 31.14% 43 35.25% 14 11.48% 2 1.64%

Figure 4. Spatiotemporal variation of YGAP in Hunan Province from 1990 to 2018. (a–d) refer to the
yield gaps of each county in 1990, 2000, 2010, and 2018, respectively.

3.1.2. Spatially Heterogeneity of YGC

Figures 5 and 6 represent that YGAP narrowing mainly occurred during the 1990–2000 period,
and the YGAPs in 119 counties closed in Hunan Province. The regions where the YGAP
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narrowed within 2 t ha−1 were largely distributed in Yueyang, Chenzhou, Huaihua, and
Xiangxi (Figure 6a), while the regions with a YGC value larger than 2 t ha−1 were mostly in
Shaoyang, Hengyang, and Zhuzhou. However, from 2000 to 2010, the yield gap widened in
50 counties, mainly located in eastern Hunan (Changsha, Xiangtan, Zhuzhou) and southern
Hunan (Hengyang, Chenzhou). This trend continued to expand, with the YGAP widening
in 66 counties from 2010 to 2018, largely located in Changsha, Yueyang, Yiyang, Shaoyang,
and Huaihua. However, the overall trends indicated that the YGAP narrowed from 1990 to
2018, and the YGAPs narrowed in 116 counties. Specifically, the YGAPs in 26 counties
narrowed by more than 4 t ha−1, that in 58 counties, it narrowed to 2–4 t ha−1, and in
32 counties, it narrowed within 2 t ha−1.

Figure 5. Statistical information on the YGC in Hunan Province from 1990 to 2018. (a) shows basic
information on the YGC during the different periods, and (b) shows the proportion of the number of
counties based on the obtained YGC values. In (b), during the periods from 1990–2000, 2000–2010,
and 2010–2018, the YGC values were classified as L1 (<−3), L2 (−3 to −2), L3 (−2 to −1), L4 (−1 to 0),
L5 (0–1), and L6 (≥1). From 1990 to 2018, the YGC values were classified as L1 (<−6), L2 (−6 to −4),
L3 (−4 to −2), L4 (−2 to 0), L5 (0–2), and L6 (≥2).

Figure 6. Spatial variation in the YGCs in Hunan Province during the different periods. (a–d) refer to
the yield gap changes of each county during the periods of 1990–2000, 2000–2010, 2010–2018, and
1990–2018, respectively.
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3.2. Agglomeration of YGAP and YGC
3.2.1. Clustering Pattern of the YGAP and YGC

The hot spot analysis results demonstrated that YGAP spatial clustering characteristics
were evident in each year, but the changes were highly spatially divergent over time.
Specifically, the cold spot areas of YGAP were mainly located in western Hunan (Huaihua,
Zhangjiajie, and Xiangxi) each year. The hot spot areas of YGAP largely occurred in
Changde, Yueyang, Yiyang, Changsha, and Hengyang (Figure 7). From 1990 to 2000, the
cold spot areas of the YGC were mostly located in Shaoyang, Hengyang, and Loudi, while
the hot spot areas of the YGC were primarily situated in Yueyang and Chenzhou (Figure 8a).
From 2000 to 2010, cold spot areas of the YGC were observed in Yueyang, Changde, and
Huaihua, and hot spot areas of the YGC occurred in Changsha, Xiangtan, Zhuzhou, and
Hengyang (Figure 8b). From 2010 to 2018, cold spot areas of the YGC were located in
Hengyang, whereas hot spot spatial clustering was not obvious (Figure 8c). Overall, from
1990 to 2018, cold spot areas of the YGC were located in the Changsha-Zhuzhou-Xiangtan
city agglomeration, and cold spot areas of the YGC were observed in Changde, Loudi, and
Shaoyang (Figure 8d).

Figure 7. Spatial agglomeration characteristics of YGAPs in Hunan Province from 1990 to 2018.
(a–d) are the spatial cluster maps of the YGAPs in 1990, 2000, 2010 and 2018, respectively.

Figure 8. Spatial agglomeration characteristics of the YGC in Hunan Province from 1990 to 2018.
(a–d) are the spatial cluster maps of the YGCs during the periods of 1990–2000, 2000–2010, 2010–2018
and 1990–2018, respectively.
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3.2.2. Spatial Autocorrelation of the YGC during the Different Periods

The value of bivariate global Moran’s I reached −0.152 between periods I and II, and
the value of bivariate global Moran’s I was −0.137 between periods II and III, indicating
that the YGC attained a weak negative spatial autocorrelation over time. Spatially, the
negative values were concentrated in Hengyang, Zhuzhou, Huaihua, Xiangxi, Yueyang,
and Changde during the first two periods, whilst concentrated in most counties of western
Hunan, southern Hunan, and western Hunan during the last two periods. The positive
values were concentrated in Shaoyang, Zhangjiajie, Yiyang, and Changsha during the first
two periods and concentrated in Changsha, Yueyang, and Changde during the last two
periods (Figure 9a,b).

Figure 9. Spatial variation in bivariate local Moran’s I values of the YGC (a,b) and the corresponding
local indicators of spatial association (LISA) cluster map of the YGC (c,d). Period I refers to 1990–2000,
period II refers to 2000–2010, and period III refers to 2010–2018.

There were high-high clusters near Changsha city and in southern Chenzhou, indi-
cating that the yield gaps in these locations and surrounding neighborhoods continued to
widen (Figure 9c,d). Low-low clusters occurred in Loudi and Shaoyang during the first
two periods and around Changde, Yiyang, and Yueyang during the last two periods, which
indicates that the yield gaps in these regions were significantly narrowing (Figure 9c,d).

3.3. Determinants of the YGC

Normalized importance scores of the influencing factors are shown in Figure 10. We
counted the frequency of the top ten scoring factors during each period, and we found that
the most frequent factors included GDP per capita (GDPPC, four times) and sunshine hours
(SH, four times), followed by the per capita annual net income of farmers (PCAI, three
times) and rural electricity consumption (REC, three times), and finally cultivated land
quality level (CLPI), farm labor (FL), power of agricultural machinery per area (PAMPA),
rural household population (RSP), slope, solar mediation intensity (SMI), temperature
(Temp), and tractor-plowed area (TPA), with a frequency of two. To a certain extent, this
reflected that the YGC was greatly influenced by these factors.

The importance of these factors revealed distinct characteristics during the different
periods (Figure 10). From a temporal perspective, during the former period, climatic factors
and land use conditions were the main factors influencing the YGC, but during the latter
period, the YGC was mainly determined by climatic and socioeconomic factors. Through-
out the whole study period, socioeconomic factors and human investment variables were
relatively important to the YGC. From the perspective of the variable types, among the cli-
matic factors, sunshine hours (SH) and temperature (TEMP) remained the main influencing
factors of the YGC, while the impacts of solar mediation intensity (SMI) and precipitation
(PREC) on the yield gap were relatively limited. Among the socioeconomic factors, GDP
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per capita (GDPPC), the per capita annual net income of farmers (PCAI), and farm labor
(FL) were comparatively important. Among the land use conditions, the area ratio of paddy
fields (RPF), slope, and patch density (PD) were relatively important. Among the human
investment variables, rural electricity consumption (REC), the proportion of the area sown
with grain crops (PSAGC), and the tractor-plowed area (TPA) were comparatively important
(Figure 10). As shown in Figure 11, human investment variables and socioeconomic factors
were the major influencing factors of the YGC from 1990 to 2018, followed by climatic
factors and land use conditions. The importance of human investment variables decreased
while the importance of socioeconomic factors increased. Overall, socioeconomic factors
are the dominant determinants of the YGC, especially after 2000, and land use conditions
yield relative importance for the YGC.

Figure 10. Importance of the influence factors for YGC during the different periods. (a–d) are the
relatively scores of each variable to yield gap change during the periods of 1990–2000, 2000–2010,
2010–2018 and 1990–2018, respectively.

Figure 11. Contribution of the key factors influencing the YGC between 1990 and 2018.
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4. Discussion

According to the existing studies [82–86], the YP is based on a step-by-step revision
model involving light, temperature, water, and soil data (Equations (1)–(4)). The accuracy
of the estimation method was verified by comparing it with the actual output of the
experimental field plot in Taoyuan County, Changde city, Hunan Province [82]. Some
scholars further corrected the climate production potential by using soil properties to
obtain the Ys [86,98,99]. In recent years, this method has been widely used in studies
associated with grain production potential measurement and cultivated land protection in
China [72,85,86], implying that the method for estimating potential yield is reliable. Our
estimated mean values of YS were approximately 13.53 t ha−1 in 1990 and 11.90 t ha−1 in
2018 in Hunan Province. Compared with other studies, which showed that the average YS
of grain crops in double-cropping systems is between 10 t ha−1 and 14 t ha−1 in Hunan
Province by using the ESAP model [78] and the GAEZ model [20,71], indicating that our
method for estimating potential yield is robust. Second, considering the cropping system
is crucial in estimating the YGAP [75,100,101], and double cropping is the main farming
system in grain production in Hunan Province (Figures 1b and 2a) [71]. In this study, the
estimations of potential yield are under a double-cropping system with rice in paddy fields
and corn in drylands. Third, we use the statistical data at the county level as the actual
farm yields based on the following considerations. On the one hand, the county is the basic
and an important unit of government management in China, and the statistical data can
reflect the average level of actual grain yields. This method is consistent with the GYGA
website (http://www.Yieldgap.org, accessed on 23 September 2021), which is widely used
in national YGAP analysis [20]. On the other hand, despite an increasing number of studies
employing remote sensing technology and crop growth models to estimate the actual yields
in recent years, it is difficult to obtain high-quality data in 1990 and 2000 to perform this
work. Comprehensively, the estimation method for the YGAP in this study is simple and
conducive to generalization.

As we know, total grain outputs are closely related to the harvested area and yield per
unit area. Existing literature showed that both of them have a larger gap between potential
and actual activities in China, especially in the regions such as the middle and lower reaches
of the Yangtze River [19,20,102]. Thus, there are two ways to increase food production
without cropland expansion. The first one is to improve the cropping intensity [19,103–105],
another one is to close the yield gap [12]. We found that the yield gap in Hunan Province
was 5.84 t ha−1 (49.07% of the potential yield), and the multiple cropping index of grain
crops was 0.8 in 2018, indicating that there is a high grain production potential to exploit.
This result is consistent with Ye et al. [103], which showed that the arable land intensity of
Hunan Province is relatively low. However, this does not mean that all counties in Hunan
Province exhibit a high potential. Studies have demonstrated that the attainable yield
ranges from approximately 75% to 85% of the potential yield; that is, approximately 15%
to 25% of the yield gap cannot be exploited [20,38,39]. Consequently, we should focus on
areas where the yield gap is greater than 25% when identifying regions for grain production
enhancement. Here we chose a value of 30%. That is, without considering regional planning,
socioeconomic, and other factors, 98 counties were identified as important areas where
grain production enhancement could be achieved, 34 of which are municipal districts and
should be excluded, which suggests that there are 64 counties with much capacity for yield
improvement (Figure 12a).

http://www.Yieldgap.org
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Figure 12. Capacity for potential yield (a), cultivated land area (b) exploitation, and multiple cropping
index of grain crops (c) in 2018.

Our results also indicate that the regions located in northern, central, and southern
Hunan exhibit great grain production improvement potential by integrating the yield gap
(Figure 12a), cultivated land area (Figure 12b), and multiple cropping index of grain crops
in 2018 (Figure 12c). These regions possess good natural conditions, the terrain is relatively
flat, and it is more suitable to perform large-scale agricultural activities within the context
of severe rural labor migration. However, a previous study found that supplementary culti-
vated land is mainly distributed in northern, southern, and western Hunan [72], indicating
that there is an inconsistency in the spatial distributions of supplementary cultivated land
and the YGAP, which may result in the low economic efficiency of projects. Other studies
reported that the yield gap for early-season rice in Hunan Province is generally higher than
that for late-season rice and that the yield gaps are the largest in the northern region for both
early- and late-season rice [106]. Consistent with this result, our study also demonstrated
that there is much capacity for yield enhancement in northern Hunan, followed by eastern
Hunan, southern Hunan, and central Hunan, while western Hunan contains less capacity
for yield improvement. Comprehensively, during the implementation of cultivated land
protection policies (e.g., the cultivated land balance policy and high-standard farmland
construction), these areas should be prioritized to close the yield gap. According to the
sown area of grain crops in these 64 counties in 2018, an additional 1.11 million tons of
grain can be produced if the actual grain yields can be increased by 5%, which is equivalent
to 3.71% of the total grain output in 2018.

As we mentioned before, the yield gap is determined by a combination of natural
and socioeconomic conditions, and notable spatial and temporal heterogeneity occurs in
the main influencing factors and mechanisms [1,28,38,39]. However, in addition to farm
household field management, the macroeconomic environment also has an important
impact on the YGC [51,69,76,107]. For example, with rapid urbanization, the economic
efficiency of agriculture is low, people prefer to plant other crops to obtain higher economic
returns, and rural labor migration and rural aging further result in the abandonment of
cultivated land [108]. Therefore, we analyzed the evolution mechanism of the YGC at the
county scale, considering not only natural factors but also socioeconomic factors, which
are of great significance to guide policy-making related to grain production under real
socioeconomic environments.

Previous studies have reported that the potential yield is positively correlated with
the total solar radiation, a decrease in radiation leads to a decrease in the potential crop
yield, and the potential yield is negatively correlated with the temperature within a certain
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range [76]. According to the calculation method of the yield gap (Equations (1)–(5)), all
the climatic factors attained a positive relationship with the potential yield. However,
we found that not all climatic factors played an important role in the YGC. Among these
factors, sunshine hours (SH) and temperature (Temp) were relatively more important
than other factors in Hunan Province because SH can directly determine the duration of
photosynthesis, and temperature can influence the cropping system. This is similar to
the results of many other studies [1,109,110]. Deng et al. revealed that the increase in
temperature should be synchronized with the increase in water resources [20]. Otherwise,
drought may occur, causing a reduction in yield, implying that food production can also be
increased by improving irrigation conditions and implementing land consolidation projects
of dryland to paddy in places with abundant solar resources and low irrigation ratios, such
as southern, central Hunan.

Among the socioeconomic factors, land use conditions, and human investment vari-
ables, it seems that field management and human investment variables, such as tractor-
plowed area (TPA), area of soil testing and formula fertilization (ASFF), rural electricity
consumption (REC), and power of agricultural machinery per area (PAMPA), exert a large
impact on the yield gap, but the impact decreases over time. Especially from 2010 to 2018,
the yield gap was mainly influenced by macroscopic socioeconomic variables such as
the ratio of agricultural GDP (RAGDP) and the per capita annual net income of farmers
(PCAI); it appears that with economic development, more and more farmers are unwilling
to engage in food production activities [76]. Moreover, during this period, changes in slope
imposed a significant effect on the yield gap. According to the data, the average slope value
changed from 6.20 to 6.22, which may be caused by the implementation of the cultivated
land balance. Specifically, the occurrence of occupied cultivated land is mainly in flat areas,
while the slope of supplementary land is relatively large. Additionally, Sun et al. calcu-
lated that the correction coefficient of soil is about 0.42 in Hunan Province [86], implying
that there is great potential for increasing grain production by improving the cultivated
land quality.

Overall, some shortages remain in this study, and further work is needed. Firstly, the
potential yield is the ideal yield and is almost impossible to achieve, and the exploitable
yield potential is more instructive for agricultural production. However, due to the ab-
sence of historical data, it is difficult to estimate the exploitable yield potential for each
year. Hence, we calculated the land potential productivity with the step-by-step light,
temperature, water, and soil revision model instead. Indeed, the value of the estimated
potential yield is relatively larger than that of the available yield, but this does not affect the
overall distribution pattern of the yield gap. Secondly, other studies have adopted remote
sensing to estimate actual farm yield values [66], which may be more accurate than the use
of statistical data. Thirdly, we analyzed the importance of each factor rather than exploring
their spatiotemporal influence mechanisms on the YGC, which may limit the applicability
of our results on a spatial scale.

Despite these limitations, the systematic methodological framework developed in
this study provides a new perspective aimed at coupling the yield gap, determinants, and
land use. Related analysis methods could be applied to support cultivated land utilization.
In the future, to improve the applicability of the research results, further optimization
of the estimation method of the exploitable yield potential and the actual farm yield is
needed. In addition, considering only the yield gap to identify regions is insufficient.
For instance, certain areas exhibit an irreversible trend of nonagricultural production and
nongrain planting due to urbanization, and the yield gap in these regions is inevitably
gradually expanding (e.g., Furong district), but these regions cannot be considered for
grain production enhancement. Therefore, it is necessary to integrate land resources,
population migration, and regional economic development trends under different scenarios
to comprehensively identify regions where grain production could be improved and
develop a plan for sustainable cultivated land use, agricultural investment, etc. [111,112].
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5. Conclusions

In this study, we established a framework applicable to YGAP research and prelim-
inarily implemented the framework. Specifically, we employed a step-by-step revision
model involving light, temperature, water, and soil data to assess the potential yield, ob-
tained the actual farm yield based on socioeconomic statistics, and then adopted spatial
analysis and spatial statistics methods to evaluate the spatiotemporal evolution and clus-
tering characteristics of the YGAP at the county level in Hunan Province, which is a major
grain production region. Finally, the random forest model was adopted to investigate the
key influencing factors of the YGC. Based on these analyses, we determined the possible
grain yield improvement capacity in Hunan. The proposed framework for YGAP research
exhibits good application prospects, and these application schemes could optimize the
interaction between natural conditions, the social environment, and management practices.
Once popularized, these applications could provide the potential to enhance the allocation
of funds for farmland consolidation and could increase the grain yield.

Our results revealed that the YGAP in Hunan Province continued to narrow from 1990
to 2018, and the average value changed from 8.57 t ha−1 (63.36% of the potential yield in
1990) to 5.84 t ha−1 (49.07% of the potential yield in 2018), indicating that there exists a
high grain production potential to exploit. From the perspective of dynamics, there is large
spatial heterogeneity in the variation of YGCs. Specifically, the YGAPs in 116 counties have
narrowed. Of which, 26 counties narrowed by more than 4 t ha−1, 58 counties narrowed
from 2–4 t ha−1, and 32 counties narrowed within 2 t ha−1.

Additionally, Our results found that during the former period, climatic factors and
land use conditions were the main factors influencing the YGC, but during the latter period,
the YGC was mainly determined by climatic and socioeconomic factors. Overall, the
GDP per capita (GDPPC), sunshine hours (SH), per capita annual net income of farmers
(PCAI), and rural electricity consumption (REC) play a key role in YGCs, reflecting that
socioeconomic factors are becoming increasingly important for grain production.

Notably, YGAP analysis can identify the corresponding distribution for yield improve-
ment purposes. However, considering only the YGAP to identify regions is insufficient
because agricultural production is also influenced by other factors. Integrating the trends
of land use, population migration, and regional development strategies when formulating
policies related to grain production and agricultural investment is needed. Therefore,
considering the yield gap, cultivated land resources, multiple cropping index, and de-
velopment orientation, the 64 identified counties, which are mainly located in northern,
central, and southern Hunan and have a yield gap greater than 30%, constitute the major
areas for grain production enhancement. Our findings offer important scientific value to
better understand the law and mechanism of the YGC in Hunan Province and support the
decision-making process involving cultivated land use.
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