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Abstract: Various fields have been identified in the “omics” era, such as genomics, proteomics,
transcriptomics, metabolomics, phenomics, and metagenomics. Among these, metagenomics has
enabled a significant increase in discoveries related to the microbial world. Newly discovered
microbiomes in different ecologies provide meaningful information on the diversity and functions
of microorganisms on the Earth. Therefore, the results of metagenomic studies have enabled new
microbe-based applications in human health, agriculture, and the food industry, among others.
This review summarizes the fundamental procedures on recent advances in bioinformatic tools. It
also explores up-to-date applications of metagenomics in human health, food study, plant research,
environmental sciences, and other fields. Finally, metagenomics is a powerful tool for studying
the microbial world, and it still has numerous applications that are currently hidden and awaiting
discovery. Therefore, this review also discusses the future perspectives of metagenomics.
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1. Introduction

The microbial world was first discovered by Leeuwenhoek using his signature inven-
tion, the microscope [1]. The discovery of microbes triggered extensive research aiming to
develop methods that could be used to culture different microorganisms. The first culture
method was developed by Robert Koch and was called the solid culture media method [2].
Since then, various bacteria have been identified and explored in terms of classification, bi-
ological applications, and evolution. The taxonomic status of the microbiome has changed
dramatically due to the utilization of 16S ribosomal RNA (rRNA) sequences, which has
resulted in the recognition of the archaea group [3]. The 16S rRNA-based phylogenetic
marker has been proposed as a crucial tool in taxonomic studies of microorganisms [4], and
16S rRNA continues to be an effective tool in microbial research today [5].

However, not all molecular studies investigating microorganisms have relied solely
on 16S rRNA. For example, Handelsman et al. used genomic fragments in environmental
samples to clone E.coli and explore new mechanisms as well as antibiotic features [6].
Consequently, they proposed the term “metagenome”, which refers to a collection of
genomes in the samples for studying cloning and functional analyses. The advent of
sequencing techniques has accelerated the development of microbial studies based on
the 16S rRNA and whole genomes. The term “metagenomics” has been used to describe
studies examining the genomic data of microorganisms, and it can be divided into amplicon
and shotgun metagenomics. Amplicon metagenomics studies typically explore microbial
diversity, while shotgun metagenomics research is mainly focused on mining functional
genes and metabolisms [7,8]. Specifically, targeted gene-based metagenomics is used to
obtain portions of each of the microbes in environmental samples, such as soil, water,
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air, and ice samples [9,10]. The results of shotgun metagenomics also include taxonomic
diversity, as in amplicon metagenomics, and they reveal different metabolisms in the
microbial community that can be inferred from whole genome sequences [8]. The microbial
diversity that has been found in different environments has motivated further studies into
the applications of microbial presence in agriculture, food, and pharmacy industries, in
addition to human health [11–15]. Shotgun-metagenomics-associated genomic studies have
shown a high potential for identifying new bacteria and viruses as well as predicting the
major metabolisms in the surveyed environments [16–18]. The emergence of metagenomics
has provided new paths for exploring the microbial world, which still contains hidden areas.

Previous reviews have summarized various aspects of metagenomics, including re-
views of the methods and pipelines in metagenomics [19–21], as well as reviews of different
applications of metagenomics in various fields [22–24]. In the present review, we summa-
rized the principles of metagenomics using the latest approaches. We also reviewed recent
metagenomic studies on human health, agriculture, food industry, environmental sciences,
etc., along with their applications. Although previous metagenomic studies have reported
significant results, there are still potential applications of metagenomics awaiting discovery.
Therefore, we also discuss future perspectives on metagenomics (Figure 1).
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2. Fundamentals of Metagenomics

Metagenomics is the study of genomic and genetic data inferred from environmen-
tal and clinical samples. Metagenomics can be divided into two groups based on the
types of data used: amplicon or targeted gene data and shotgun or untargeted gene data
inferred from amplicon and shotgun sequencing, respectively (Figure 2). The data of am-
plicon metagenomics are amplified sequences of marker genes that include 16S/18S/26S
rRNA and intergenic transcribed spacer (ITS) [20,25]. Meanwhile, the data of shotgun
metagenomics include all DNA sequences in the samples. Previously, Zhang et al. at-
tempted to classify metagenomics into functional and sequencing metagenomics [26]. In
that classification, the field of studies on the discovery of new functional genes and re-
lated bioactive substances was called functional metagenomics. Meanwhile, sequencing
metagenomics was used to explore the diversity of the microbial community. On the other
hand, Breitwieser et al. used the term “metataxonomics” for amplicon sequencing data
and “metagenomics” for shotgun sequencing data [27]. Although different terminologies
have been proposed for metagenomic classification, metagenomic studies are based on
two types of data: amplicon and shotgun data. Therefore, in this study, we used the terms
“amplicon metagenomics” and “shotgun metagenomics” for amplicon sequencing and
shotgun sequencing data, respectively.
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Although the data are different, the process of metagenomics consists of four main
steps: sampling and DNA extraction, sequencing, analysis, and visualization (Figure 2).
Wajid et al. compared these steps to the process of composing music, in an analogy intended
to make the concept of metagenomic research more understandable to an unfamiliar
readership [28]. Metagenomic studies often contain a continuous sequence of steps, in
which the previous steps decide the outcomes of downstream steps. The samples for
metagenomics research are collected directly from the field, so care must be taken care
to prevent contamination from other sources. DNA extraction should also be conducted
carefully to limit any impurities from the host DNA. In previous studies, specific protocols
were developed for different samples such as human fecal samples, tropical soils, and plant
tissues [29–31]. Meanwhile, commercial kits for metagenomics have also been developed
such as FastDNA™Spin Kit for Soil (MP Biomedicals, Irvine, CA, USA), FavorPrep™ Soil
DNA Isolation Mini Kit (Favorgen Biotech, Taiwan, China), MagAttract PowerSoil DNA KF
Kit (Qiagen, Redwood, CA, USA), PureLink MicrobiomeTM Purification Kit (ThermoFisher
Scientific, Waltham, MA, USA), and ZymoBIOMICS 96 Magbead DNA Kit (ZymoBIOMICS,
Irvine, CA, USA). The availability of different kits and protocols triggered comparison
studies examining the effectiveness of those methods for DNA extraction [32–35]. The
outcomes of those studies suggested that the DNA extraction efficiency and selection of
extraction protocols depended on the sample types used. Therefore, suitable protocols or
kits should be considered and applied to obtain good results from metagenomic studies.

The data for metagenomic studies generally originate from DNA sequences in different
environments, and these are generated using next-generation sequencing methods such as
Illumina, PacBio, and Oxford Nanopore Technologies (ONT) [36]. In particular, the Illumina
platform resulted in a read length of up to 300 bp, while PacBio and ONT platforms can
yield long reads over 1000 bp in length. In contrast to shotgun metagenomics, in which
the DNA of sufficient yield can be used for sequencing immediately, the DNA samples
for amplicon metagenomics should be amplified with specific primers for targeted genes



Foods 2023, 12, 2140 4 of 23

such as 16S/18S/26S rRNA and ITS [7]. In metagenomic studies of bacteria and archaea,
16S rRNA is commonly used. For fungal and eukaryotic diversity, the small subunit
(SSU) rRNA (18S), large subunit (LSU) rRNA (26S), and intergenic transcribed spacer
(ITS) have been used [37–39]. In amplicon metagenomics, the lengths of the target genes
(i.e., 16S, 18S, 26S rRNA, and ITS) are always greater than the sequencing outcomes of
the Illumina platform; therefore, partial sequences of target genes have been amplified
and used for further analyses. Previous studies have revealed conserved areas and the
effectiveness of variable regions in the 16S rRNA [40,41]. For example, primer pairs have
been designed based on the conserved regions and can be applied as universal primers
for 16S rRNA [40]. Nine hypervariable regions, named V1 to V9, have been found to
have specific properties [41]. Various regions (i.e., V1–V2, V3–V4, and V3–V5 regions)
have been used to explore bacterial communities at familial, genus, and species levels [42].
Therefore, the selection of regions in the target gene should be based on the particular
aims of a given study. The limitations of amplicon metagenomics can be solved using
shotgun metagenomics, in which all DNA fragments are sequenced, and the entire length
of the target gene can be recovered. However, the assembly process for short reads to
complete the whole genes still remains a challenge because the target genes are universal
and contain highly conserved regions. The long-read sequencing technique (i.e., PacBio
and ONT) can overcome the limitation of short-read sequencing. However, the long-read
sequencing platform approach is limited by its high cost and unstable sequencing quality.
Oxford Nanopore Technologies has developed a new version for long-read sequencing
techniques that produces higher-quality sequencing data (https://nanoporetech.com/
q20plus-chemistry, accessed on 8 March 2023). This could reduce the cost and boost
long-read-based metagenomic studies in the future.

After the sequencing step, the metagenomic data are processed through the following
steps: (1) quality control of reads, (2) assembly/binning, (3) taxonomic/functional profiling,
and (4) data visualization. In the first step of quality control, low-quality reads are removed
from the data. Then, the remaining reads are assembled to make contigs or mapped to
reference genomes. The assembly/binning results are used to predict taxonomic classi-
fication and functional mechanisms through comparison to different databases. Finally,
all outcomes are visualized to provide details into the microbial composition or potential
functions on the microbes. In addition to the emergence of metagenomic studies, different
bioinformatic tools have been developed to effectively assist in the analysis process [21].
Wajid et al. have summarized the tools for each analysis step, including 86 tools for quality
control, 48 software for assembly, 13 tools for binning, 69 tools for taxonomic classification,
27 tools for gene and functional prediction, 12 tools for metabolic profiling, 15 tools for
data visualization, and 4 and 15 databases for microbial taxonomy and functional pro-
file, respectively [28]. Different databases have previously been built for metagenomics
including MetaGeneBank for human fecal specimens, Ani-malMetagenome DB, Marine
Metagenomics Portal (https://mmp2.sfb.uit.no/, accessed on 8 March 2023), MGnify, Ter-
restrialMetagenomeDB, and MPD (a pathogen genome and metagenome database) [43–47].
In amplicon metagenomics, the main output is microbial composition, so the tools were
built to clean, cluster, and quantify data, such as VSEARCH, DADA2, and Deblur [48–50].
Specifically, DADA2 can identify exact amplicon sequence variants and produce fewer
false positive sequence variants than other methods [49]. Similarly, Deblur can denoise
sequences and be applied to large datasets [48]. However, only single-end reads can be
used as input data for Deblur. Moreover, taxonomic classification is an important output of
amplicon metagenomics, which can be conducted quickly using Kraken 2 [51]. For shotgun
metagenomics that are mainly focused on functional analysis, databases play an important
role, and KEGG (Kyoto Encyclopedia of Genes and Genomes) and COG (Clusters of Or-
thologous Groups of proteins) databases have been built [52,53]. Additionally, the tools
for functional profiling and prediction were developed, including PICRUSt2, MEGAN,
GeneMark-HM, and Prokka [54–57]. Another database, namely Functional Annotation of
Prokaryotic Taxa (FAPROTAX), contains software that can be used to convert taxonomic
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profiles to putative functional profiles [58]. A previous study showed that FAPROTAX
is a promising tool for predicting the function of bacteria in soil samples [59]. Similarly,
FAPROTAX analysis of soil microbiota revealed a correlation between functional groups
and physicochemical properties in mangrove soil [60]. Although various tools have been
developed for metagenomic analysis, there are still challenges that arise during the analysis
process, which were critically discussed by Breitwieser et al. [27]. Aside from the devel-
opment of new bioinformatic tools, some previous tools have been upgraded with more
effective results (Table 1).

Table 1. List of recently upgraded tools and platform for metagenomic analysis.

Tool/Platform Functions Year/Reference

MetaPhlAn 4 Comprehensive metagenomic taxonomic profiling 2023/[61]
HUMAnN 3 Efficient and accurate functional profiling 2021/[62]
StrainPhlAn 3/PanPhlAn 3 Nucleotide- and gene-variant-based strain profiling 2021/[62]
PhyloPhlAn 3 Phylogenetic placement and putative taxonomic assignment 2021/[62]
QIIME2 Analysis and visualization of amplicon metagenomic data 2019/[63]
DIAMOND + MEGAN Taxonomic and functional analysis of short and long metagenomic sequence data 2021/[64]
MEGAN6 and MeganServer Taxonomic and functional analyses and visualization of metagenomic data 2023/[65]
Kraken 2 Fast taxonomic classification 2019/[51]

For example, MetaPhlAn 4 employed a database of more than one million prokary-
otic reference genomes to achieve comprehensive metagenomic taxonomic profiling [61].
HUMAnN 3, StrainPhlAn 3, PanPhlAn 3, and PhyloPhlAn 3 exhibit effectiveness in the
strain-level, phylogenetic, taxonomic, and functional profiling of microbial communi-
ties [62]. Further, QIIME2 is a good bioinformatics platform for analyzing and visualizing
metagenomic data [63,66,67]. Recently, the combination of DIAMOND + MEGAN and
the release of MeganServer have been shown to provide a user-friendly and effective plat-
form for exploring the taxonomic and functional analysis of short and long metagenomic
sequence data [64,65]. For food-based metagenomics, Kobus et al. introduced a novel
computational method, called MetaCache, which could be divided into AFS-MetaCache
(based on C++) and MetaCacheSpark (based on Apache Spark), and which exhibited fast
running, low false-positive rates, and high quantification accuracy features [68]. Moreover,
ARG-ANNOT (Antibiotic Resistance Gene-ANNOTation) and DeepARG, which was the
result of a machine-learning methodology, could detect the antibiotic resistance features of
microbes in the raw reads of metagenomic data from fermented food [69]. Tools have also
been created for illustrating the results of metagenomic studies, such as Metaviz, Krona,
and BURRITO, and these provide interactive illustrations of metagenomic results [70–72].

The availability of various tools has led to the development of pipelines for metage-
nomic analyses [73]. Garfias-Gallegos et al. created an effective pipeline as the first step
toward quality control in the final visualization of the metagenomic data [74]. Similarly,
the Omnibus metagenome-wide association study with robustness (OMARU) pipeline was
developed to explore the relationship between microbiomes and disease pathophysiol-
ogy [75]. Previously, Navgire et al. summarized various pipelines for metagenomic studies
of crops [19]; these pipelines were applied to different plants, such as rice, sugarcane,
peanut, and wheat, and they could serve as a model for further studies in different areas.
Another advancement in metagenomics is the availability of web-based tools that allow
users to upload data and wait for outcomes; this reduces the time and cost for scientists
who do not have enough facilities (i.e., supercomputers) for analysis in their lab. Some
popular websites for metagenomics are MG-RAST, EBI MetaGenomics, IMG/M, and EDGE
platform [76–79]. In these web-based platforms, the analysis pipeline commonly consists
of quality control of reads, assembly, function prediction, taxonomic prediction, and the
visualization of results steps using various tools and databases. Users can simply upload
the metagenomic data to the platforms and select appropriate options for research purposes.
The continued advent of improved technology and the availability of bioinformatic tools
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have allowed for metagenomics studies to be conducted effectively and easily; however,
suitable strategies inferred from the aims of the studies should be considered to obtain the
best outcomes.

3. Metagenomics in the Food Industry

Among the current types of foods that are eaten often, fermented foods such as kimchi,
yogurt, kefir, kombucha, tempeh, and sauerkraut rely on the presence of different microbes
to achieve specific flavors [80,81]. Previously, microbial composition in foods has been
checked using culture methods, which are limited in their ability to find unculturable
bacteria [82]. The availability of a metagenomic approach has provided a powerful tool
for exploring microbial communities in food [13,83]. For example, the bacteria in biofilms,
including Pseudomonas spp., Acinetobacter spp., Leuconostoc spp., Lactobacillus spp., and
Streptococcus spp., in food processing plants have been characterized based on 16S rRNA
sequencing data [84]. In addition to amplicon metagenomics, functional metagenomic
studies examining food have revealed potential applications in the food industry, such
as the identification of novel enzymes for processing foods [85]. In the field of fermented
foods, metagenomic analysis has resulted in new knowledge that is used for exploring,
ensuring, and improving food quality [86,87]. For instance, different bacterial compositions
in fermented bamboo shoots (Tuaither), soybeans (Bekang), and pork fat (Sa-um) have
been surveyed using a metagenomic approach [88]. The most abundant types of bacteria in
Tuaither, Bekang, and Sa-um were Lactobacillus, Staphylococcus, and Clostridium, respectively.
These findings have revealed the correlation between the types of ingredients used and the
abundance of bacteria in fermented food. Aside from indicating the diversity of microbial
communities, metagenomics has enabled the differentiation of the metabolic pathways of
biogenic amines caused by various microbes during the fermentation of Brassica juncea [89].
The connection between the predominance of microbes and metabolism was also inves-
tigated in Yucha, which is a fermented food composed of fresh fish and cooked rice that
is popular in China [90]. For traditional foods such as kimchi, yogurt, kefir, kombucha,
tempeh, and sauerkraut, which were developed thousands of years ago based on the
experiences of our ancestors, metagenomic studies shed light on the factors (i.e., microbes
and enzymes) and process involved in achieving the distinct flavors of these foods. For
instance, one study found that three genera of Leuconostoc, Lactobacillus, and Weissella
were dominant in kimchi [91]. In addition to bacteria, the existence of bacteriophages
was recorded, suggesting an influence on the microbial community during fermentation.
Another study on kimchi at the industrial scale revealed the presence of Leuconostoc mesen-
teroides, Lactobacillus sakei, Lactobacillus plantarum, and Weissella koreensis [92]. Another larger
study based on 88 kimchi samples prepared at different locations, in different seasons,
with various ingredients, and by several preparation methods revealed that the bacterial
communities in kimchi were easily affected by many factors, while location did not have a
significant effect [93]. These results have contributed to explaining the different tastes of fer-
mented foods originating from households and industries. The outcomes of metagenomics
have allowed for further research into applications related to the bacterial communities in
kimchi [94,95]. Park compared the conventional conditions and CO2-rich environments
during kimchi fermentation [94]; the results showed the effectiveness of CO2 addition on
the quality, metabolisms, and alteration of microbes in kimchi products. Another study on
treating kimchi with light-emitting diodes (LEDs) indicated that different wavelengths of
the LED source could alter the microbial composition [95]. Consequently, the metabolomic
pathways also change. Such results have exhibited the potential of using LEDs to control
the quality and create new tastes in fermented foods in the future. Similarly, metagenomics
has been used to sheds lights on the microbial world of other fermented foods, including
yogurt, kefir, kombucha, tempeh, and sauerkraut [96–104]. In addition to exploring the role
of microbes in different fermented foods, the metagenomic approach allows to identify the
functional roles of bacteria during food production. Consequently, producers can alter the
process to optimize product quality and reduce food waste [87].
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The ability of metagenomics to provide the fundamentals of microbial communities
has enabled the application of metagenomic studies to food safety in which the pres-
ence of foodborne microbial pathogens and phytopathogenic fungi was detected through
high-throughput sequencing methods [105]. Furthermore, metagenomics revealed an
effectiveness in detecting plant pathogens which should be monitored for global food
security [106]. Previously, Tatsika et al. examined the bacterial composition of ready-to-eat
vegetables using 16S rRNA and revealed different bacterial diversities in various types of
salads [107]. Fortunately, there was no record of foodborne pathogenic taxa in the surveyed
samples. Furthermore, their study showed that the removal of microbes on vegetables
can be successfully conducted using washing methods [107]. The microbiomes on the
surface of fruits such as white guava, passion fruit, and papaya harvested in Northern
Argentina were also explored using shotgun metagenomics [108]. The results revealed the
presence of bacteria, yeasts, and filamentous fungi on the surface as well as unidentified
species, suggesting further studies examining intrinsic species in plants. The microbial
composition in apple fruits before and after processing was investigated based on 16S rRNA
sequences [109]. The results exhibited a reduction of microbes after processing; however,
some bacteria such as Pseudomonas and Ralstonia still survive on apples, suggesting a need
for monitoring these taxa on fruits. One study sequences the total RNA content in the food
ingredients to test the correlation between shifts in microbiomes and contaminants [110].
Moreover, RNA sequencing allowed for detection of the viability of microbes in food. The
long-read metagenomics sequencing method showed high effectiveness for the detection
of Shiga toxin-producing Escherichia coli (STEC) contamination in water at 103 CFU/mL
(68 reads), suggesting its potential applicability to other foodborne pathogens [111]. In
addition to identifying microbes in foods, the metagenomic approach has allowed for the
screening of microbial existence in factories, tools, and any state of production [112]. Al-
though methods and bioinformatics tools have been developed for exploring microbiomes
in fruits, a suitable strategy should be selected for the aims of study. Previously, Jo et al.
compared DNA and mRNA libraries and three analytical methods for microbial diversity
in overwintering pepper fruits and demonstrated that library types, analytical methods,
and proper databases contribute to the achievement of microbiome study [113].

4. Metagenomics in Human Health

The metagenomic approach has revolutionized studies investigating the human mi-
crobiome originating from different parts of the human body, such as the skin, oral cavity,
lung, and intestine [114–117]. A recent review described the advancements that have been
made in technologies for exploring microbial DNA in human samples wherein host DNA
depletion and microbial DNA enrichment were summarized [118]. Previously, an efficient
strategy called MetaGeniE was developed to identify microbes with high specificity and
sensitivity [119]. In particular, the MetaGeniE pipeline includes two parts: Read-Reduct
and Patho-Detect. The former part results in high-quality reads after conducting filtration
using PRINSEQ [120], BWA [121], and STAMPY [122]. In the Patho-Detect part, the filtered
reads are aligned to genomic databases to identify microbial composition using BLAT [123].
Moreover, the mBodyMap containing 14,401 metagenomes related to 22 body sites and
56 human diseases was introduced as a useful database for further research into human
microbiomes and related diseases [124]. Consequently, various studies have reported
applications of metagenomics for surveying the pathogens in the human body, which
is a necessary aspect of formulating strategies for public health [125–127]. For example,
Malla et al. summarized the sequencing technologies and bioinformatic tools that were
used to explore the connection between microbiomes, human health, and diseases [125].
Further, applications of metagenomics as new therapeutic approaches for diagnosis and
treatment are covered and discussed. Similarly, Ko et al. outlined the use of metagenomics
for pathogen surveillance (i.e., the detection of pathogens and antimicrobial resistance
genes of microbes in global sewage) [126]. Further, untargeted metagenomics has revealed
the dynamics of microbial communities in cystic fibrosis patients and antibiotic-resistance
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genes [127]. Another study based on nanopore metagenomics showed that it could be used
as a rapid and effective diagnostic tool for pneumonia pathogens [128]. Similarly, various
viruses such as rhinovirus, coronavirus, parainfluenza, parechovirus, metapneumovirus,
and influenza virus have been identified in clinical specimens using BLASTN [129], bowtie2
(version 2.2.5) [130], and PCR validation [131]. ONT sequencing-based metagenomics ex-
hibited the rapid and accurate characterization of results of the bacterial communities in
lower respiratory infections with high specificity and sensitivity [132]. Similarly, nanopore-
sequencing-based metagenomics showed 83% sensitivity and 100% specificity for detecting
the influenza virus in respiratory samples [133]. A metagenomic study on tuberculosis
patients demonstrated the relationship between the pulmonary microbiome and its clinical
characteristics [134]. Another review demonstrated the interactions between bacterial
communities and human immunology through the developmental stages of infancy, child-
hood, and adulthood [135]. The results of these prior studies prove the advantages and
effectiveness of next-generation sequencing-based metagenomics as a diagnostic tool for
lower-respiratory-tract infections and their potential therapy for respiratory diseases [136].

In the human microbiome, the oral microbial communities have also been screened [137].
From the current oral microbiome data, about 56,213 metagenome-assembled genomes
have been obtained, in which 64% of the sequences were not previously reported [115].
A survey of 47 children with dental caries and healthy dentition revealed that Prevotella
spp., Streptococcus mutans, and the Epstein–Barr virus were all correlated with caries [138].
An interesting metagenomic study on the oral microbial communities in ancient humans
revealed that Anaerolineaceae bacterium was dominant [139]. The results of that same study
also indicated a significant shift in resistance to antibiotics from prehistoric humans to
modern ones. Aside from providing the taxonomy and composition of the microbiome,
metagenomics supplies new evidence of associations between human genetics and oral
microbiomes [140]. Specifically, five loci in the human genome, including APPL2, SLC2A9,
OR11H1, LOC105371703, and MGST1, were related to oral microbes. Moreover, the host
genetics were found to be responsible for dental diseases instead of the oral microbiome,
suggesting that specific therapies should be designed for each individual case. However, a
recent review has emphasized the impact of oral microbiota on oral diseases [141]. The ef-
fects of oral bacteria are based on the release of pro-inflammatory cytokines. The availability
of data facilitated metapangenomics of the oral microbiomes, which showed a correla-
tion between the genomic diversity of the oral bacteria and environmental features [142].
An additional application of metagenomics for oral microbiomes is the mining of new
genes. Previously, unknown acid-tolerant genes were identified in dental caries patients,
suggesting the feasibility and efficiency of metagenomics for finding functional genes [143].

Most metagenomic studies on human microbiomes have focused on gut microbiota,
which exhibits correlations to digestion, immunity, and diseases [144–150]. For example, a
large-scale analysis of the gut microbiomes in Parkinson’s disease (PD) patients revealed
microbes responsible for dysbiosis and genes related to the PD mechanism [151]. These
findings have provided the foundations for further studies investigating the treatment of
PD using different microbial compositions. Recently, bioinformatic strategies and tech-
nological developments with various benefits and limitations for gut microbiomes have
been summarized and discussed [152]. The popularity of metagenomic studies and bioin-
formatic tools (i.e., CheckM v1.0.11 [153], dRep v2.2.4 [154], Mash v2.1 [155], FastANI
v1.1 [156], VirSorter v.1.0.5 [157], VirFinder v.1.1 [158], CONCOCT v1.1.0 [159], GTDB-Tk
v1.0.2 [160], and Prodigal v2.6.3 [161]) has led to the formation of human gut microbiome
database, such as the Human Reference Gut Microbiome (HRGM), gut MEtaGenome At-
las (gutMEGA), Unified Human Gastrointestinal Protein (UHGP), and Metagenomic Gut
Virus catalog [162–165]. The sequence data in these databases can be easily downloaded,
and they serve as useful taxonomic references for conducting metagenomics research on
humans under various conditions. For example, recent findings on microbiomes have
revealed significant differences between monks and control subjects [166]. Specifically,
monks who practiced long-term meditation had abundant Prevotella, Bacteroides, Mega-
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monas, and Faecalibacterium species. In addition, several pathways, such as those of glycan
biosynthesis and lipopolysaccharide biosynthesis, were predicted to be significantly higher
in person who practice meditation. By contrast, the monks had lower levels of cholesterol
and apolipoprotein B, which are factors that potentially affect human health. These results
indicate the benefits of meditation, which helps to reduce stress and enhance the immune
system. Another review examining the health benefits of adding probiotic microorganisms
showed positive impacts on human health and several diseases [167]. One of the possible
outcomes of a metagenomic study is to find correlations between microbiomes and cancers.
Ng et al. summarized the factors related to colorectal cancer carcinogenesis and discussed
potential methods for the diagnosis and treatment of colorectal cancer [168]. Another
application of metagenomics is to identify drug efficacy and toxicity through bacterial
compositions. A study on 4198 individuals revealed the small and large effects of different
drugs to gut microbiome [169]. A recent study on the human microbiomes of patients with
gastrointestinal symptoms caused by the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) showed a decrease in bacterial strains in these COVID-19 patients [170].
Moreover, after recovery, the compositions of the gut microbiomes in COVID-19 patients
have been found to be quite different from those of the control subjects. A similar study
on COVID-19 patients provided detailed information on the connection between the mi-
crobiome and disease symptoms [171]. Specifically, the opportunistic pathogen bacteria
increased significantly while the protein metabolism and carbohydrate-oriented pathways
were overexpressed in COVID-19 patients. Two independent research teams reported
coevolution and codiversification between the gut microbiomes and human hosts [172,173].
An investigation of the gut microbiota of children suggested a new target for better growth
in low- and middle-income countries: the genetic functions of microbes [174].

Another application of metagenomics is in the exploration of the presence of viromes
and their therapeutic utilization for human health [175]. Consequently, the presence of the
viromes and interaction with other viruses in the human body resulted in the development
of therapeutic applications such as fecal microbiota transplantation, phage-based therapy,
and oncolytic therapy [175]. A previous review summarized the detection of various viruses
and bacteriophages from the human microbiome [176]. The presence of viruses was found
to be related to inflammatory bowel disease, diarrhea, obesity, and diabetes [177,178]. These
findings indicate the potential for developing diagnostic and therapeutic measures for
viruses-related diseases. For example, bacteriophages have been shown to be effective in the
treatment of patients infected with Clostridium difficile [179,180]. Although the applications
of human virome were suggested and tested, some cautions should be addressed before
wide applications to human beings, such as clinical protocols, validation of the outcomes,
and details of the mechanistic interactions [175,176].

5. Metagenomics in the Environmental Sciences

Soil is an important part of the Earth that contains organic and inorganic substrates,
as well as provides a living environment for many species. Metagenomics has enabled
research into microbial diversity in different soil types [181]. For example, one study on
the soil microbial communities in different ecosystems, such as deserts, forests, grasslands,
and tundra, revealed a relationship among bacterial composition, functional genes, and the
environment [182]. For example, deserts were found to have low taxonomic and functional
diversity compared to other surveyed locations. Further, genes related to osmoregula-
tion and dormancy were abundant in the desert samples. By contrast, a low number of
antibiotic-resistant genes was noted from the desert bacterial community, suggesting minor
competition in the desert biome. Similarly, the results of Arctic soil microbiomes from
different depths have indicated a significant decrease in microbial biodiversity and notable
change in the functional genes with depth [183]. Another finding is that the microbiomes
in tropical rainforest soils were less diverse than those in grasslands and agricultural
soils [184]. Metagenomic research has also provided an overview of the alterations in
microbiomes in soils over time. Observation of the microbial compositions before and
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after building an oil pipeline indicated a dramatic increase in Microcoleaceae, Pinaceae,
and Williamsiaceae, along with a notable decrease in Psychromonadaceae and Leuconosto-
caceae in samples from 2016 compared to those from 2013 [185]. Similarly, an increase in
Nitrosospira and Sulfuricella genera, which is related to cadmium tolerance, was detected in
soil samples with cadmium contamination in comparison to non-contaminated soil [186].
Changes in the microbial communities in total petroleum hydrocarbon (TPH)-contaminated
soil were explored, in which the portion of TPH-degrading bacteria (i.e., beta-, gamma-, and
delta-proteobacteria) increased by 9% compared to the control sample [187]. Another study
on mercury-contaminated soils revealed differences in microbes in the rhizospheric and
bulk soils [188]. The rhizospheric soils had a high abundance of Proteobacteria, whereas
Actinobacteria and Alphaproteobacteria were the majority in the bulk soil. This result re-
vealed selective effects in contaminated soils which are useful for bioremediation. A recent
observation of the microbial composition of the rhizospheres of coastal plants revealed a
correlation between the soil minerals and bacterial communities, suggesting that microbes
may potentially play roles in stress resistance in coastal plants [189]. The availability of soil
metagenomic data resulted in the formation of the largest publicly available sequencing
dataset that was managed and updated annually by the National Ecological Observatory
Network (NEON) [190]. The results of soil metagenomics have indicated not only the
diversity of microbes but also potential ways to clean polluted soils.

In addition to the soil environment, metagenomics has been used to assess the micro-
bial communities in water [191]. Various water bodies, such as oceans, lakes, mangrove
ecosystems, rivers, and canals, have been used for metagenomic research [192–200]. Further,
results obtained using metagenomics have uncovered potentially novel deep-ocean mi-
croorganisms and diverse metabolic strategies [201]. The available marine biome data were
combined to establish the MarineMetagenomeDB, which provides an effective resource for
further metagenomic studies [202]. In another work, the presence of microorganisms in
wastewater was studied to formulate a suitable recycling method [203]. A recent study on
poly-contaminated groundwater showed that the presence of Burkholderiales can degrade
various contaminants, thus indicating a suitable method for bioremediation [204]. Metage-
nomic tools have allowed for the assessment of the microbial communities in drinking
water, which has become a useful solution for quality monitoring [205,206]. In addition to
common bacteria in polluted water, the outcome of their study revealed that Arcobacter and
Aeromonas could be used as pollution indicators for fecal pollution source tracking [205]. In
addition to bacterial detection, metagenomics could also be used to explore the presence of
viruses in drinking water [207].

Similar to the soil and water environments, the air also contains microbes. However,
metagenomic studies of air samples face some challenges regarding microbial density,
standardized methodologies, and bioinformatics tools [208]. Fortunately, the advent of
new technologies for sample collections (i.e., the TOP filter system), DNA sequencing (i.e.,
Illumina, PacBio, and Oxford Nanopore Technologies platforms), and analysis pipelines
(i.e., MEGAN and QIIME2) have allowed for the application of air metagenomics to ex-
plore metabolic pathways, bioremediation methods, and biogeochemical cycles [20,209].
Although the low biomass feature of the air environment has resulted in a lower number
of microbes than in soil and water media, metagenomic research has revealed differing
abundances of microbial communities [210]. Metagenomic studies examining the air envi-
ronment at different locations revealed airborne microbiome alterations. A metagenomic
analysis of 3226 air samples revealed both positive and negative correlations between an-
thropogenic activities and airborne communities [211]. Moreover, Acinetobacter, Corynebac-
terium, Mycobacterium, and Staphylococcus genera were found to be positively related to
the mortality rates of patients with respiratory diseases. Further, airborne pathogens were
more likely to emerge from the surfaces of the human body. Another study examining
370 air samples around the world indicated that the features of the surface environment
determined the abundance of airborne bacteria [212]. Additionally, the aerial environments
and the microbes in the nearby ecosystems could impact the variation of global airborne
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bacteria. A notable study on 789 metagenomes collected from a single site during a one-
year period has advanced our understanding of the correlations between the dynamics of
bacterial composition and the Diel cycle [213]. The diversity of the microbes showed daily
variations rather than fluctuations of bacterial communities on a daily or monthly basis.
Further, among the environmental parameters such as temperature, humidity, and CO2
concentration, temperature was found to be the main factor affecting microbial community
dynamics. Metagenomic studies on indoor air have also exhibited a diversity of DNA
and RNA viruses [214]. Hospital air directly affects patient health and is an important
target for metagenomic research. Previous results based on the shotgun metagenomic
approach have revealed an abundance of opportunistic pathogens such as Aspergillus,
Penicillium, and Stenotrophomonas [215]. Moreover, a multi-drug resistant bacterial strain
(i.e., Stenotrophomonas maltophilia) has been observed. Another metagenomic study found
resistomes in Staphylococcus, Micrococcus, Streptococcus, and Enterococcus species in hospital
air [216]. Moreover, the higher antimicrobial resistance associated with hospital air com-
pared to urban ambient has been discovered [217]. Collectively, metagenomic research has
shown a large diversity of microbes in the soil, water, and air environments. The presence
of various microorganisms has triggered the primary application of metagenomics as a tool
for the identification of specific microbes. Further, the existence of bacteria can provide
necessary initial information for implementing bioremediation in polluted environments.

6. Metagenomics in Agriculture

The advantage of metagenomics in defining microbial compositions has made it a
useful method for monitoring agriculturally important pathogens and diseases [218]. Func-
tional metagenomics also provides a powerful tool for elucidating the interaction between
crops and microbes to increase crop yield and to identify new genes for stress resistance in
crops. To benefit from the advantages of metagenomic features, different techniques have
been summarized and discussed [15,219]. For example, a review of bioinformatic tools for
metagenomic studies of anaerobic digesters has shown that various approaches can be used,
such as those involving artificial intelligence and neural network software [220]. Recently,
aerial environmental DNA data have been used to monitor pathogens in crop fields [221].
Obviously, sustainable agricultural development requires the results of metagenomic stud-
ies [222]. Previously, microbial communities in saline environments have been identified
together with three different planting systems, including a conventional system, an aerobic
system, and a system of rice intensification (SRI) [223]. As a result, the SRI soil samples
exhibited higher species diversity than the other methods. Moreover, varied functional
properties were found in all soil samples collected from the three systems, suggesting the
effectiveness of different planting systems. A screening of the microbial communities in
desert farming systems revealed unexpectedly large diversity [224]. Aside from the diverse
composition, unknown bacterial groups were detected, suggesting novel plant microorgan-
ism interactions. Another shotgun metagenomic research on the maize rhizosphere showed
an abundance of nif H, nif A, groES, and cspA genes, which can be potentially employed to
reduce environmental stress and enhance plant development [225]. Metagenomic studies
have also enabled the detection of novel viruses belonging to Betaflexiviridae, Tombusviri-
dae, and Geminiviridae families in maize [226]. Aside from maize, similar metagenomic
research has also been conducted for other plants such as wheat, maize, sugarcane, rubber
tree, and vegetables [227–232].

In addition to crop-based studies, metagenomic research has been applied to farm ani-
mals [233]. Glendinning et al. conducted a metagenomic study examining four ruminants,
including cow (Bos taurus), sheep (Ovis aries), reindeer (Rangifer tarandus), and red deer
(Cervus elaphus), and they constructed 391 microbial genomes, out of which 279 records were
new taxa [234]. Similarly, Sato et al. assembled 146 genomes from the cattle rumen [235].
The outcomes of such metagenomic research were not only bacterial compositions but also
viral information [236]. A recent study on the virus communities in chicken farms has
indicated the utility of metagenomics in tracking viral pathogens [237]. Another applica-
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tion of metagenomics is for the determination of the relationship between the microbial
community and host nutrition and metabolisms [238]. Further, differences in microbial
compositions between domestic and wild animals were addressed, and exhibited a high
abundance of antimicrobial resistance genes in the microbiomes of farm animals [239]. A
survey on common resistomes showed 201 antibiotic-resistant genes (ARGs) in different
animal manures [240]. However, the number of ARGs was reduced significantly in com-
mercial compost. Therefore, it is necessary to upgrade the production progress to minimize
the presence of ARGs in agricultural ecosystems. Structures of the microbial communities
have also shed lights on ruminal fermentation, which can be employed for further research
into plant biomass degradation [241].

For aquatic animals, metagenomics is a powerful tool for exploring the microbial
communities necessary to improve water quality, treat wastewater, and prevent diseases.
Strategies based on different sequencing methods for exploring microbes in recirculat-
ing aquaculture systems have been established, and these have provided fundamentals
for further metagenomics related to aquaculture [242]. A previous metagenomic study
characterized the microbial diversity in shrimp ponds [243]. Similarly, the core bacterial
genera in the gut of shrimps were identified, wherein nine taxa had strong relations to
the fast growth of shrimp [244]. This observation has advanced our understanding of
how to control the development of shrimp. Metagenomics has also helped assess the
efficiency of newly developed technologies for aquaculture ecosystems. For example, a
test of the biofloc technology for a shrimp farm revealed that biofloc-based aquaculture
had more opportunistic pathogens [245]. Overall, metagenomics has exhibited significant
effectiveness in agriculture for pathogen monitoring, antibiotic resistance detection, and
quality improvement.

7. The Future of Metagenomics: Novel Fields and Future Perspectives

For the fields of biochemistry and biotechnology, metagenomics is a molecular tool
that can be used to find new enzymes from microbial communities [246]. The workflows
and strategies for mining novel enzymes through functional screening and sequence-based
metagenomic approaches have been reviewed in some earlier works [247–249]. Specifically,
Sung et al. developed an approach for focused identification of the NGS-based definitive
enzyme research (FINDER) strategy for the rapid large-scale screening of environmental
microbiota and enzymes [249]. A previous review summarized 332 industrially relevant
enzymes from unculturable microorganisms [250]. Different enzymes, such as lipases,
cellulases, and proteases, have been identified based on metagenomic data [251]. At
present, the rapidly increasing volume of metagenomic data is expected to result in more
reports on novel enzymes in the future.

For microbial diversity, metagenomic databases are useful sources for identifying new
microbes in different environments. Unlike amplicon metagenomics, shotgun metage-
nomics provides all the DNA sequences in a sample. Therefore, various workflows for
reconstructing complete genomes from metagenomic data have been developed [252–255].
A recent study reported 4142 microbial metagenome-assembled genomes in the horse gut
microbiome, of which 4015 records potentially belong to new species [256]. In addition
to bacterial genomes, viral genomes were successfully assembled from the metagenomic
data [257]. The diatom community was also characterized using the metagenomic ap-
proach [258]. Similarly, 24 lichenized-fungal genomes were completed, and these indicated
high diversity and dissimilarity in the secondary metabolite biosynthetic gene cluster of
lichens [259].

Metagenomics has offered an effective method for observing uncultured microbes
at the genetic level in the field of microbiology [260]. Complete genomes of unknown
microorganisms have also been completed from metagenomic data. These precise genomic
data have enabled the use of different strategies to convert uncultured microbes to cul-
tured ones [261]. The availability of complete genome sequences is necessary to predict
the various metabolic pathways that are needed to prepare suitable culture media; then,
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uncultured microbes could be cultured using different approaches, such as ARG-based iso-
lation, stable-isotope-probing-guided Raman-activated microbial cell sorting, gene-targeted
isolation, and reverse-genomics-guided isolation. Although successful isolations of uncul-
tured microbes have been reported, certain challenges remain, including optimization of
the culture media, various sizes for the cell sorter, unknown gene expression, and DNA
extraction methods.

Lastly, the recent ESM Metagenomic Atlas constructed using artificial intelligence
contains more than 617 million protein structures, out of which millions were new compared
to the available protein database [262]. This finding has opened new paths to explore
metagenomic data using artificial intelligence, which provides powerful assistance for
exploring uncovered parts of the scientific world. Obviously, metagenomics has opened
new doors for exploring the microbial world on Earth. However, further discovery to
achieve a better understanding requires more advancements in terms of sampling protocols,
analysis pipelines, databases, and interpretation of the results.
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