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Abstract: The global demand for minimally processed vegetables (MPVs) has grown, driven by
changes in the population’s lifestyle. MPVs are fresh vegetables that undergo several processing
steps, resulting in ready-to-eat products, providing convenience for consumers and food companies.
Among the processing steps, washing–disinfection plays an important role in reducing the microbial
load and eliminating pathogens that may be present. However, poor hygiene practices can jeopardize
the microbiological quality and safety of these products, thereby posing potential risks to consumer
health. This study provides an overview of minimally processed vegetables (MPVs), with a specific
focus on the Brazilian market. It includes information on the pricing of fresh vegetables and MPVs,
as well as an examination of the various processing steps involved, and the microbiological aspects
associated with MPVs. Data on the occurrence of hygiene indicators and pathogenic microorganisms
in these products are presented. The focus of most studies has been on the detection of Escherichia coli,
Salmonella spp., and Listeria monocytogenes, with prevalence rates ranging from 0.7% to 100%, 0.6%
to 26.7%, and 0.2% to 33.3%, respectively. Foodborne outbreaks associated with the consumption
of fresh vegetables in Brazil between 2000 and 2021 were also addressed. Although there is no
information about whether these vegetables were consumed as fresh vegetables or MPVs, these data
highlight the need for control measures to guarantee products with quality and safety to consumers.

Keywords: fresh-cut vegetables; foodborne illness; microbiological safety; minimum processing;
fresh produce

1. Introduction

Regular consumption of vegetables plays an important role in human nutrition, due to
their vitamins, minerals, and dietary fiber content [1–5]. The search for a healthy diet by the
population has resulted in an increase in the demand for vegetables, including minimally
processed vegetables (MPVs) [2,6–8].

In the present context, the term minimally processed refers to the use of one or more
methods, techniques, or procedures to transform plant-derived foods into ready-to-eat
(RTE) or ready-to-cook (RTC) products with an extended shelf life while maintaining
the same nutritional and organoleptic (sensory) quality of fresh vegetables [6,9,10]. In
general, MPVs can have a shelf life ranging from a few days to two weeks, depending on
several factors, such as the type and quality of fresh vegetables, processing method, type
of packaging, storage conditions, and the presence of spoilage microorganisms [9]. When
performed in accordance with good manufacturing practices, minimal processing delays
nutrient loss and undesirable changes in texture, color, flavor, and aroma of vegetables,
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apart from microbial spoilage [11]. This holds significant importance, as these changes can
lead to a decreased shelf life of the products and increase the likelihood of rejection by
consumers and markets [12].

A wide variety of vegetables can be processed into MPVs, including leafy greens
(e.g., arugula, lettuce, and spinach), cruciferous vegetables (e.g., broccoli and cauliflower),
root vegetables (e.g., carrots and beets), and cucumbers, among others. These MPVs
products are often sold as salads or snacks. In other words, the possibilities are endless, and
the choice of vegetables depends on factors such as availability, demand, and consumer
preferences. The market for these products has grown in Brazil, reflected by the increasing
presence of these products in supermarkets and grocery stores across the country. Studies
have shown that MPVs are sought by a range of consumers, mainly individuals with high
levels of education and income, who are primarily attracted to the convenience offered by
these products [13,14].

The expansion of fast-food chains, restaurants, and meal-producing companies also
contributes to the increase in demand for MPVs [15,16]. Minimal processing offers con-
sumers and/or companies the advantage of obtaining fresh vegetables with good quality,
providing convenience and practicality while enabling producers to add value to their
products [2,5,7]. Moreover, these products contribute to reducing food waste, since they
are sold in customized portions, packaged, and stored under conditions that help preserve
their freshness and extend their shelf life, requiring less preparation time in households
when compared to whole vegetables.

Despite the advantages associated with MPVs, studies carried out worldwide have
detected the presence of pathogenic microorganisms in these products, while epidemio-
logical data from some countries have shown an association between the consumption of
vegetables (including MPVs) and foodborne outbreaks, as discussed in the “Microbiological
quality and safety of MPVs” section. Fresh vegetables are typically cultivated in open fields
and are susceptible to pre- and post-harvest contamination. Minimal processing can also
contribute to contamination through poor hygiene or cross-contamination that can occur
during washing and other steps [16–22].

While numerous studies on MPVs exist in the literature, there is a notable gap when
it comes to comparing them to their fresh counterparts, particularly in terms of market
aspects, including a comparative price analysis. Furthermore, there is limited research
addressing the specific processing characteristics involved in MPVs production. Moreover,
the available review papers on their microbiological aspects focus on pathogenic microor-
ganisms, disregarding the importance of studying the occurrence of hygiene indicators,
which is a critical aspect of an RTE/RTC product.

The aim of this review is to provide an overview of MPVs, focusing on the Brazilian
market, processing steps, and microbiological aspects. Data on the occurrence of hygiene in-
dicators and pathogenic microorganisms in these products, as well as foodborne outbreaks
associated with the consumption of fresh vegetables, are also presented. Although this
study focuses on Brazilian data, information from other countries was also incorporated,
mainly in the microbiological topic, to enable a comparison of the quality, safety, and
microbiological criteria adopted for MPVs.

2. Market of MPVs in Brazil

In Brazil, the market of MPVs emerged in the mid-1970s with the expansion of fast-
food chains in the southeastern region of the country, following a trend in the United States,
where the market of these products started in the 1930s [15,16]. Currently, the increase
in demand for these products seems to be a worldwide trend, resulting from the social,
political, and economic changes that have changed habits and lifestyles [6,16,23].

The MPVs market has grown in Brazil over the past decades, driven by a lifestyle
characterized by a reduced time for food preparation, as well as an increasing consumer
demand for fresh and healthier products [16,24]. The presence of MPVs in supermarkets
and grocery stores is steadily growing, particularly in large urban centers. A recent study
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conducted by Costa et al. [25] identified a total of 39 brands of MPVs being sold in the
four most populous capitals located across different Brazilian regions (Northeast, Midwest,
South, and Southeast). Most of these brands (20; 51.3%) were found in the southeastern
region; four were found in more than one region, and none of them were found in all regions.
However, the authors observed that MPVs were not available in any of the establishments
visited in the capital selected for the North region. Apart from being sold in supermarkets
and grocery stores, these products have gained popularity among industrial kitchens,
caterers, hospitals, and hotels, which look for convenience combined with a reduction in
workforce, less waste generation, and faster preparation of meals [26].

In retail settings, MPVs are typically displayed on refrigerated shelves, often posi-
tioned in close proximity to fresh vegetables. However, it is worth noting that in many
Brazilian establishments, fresh vegetables are commonly sold without refrigeration. Among
the marketing strategies aimed at promoting these products, it is possible to highlight the
use of distinctive packaging that emphasizes their freshness, along with labeling that
communicates their sanitized status and the convenience they offer for immediate con-
sumption [15]. Furthermore, some MPVs producers opt to conduct product tastings at
retail, as well as distribute samples to food services and fast-food chains, as a strategy to
introduce these products to potential commercial buyers.

Regarding costs, MPVs generally tend to be more expensive to consumers in com-
parison to fresh vegetables. This is expected because the processing and storage of MPVs
incur additional costs that are passed on to the products. Nevertheless, to our knowledge,
no Brazilian studies have conducted a market comparison of the price of these products.
Therefore, the team of researchers of the current study visited six supermarket chains and
two farmer markets in the city of Sao Paulo, southeastern Brazil, to gather the relevant
data, as presented in Table 1. The range of available fresh vegetables in the visited markets
was broader compared to MPVs. However, to fulfill the purpose of providing a price
comparison for the same vegetables in both formats, the table includes only samples that
allow for a direct comparison per 100 g of product. As predicted, MPVs were found to be
more expensive, with a difference in price ranging from 142.8% to 803.4% compared to
fresh vegetables.

Table 1. Prices of fresh vegetables and MPVs sold in the city of Sao Paulo, Brazil.

Vegetables Fresh Vegetables (BRL/100g) MPVs (BRL/100g) Price Difference
Mean Minimum Maximum Mean Minimum Maximum BRL (%)

Arugula 1.88 0.78 0.79 8.72 5.32 18.87 6.84 (463.8)
Cassava 0.70 0.47 0.86 1.00 1.00 1.00 0.30 (142.8)
Escarole 0.89 0.36 1.31 7.15 4.49 9.43 6.26 (803.4)

Kale 1.58 0.59 4.00 3.88 2.00 4.50 2.30 (245.6)
Lettuce 1.05 0.68 2.39 6.12 2.99 11.32 5.07 (582.9)

Pumpkin 1.02 0.30 2.00 1.55 2.10 2.10 0.53 (152.0)
Spinach 1.83 1.66 2.00 5.65 4.61 6.00 3.82 (308.7)

Watercress 1.05 1.05 1.05 6.71 6.24 7.98 5.66 (639.0)

Values expressed in Brazilian real (BRL).

High prices are identified as one of the most limiting factors for MPVs purchases
among Brazilian consumers, as shown in previous studies. Sato et al. [27] conducted a
survey with 42 individuals in the city of Sao Paulo, and 52% of the participants cited
high prices as the primary reason for not purchasing MPVs. Similarly, Perez et al. [13]
conducted a survey with 246 individuals in the city of Belo Horizonte, Minas Gerais state,
and found that high prices were indicated by 31.9% of participants as the main limiting
factor for purchasing MPVs. More recently, Finger et al. [14] conducted an online survey
with 1510 consumers in Brazil and found that out of the 685 MPVs consumers, 66.4%
considered high prices as a negative aspect of these products.
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Despite the higher prices, there is a segment of consumers and companies willing
to pay more for the benefits that MPVs offer. The studies conducted by Sato et al. [27],
Perez et al. [13], and Finger et al. [14] also examined the primary reasons for consumers
purchasing these products, and convenience was consistently identified as the main mo-
tivating factor (88.9%, 46%, and 77.8%, respectively). In addition to being RTE, MPVs
maintain the sensory and nutritional characteristics of fresh vegetables and contribute to
the reduction of food waste, since the entire content is frequently used. For producers,
minimal processing results in an increase in the product value and a reduction in losses
during transport and storage. Moreover, by-products from minimal processing can be
reused in the preparation of other foods, crop fertilization, and animal feed [16,28–30].

3. Processing of MPVs

The minimal processing of vegetables consists of several steps, including selection,
cutting, washing–disinfection, rinsing, centrifuging, packaging, storage, transport, and
distribution. Although some of these steps may alter the structure of vegetables, they do not
alter their sensory and nutritional characteristics, resulting in fresh products that are typi-
cally RTE or RTC [10,11,16,31,32]. However, processing can increase the risk of microbial
growth, since steps such as cutting and peeling may cause mechanical injury in vegetable
tissues, exposing the cytoplasm and offering a nutrient source for microorganisms [9].

Since MPVs are usually eaten without the need for additional treatment (e.g., cook-
ing) before consumption, minimum processing should include a step aimed at eliminat-
ing/reducing contaminants that may be present in fresh vegetables. Washing–disinfection
plays an important role in this, as this step aims to remove dirt and debris, in addition to
reducing the microbial load. The addition of sanitizers to washing water is important to
reduce pathogenic microorganisms and especially to avoid cross-contamination between
contaminated and non-contaminated products [16,33]. For instance, Maffei et al. [34] de-
veloped a quantitative microbiological risk assessment model to estimate the impact of
cross-contamination during MPVs washing on the risk of salmonellosis in the population
of Sao Paulo, Brazil. Their model showed that higher chlorine concentrations significantly
reduced the risk of illness. Conversely, simulations using <5 ppm of free chlorine revealed
that most predicted illnesses were attributed to cross-contamination, revealing the need for
attention to control measures during the production of these products.

In Brazil, the use of chlorine in wash water is recommended for the disinfection of
vegetables [35]. Studies conducted with MPVs processing plants and food services located
in the state of Sao Paulo, Brazil, have shown that sodium dichloroisocyanurate and sodium
hypochlorite (both chlorine-based compounds) are the most frequently used products for
the disinfection of vegetables [17,36].

Chlorine and chlorine-related compounds are widely used in several countries as
disinfecting agents for decontaminating fresh vegetables and MPVs, since they are low-cost,
easy to apply, and have a broad spectrum of antimicrobial action [16,37]. However, their
efficiency is influenced by many factors, including water temperature, pH, amount, and
type of organic matter, apart from the risk of forming by-products that are harmful to
human health [10,16,37–39]. According to the European Food Safety Authority (EFSA),
the use of chlorine to disinfect vegetables is not recommended due to the risks involved.
Chlorine can react with organic matter in vegetables to form harmful by-products such as
trihalomethanes (THMs) and haloacetic acids (HAAs), which are potential carcinogens and
can cause adverse health effects [40]. Consequently, several studies have questioned its
efficacy, as its use has been insufficient in preventing previous outbreaks and recalls in the
food industry [41].

Therefore, other methods for the disinfection of vegetables have been considered over
the past decades, including the use of chlorine dioxide, electrolyzed water, hydrogen perox-
ide, ozone, organic acids, irradiation, ultrasound, ultraviolet light, and cold plasma, among
others [9,16,38,42–46]. Other studies have explored the use of organic acids, such as acetic
acid, lactic acid, and peracetic acid, as an alternative to chlorinated compounds [47,48].



Foods 2023, 12, 2259 5 of 17

Overall, these methods have shown promising results for the disinfection of vegetables,
contributing to a reduction in the risk of foodborne illness by killing harmful microorgan-
isms such as bacteria, viruses, and parasites, with the advantage of not leaving harmful
residues in the water or vegetables and with a low impact on the sensory characteristics of
the products.

Once MPVs are sanitized, the adoption of control measures to preserve the quality
and safety of these products is recommended, as they are packaged to be protected from
damage and external contamination [15]. Cold chain is essential during the storage of these
products, and the recommendation is to keep them between 1 ◦C and 4 ◦C [16,32]. The
combination with other techniques, such as modified atmosphere or vacuum packaging,
contributes to the delay or reduction of enzymatic reactions and microbial growth during
storage, thereby maintaining the organoleptic properties and extending the shelf life of
these products [4,11,16,19,32,44,49]. While the modified atmosphere is created by replacing
the atmospheric air inside a package with a protective gas mix (mostly oxygen, (O2), carbon
dioxide (CO2), and nitrogen (N2)), vacuum packaging consists of removing all oxygen
from the package, which is sealed air-tightly [11,16,19,49,50].

4. Microbiological Quality and Safety of MPVs

Vegetables are usually grown in open lands, and they are prone to microbial con-
tamination at pre and post-harvesting stages. The main sources of contamination during
pre-harvesting include contaminated soil, fertilizer containing raw or poorly composted
animal manure, irrigation water, and the presence of domestic and wild animals in the
field. During post-harvesting, the main sources include contaminated equipment, contain-
ers, and vehicles, washing and rinsing water, as well as hygiene failures while handling,
transporting, and storing fresh vegetables [4,18–20,51,52]. Therefore, vegetables contain
microorganisms coming from environmental sources, including spoilage organisms and
possible foodborne pathogens. According to Beuchat [53], all types of vegetables may har-
bor pathogens, although Shigella spp., Salmonella, enterotoxigenic and enterohemorrhagic
Escherichia coli, Campylobacter spp., Listeria monocytogenes, Yersinia enterocolitica, Bacillus
cereus, Clostridium botulinum, viruses, and parasites are of the greatest public health concern.

Vegetables that undergo minimal processing go through several steps aimed at reduc-
ing the microbial load and eliminating pathogenic microorganisms. Nevertheless, failures
during processing can lead to the contamination of MPVs. Contamination can arise from
multiple sources, such as contaminated raw material, cross-contamination (particularly
during washing), improper storage, and poor hygiene practices throughout the production
chain. As can be observed in Tables 2 and 3, several studies have evaluated the microbio-
logical quality and safety of MPVs sold in Brazil and other countries. While some studies
focus on the counts of hygiene indicator microorganisms, others include the investigation
of pathogenic microorganisms, particularly Salmonella spp. and L. monocytogenes.

Table 2. Occurrence of hygiene indicators and pathogenic microorganisms in MPVs sold in Brazil.

Microorganisms
Number of Samples

Range Counts Unit ReferenceTotal
n

Positive
n (%)

Total psychrotrophic bacteria

133

133 (100) 1.0–6.0 Log CFU/g

[54]

Enterobacteriaceae 133 (100) 1.0 > 6.0 Log CFU/g
Total coliforms 133 (100) 1.0–>6.0 Log CFU/g

Thermotolerant coliforms 133 (100) 1.0–>6.0 Log CFU/g
Salmonella 4 (3) - -

Listeria monocytogenes
181

1 (0.6) - –
Listeria welshimeri 1 (0.6) - -

Listeria innocua 2 (1.1) - -
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Table 2. Cont.

Microorganisms
Number of Samples

Range Counts Unit ReferenceTotal
n

Positive
n (%)

Total mesophilic bacteria

56

56 (100) 5.7–8.2 Log CFU/g

[55]
Total psychrotrophic bacteria 56 (100) 6.9–8.2 Log CFU/g

Thermotolerant coliforms 56 (100) <0.5–4.0 Log MNP/g
Escherichia coli 8 (28.6) <0.5 Log MNP/g

Oocysts of Eimeria 52 8 (15.3) - -

Total psychrotrophic bacteria

162

157 (96.7) 7.1–9.4 Log CFU/g

[56]

Total coliforms 158 (97.5) - -
Thermotolerant coliforms 107 (66) - -

Escherichia coli 86 (53.1) 1.0–6.0 Log MNP/g
Listeria 6 (3.7) - -

Listeria monocytogenes 2 (1.2) - -
Listeria innocua 4 (2.4) - -

Salmonella 2 (1.2) - -

Total coliforms
512

512 (100) 2.0–>6.0 Log CFU/g
[57]Escherichia coli 512 (100) 2.0–5.0 Log CFU/g

Salmonella 4 (0.8) 2.4–2.9 Log CFU/g

Total mesophilic bacteria

172

172 (100) 4.0–6.8 Log CFU/g

[58]
Total coliforms 172 (100) 1.0–3.7 Log CFU/g
Escherichia coli 10 (17.2) <1.0–3.5 Log CFU/g

Listeria monocytogenes 3 (1.2) - -
Salmonella 1 (0.6) - -

Listeria monocytogenes 512 16 (3.1) 1.0–2.4 Log CFU/g [59]

Cronobacter 30 13 (43.3) - - [60]

Total mesophilic bacteria

32

32 (100) 4.0–8.0 Log CFU/g

[61]

Total psychrotrophic bacteria 32 (100) 4.0–8.0 Log CFU/g
Total coliforms 32 (100) 1.0–4.0 Log MPN/g

Thermotolerant coliforms 32 (100) 1.0–4.0 Log MPN/g
Escherichia coli 16 (50) - -

Staphylococcus aureus 14 (43.8) 1.0–5.0 Log CFU/g
Salmonella 4 (12.5) - -

Enterobacteriaceae

100

86 (25.9) 5.2–6.8 Log MPN/g

[10]
Total coliforms 100 (100) 2.6–3.0 Log MPN/g

Thermotolerant coliforms 20 (20) <0.5–3.0 Log MPN/g
Escherichia coli 16 (16) <0.5–1.9 Log MPN/g

Salmonella 1 (1) - -

Total mesophilic bacteria

21

21 (100) 2.4–7.4 Log CFU/g

[62]
Total coliforms 9 (37.5) 0.5–>3.0 Log MPN/g

Thermotolerant coliforms 1 (4.1) <0.5–2.3 Log MPN/g
Staphylococcus 21 (100) <2.0–7.2 Log CFU/g

Yeasts and molds 21 (100) 2.7–5.7 Log CFU/g

Enterobacteriaceae

100

100 (100) - CFU/g

[21]
Escherichia coli 3 (3) - -
Listeria innocua 2 (2) - -

Listeria fleischmannii 1 (1) - -

Total mesophilic bacteria

30

30 (100) 4.3–>6.3 Log CFU/g

[63]
Total coliforms 30 (100) 4.0–>6.3 Log CFU/g
Escherichia coli 4 (13.3) 3.0–3.6 Log CFU/g

Yeasts and molds 30 (100) 3.4–>6.3 Log CFU/g
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Table 3. Occurrence of hygiene indicators and pathogenic microorganisms in MPVs sold around
the world.

Country Microorganisms

Number of
Samples Range

Counts Unit Reference
Total Positive

n n (%)

Australia

Total psychrotrophic bacteria

120

120 (100) 3.0–9.0 Log CFU/g

[64]
Aeromonas hydrophila or A. caviae 66 (55) - -

Aeromonas sobria 14 (12.7) - -
Listeria monocytogenes 3 (2.5) - -
Yersinia enterocolitica 71 (59.2) - -

Spain

Total mesophilic bacteria

236

236 (100) 4.3–8.9 Log CFU/g

[65]

Total psychrotrophic bacteria 236 (100) 4.3–8.9 Log CFU/g
Lactic acid bacteria 236 (100) <1.0–8.5 Log CFU/g
Enterobacteriaceae 236 (100) <1.0–8.0 Log CFU/g

Escherichia coli 27 (11.4) - -
Listeria monocytogenes 2 (0.8) - -

Salmonella 4 (1.7) - -
Yeasts and molds 236 (100) 2.0–7.8 Log CFU/g

Korea

Total mesophilic bacteria

159

159 (100) 4.2–8.9 Log CFU/g

[66]

Total psychrotrophic bacteria 159 (100) 3.2–8.5 Log CFU/g
Total coliforms 159 (100) 2.2–8.2 Log CFU/g
Escherichia coli 7 (4.4) - -

Clostridium perfringens 6 (3.7) - -
Salmonella 2 (1.2) - -

Yeasts and molds 159 (100) 1.7–7.5 Log CFU/g

Greece

Total mesophilic bacteria

26

26 (100) 5.4–8.6 Log CFU/g

[67]

Escherichia coli 3 (11.5) - -
Aeromonas 16 (61.5) - -

Aeromonas hydrophila 12 (46.1) - -
Yersinia enterocolitica 2 (7.7) - -

Yeasts and molds 26 (100) <3.0 Log CFU/g

Switzerland

Total viable count

142

142 (100) 5.0–>8.0 Log CFU/g

[68]
Cronobacter 2 (1.4) - -

Escherichia coli (EPEC) 11 (7.7) <2.0–3.0 Log CFU/g
Escherichia coli (STEC) 1 (0.7) <2.0 Log CFU/g
Listeria monocytogenes 5 (3.5) <2.0 Log CFU/g

Spain Listeria monocytogenes 191 8 (4.2) <100.0 CFU/g [69]

Portugal

Total psychrotrophic bacteria

151

151 (100) 0.7–0.9 Log CFU/g

[70]

Enterobacteriaceae 151 (100) 2.0–8.0 Log CFU/g
Escherichia coli 4 (2.6) <1.0–2.3 Log CFU/g

Listeria 3 (2) <1.0–2.0 Log CFU/g
Listeria innocua 2 (1.3) 2.0–2.3 Log CFU/g

Listeria monocytogenes 1 (0.7) <2.0 Log CFU/g
Aeromonas hydrophila 11 (7.3) 3.1–5.1 Log CFU/g

Bacillus cereus 66 15 (22.7) <2.0–3.2 Log CFU/g

France Clostridium difficile 104 3 (2.9) - - [71]

Croatia
Listeria monocytogenes

100
1 (1) 1.8 Log CFU/g

[72]Listeria 20 (20) - -
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Table 3. Cont.

Country Microorganisms

Number of
Samples Range

Counts Unit Reference
Total Positive

n n (%)

Iran

Total mesophilic bacteria

32

32 (100) 5.3–7.5 Log CFU/g

[73]
Total coliforms 28 (87.5) ND *–5.5 Log CFU/g

Thermotolerant coliforms 11 (34.4) - -
Escherichia coli 3 (9.4) - -

Yeasts and molds 32 (100) 5.4–7.6 Log CFU/g

Mexico

Total mesophilic bacteria

100

100 (100) 3.0–6.6 Log CFU/g

[74]
Total coliforms 96 (100) <0.5–>3.0 Log NMP/g

Thermotolerant coliforms 32 (32) <0.5–>3.0 Log NMP/g
Nontuberculous mycobacteria 7 (7) - -

Turkey

Total psychrotrophic bacteria

261

235 (90) 2.0–> 6.0 Log CFU/g

[75]

Total coliforms 155 (59.3) >0.5 Log NMP/g
Escherichia coli 10 (3.8) >0.5 Log NMP/g

Listeria monocytogenes 15 (5.7) - -
Listeria ivanovi 14 (5.3) - -
Listeria grayi 21 (8) - -

Listeria welshimeri 23 (8.8) - -
Salmonella 21 (8) - -

Finland

Total mesophilic bacteria

100

100 (100) 6.2–10.6 Log CFU/g

[76]

Total coliforms 100 (100) 4.2–8.3 Log CFU/g
Escherichia coli 15 (15) - -

Escherichia coli (STEC) 7 (7) - -
Listeria 4 (4) - -

Listeria monocytogenes 2 (2) - -
Yersinia 33 (33) - -

Yersinia enterocolitica 3 (3) - -
Salmonella 2 (2) - -

Egypt

Total mesophilic bacteria

50

10 (35.7) 3.8–9.4 Log CFU/g

[77]
Total coliforms 33 (66) - -

Thermotolerant coliforms 33 (66) - -
Escherichia coli 4 (18.2) - -

Poland
Total mesophilic bacteria

20
20 (100) 5.6–7.6 Log CFU/g

[78]Cronobacter 6 (35) - -
Cronobacter sakazakii 3 (15) - -

Italy Total mesophilic bacteria 78 78 (100) 6.0–9.2 Log CFU/g [79]

Ecuador
Total mesophilic bacteria

60
60 (100) 4.5–7.8 Log CFU/g

[80]Total coliforms 60 (100) 0.4–>5.0 Log MNP/g
Escherichia coli 13 (21.7) <0.8 Log MNP/g

Canada Listeria monocytogenes 5379 13 (0.2) - - [46]

Iran

Escherichia coli

92

28 (30.4) - -

[81]

Clostridium perfringens 8 (8.7) - -
Bacillus cereus 10 (10.9) - -

Listeria monocytogenes 4 (4.3) - -
Staphylococcus aureus 18 (19.6) - -

Pseudomonas aeruginosa 4 (4.3) - -
Shigella 2 (2.2) - -

Salmonella 3 (3.3) - -
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Table 3. Cont.

Country Microorganisms

Number of
Samples Range

Counts Unit Reference
Total Positive

n n (%)

Argentina

Total coliforms

60

60 (100) 1.3–3.3 Log MPN/g

[82]
Thermotolerant coliforms 60 (100) 0.3–1.9 Log MPN/g

Escherichia coli 15 (25) 3.4–8.4 Log CFU/g
Staphylococcus aureus 3 (5) - -

Poland

Total mesophilic bacteria

30

30 (100) 2.3–9.3 Log CFU/g

[83]

Enterobacteriaceae 30 (100) <1.0–7.4 Log CFU/g
Escherichia coli 30 (100) <1.0–5.5 Log CFU/g

Staphylococcus aureus 30 (100) <1.0–3.5 Log CFU/g
Lactic acid bacteria 30 (100) <1.0–8.4 Log CFU/g

Listeria monocytogenes 10 (33.3) - -
Salmonella 8 (26.7) - -

Yeasts and molds 30 (100) <1.0–7.0 Log CFU/g

* ND—not detected.

The presence of hygiene indicator microorganisms is crucial for assessing the microbio-
logical quality of MPVs. Typically, these products undergo a disinfection step, and elevated
microbial counts, such as generic E. coli, can indicate process failures. Out of the 33 studies
presented in Tables 2 and 3, a total of 21 (63.6%) reported the presence of generic E. coli,
with counts ranging up to 8.5 logs CFU/g and 6.2 logs MPN/g. Other hygiene indicators
frequently evaluated in these studies include counts of mesophilic and psychrotrophic
bacteria, yeasts and molds, and Enterobacteriaceae, in addition to total and thermotolerant
coliforms. The count ranges obtained for these microbial groups, according to the study,
reached up to 10.6 logs CFU/g and 6.8 logs MPN/g. Although there is no established limit
for most of these groups, it is known that high counts can indicate hygiene failures or even
conditions permissive for microbial growth during storage. In addition, it can be noted that
these studies focused on the determination of bacteria, with a lack of studies that evaluate
the occurrence of viruses and parasites in MPVs.

Regarding pathogens, most Brazilian studies focused on the detection of Salmonella
(50%), followed by L. monocytogenes (33.3%). In other countries, the search for L. monocy-
togenes is more frequent (52.4%), followed by Salmonella (28.6%). The prevalence of both
pathogens in the MPVs samples ranged between 0.6–26.7% and 0.2–33.3% for Salmonella and
L. monocytogenes, respectively. Other foodborne pathogens detected in smaller proportions
(less than 30%) include B. cereus, C. perfringens, C. sakazakii, and Shigella spp. Conversely,
a high prevalence of other relevant microorganisms was found in MPVs sold in some
countries: A. hydrophila (55 and 46.1%) in Australia and Greece, respectively, Y. enterocolitica
(59.2%) in Australia, and S. aureus (43.8 and 100%) in Brazil and Poland, respectively.

Among the 33 studies cited in Tables 2 and 3, only two reported the occurrence of
pathogenic E. coli in MPVs, one of which was carried out in Switzerland, with a positivity
of 7.7% for enteropathogenic E. coli (EPEC) and 0.7% for Shiga toxin-producing E. coli
(STEC), and the other was carried out in Finland, with a positivity of 7.0% for STEC.
Detecting pathogenic E. coli is known to be challenging due to various factors, including
methodological limitations and genetic variability. Nonetheless, it is a field that deserves
attention due to the increase in foodborne outbreaks caused by this bacterium. According to
the WHO/FAO report entitled “Shiga toxin-producing E. coli (STEC) and food: attribution,
characterization, and monitoring”, published in 2018, fresh produce (fruits and vegetables)
accounted for the highest percentage (13%) of attributed sources of STEC globally, followed
by beef (11%) and dairy products (7%) [84].

Overall, most studies cited in Tables 2 and 3 are limited to the enumeration of hygiene
indicator organisms and/or detection of bacterial pathogens using culture-dependent
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methods. These methods require the cultivation of microorganisms, i.e., they are usually
laborious and time-consuming, and are thus capable of thoroughly depicting the actual
microbial diversity present in a sample. In recent years, new techniques have emerged that
enable the rapid identification of bacteria, such as mass spectrometry-based techniques.
Additionally, there are approaches such as Next-Generation Sequencing (NGS) that allow
for the identification of microbial communities [10,21,85–87].

Santos et al. [10] and Finger et al. [21] used the matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOF MS) to identify Enterobacteriaceae isolated from
MPVs sold in Brazil. They found that the most frequent genera present in these samples were
Enterobacter and Pantoea, both typical vegetable spoilers, although probably including species
capable of causing opportunistic infections, mainly in immunocompromised patients.
Tatsika et al. [86] used 16S rRNA gene sequencing to investigate the bacterial community
composition of RTE salads at the point of consumption and the changes in bacterial diversity
and composition associated with different household washing treatments. They found that
Proteobacteria was the dominant phylum in the leaves of both RTE salads, with a high
abundance of Enterobacteriales and Pseudomonadales, and that household treatments did
not reduce the diversity of the microbial communities in these salads. Miralles et al. [85]
used 16S rRNA sequencing to identify the bacterial community and the active bacterial
fraction present in some of the most consumed and distributed RTE salad brands in Europe.
They found Pseudomonas spp. as the most abundant and metabolically active bacteria in the
analyzed samples. Manthou et al. [87] also used an NGS approach to decipher the bacterial
communities associated with the spoilage of RTE rocket and baby spinach, and found that
Pseudomonas spp. was the main spoilage group for both leafy vegetables.

Although there are several studies in the literature associating the occurrence of food-
borne outbreaks with the consumption of contaminated fresh vegetables [16,88–91], there
is a lack of studies showing this relationship with MPVs, despite the frequent occurrence
of foodborne pathogens in these products. In Brazil, between 2000 and 2021, a total of
14,588 foodborne outbreaks were reported to the Brazilian Ministry of Health, including
266,247 ill individuals and 212 deaths. Among these, 153 (1%) outbreaks were associated
with the consumption of contaminated vegetables, resulting in 3582 ill individuals and two
deaths [91]. However, there was no information concerning whether these vegetables were
consumed raw or as MPVs. Table 4 summarizes the main etiological agents and sites of
occurrence of these vegetable-related outbreaks.
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Table 4. Etiological agents and sites of occurrence of foodborne outbreaks linked to vegetables in
Brazil between 2000 and 2021.

Etiological Agents
Outbreaks Sick

Individuals
Dead

Individuals

n % n % n

Not identified 39 25.5 703 19.6 1
Escherichia coli * 27 17.6 752 21 0
Salmonella spp. 25 16.3 681 19 0
Bacillus cereus 20 13.1 543 15.2 0
Staphylococcus aureus 14 9.2 515 14.4 0

Others 28 18.3 388 10.8 1

Total 153 100 3582 100 2

Sites of occurrence

Restaurants/bakeries 31 20.3 270 7.5 0
Homes 31 20.3 222 6.2 2
Other institutions (accommodation
facilities, workplace) 29 19 1271 35.5 0

Others 62 40.4 1819 50.8 0

Total 153 100 3582 100 2
Source: [92]. * No information is given on whether the outbreak was caused by a pathogenic pathovar of E. coli.

In the United States, data from the Centers for Disease Control and Prevention (CDC)
show that 78 foodborne outbreaks linked to leafy greens were reported between 2014
and 2021. Among these, five were multistate outbreaks, of which two were linked to the
consumption of packaged salads contaminated with L. monocytogenes (19 cases, 19 hospi-
talizations, and 1 death) and Cyclospora cayetanensis (511 cases, 24 hospitalizations, and
no deaths). More recently, in 2019–2021, the CDC investigated and warned the public
about nine multistate outbreaks linked to leafy greens, including six that were associated
with contaminated packaged salads: two by E. coli O157:H7 (20 cases, 8 hospitalizations,
and 1 death), two by L. monocytogenes (28 cases, 26 hospitalizations, and 4 deaths), one by
Salmonella Typhimurium (31 cases, 4 hospitalizations, and no deaths), and one by Cyclospora
cayetanensis (701 cases, 38 hospitalizations, and no deaths) [22].

Despite the diversity of microorganisms that can be found in vegetables, some mi-
crobial groups tend to be more prevalent and are more frequently involved in foodborne
outbreaks. Therefore, regulatory agencies have defined microbiological criteria to guaran-
tee the supply of safe products and to protect the health of consumers. Table 5 provides
an overview of the microbiological criteria adopted in Brazil, China, the European Union
(EU), and the United States (US) for assessing the microbiological quality and safety of
MPVs. All entities establish guidelines for analyzing generic E. coli and Salmonella spp. as
hygiene and safety indicators, respectively. For generic E. coli, China has the most stringent
criterium (absence in 25 g), followed by the US (<3 MPN/g), Brazil (satisfactory below
10 and acceptable up to 102 CFU/g), and the EU (satisfactory below 102 and acceptable
up to 103 CFU/g). For L. monocytogenes, the criterium is the absence of this bacterium
in 25 g (in the US) or a maximum limit of 102 CFU/g (Brazil and the EU). Regarding
Salmonella, irrespective of the country, the criterium is the absence of the pathogen in 25 g
of a sample (Table 5).
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Table 5. Microbiological criteria for MPVs around the world.

Source Criteria

Guidelines

Bacillus
cereus

Campylobacter
spp.

Clostridium
perfringens

Escherichia
coli

Listeria
monocytogenes

Salmonella
spp.

Staphylococcus
aureus

Vibrio
cholerae

Vibrio
parahaemolyticus

Yeasts and
Molds

Brazilian Ministry of Health
[93]

Satisfactory N/A N/A N/A 10 102 Abs/25 g N/A N/A N/A N/A
Acceptable N/A N/A N/A 102 N/A N/A N/A N/A N/A N/A

Centre for Food Safety China
[94]

Satisfactory <103 Abs/25 g <10 Abs/25 g Abs/25 g Abs/25 g <20 Abs/25 g <20 Abs/25 g
Acceptable 103–≤105 N/A 10–≤104 N/A N/A N/A 20–≤104 N/A 20–≤103 N/A

European Union
[95]

Satisfactory N/A N/A N/A 102 102 Abs/25 g N/A N/A N/A N/A
Acceptable N/A N/A N/A 103 N/A N/A N/A N/A N/A N/A

Food and Drug Administration USA
[96]

Satisfactory N/A N/A N/A <3 * N/A Abs/25 g 10 N/A N/A 102

Acceptable N/A N/A N/A N/A Abs/25 g N/A N/A N/A N/A 104

Satisfactory: the microbiological status of the food sample is satisfactory. Acceptable: the microbiological status of the food sample is less than satisfactory but still acceptable for
consumption. Values expressed as Colony Forming Units per gram (CFU/g) or * Most Probable Number per gram (MPN/g). Abs/25 g: absence in 25 g. N/A: not applicable.
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The current strategies employed to mitigate bacterial contamination during the pro-
duction of MPVs include the implementation of Good Agricultural Practices (GAP) during
primary production and Good Handling Practices (GHP) during post-harvest stages and
processing. Producers may also adopt additional approaches to ensure the quality and
safety of these products, such as the application of Hazard Analysis Critical Control Point
(HACCP) principles and adherence to the International Organization for Standardization
(ISO) 22000 standard. These measures, combined with other relevant strategies, aim to
enhance the quality and safety of these products for consumers [8,32].

5. Conclusions

The growing market of MPVs seems to be a trend in Brazil as these products are
commonly found in major urban centers throughout the country, and the demand for
them from both consumers and food companies increases. While the convenience factor
contributes to increased purchases of MPVs, the higher price compared to fresh produce
limits their popularity among the population. Minimal processing involves a series of
carefully controlled steps to produce ready-to-eat MPVs with an extended shelf life. These
steps are crucial to ensure the quality and safety of the products. In addition, data on
the occurrence of hygiene indicators and pathogenic microorganisms in these products,
based on the published literature, revealed that most studies focused on the detection of
generic E. coli, Salmonella spp., and L. monocytogenes, often detected in MPVs. Finally, the
records of foodborne outbreaks linked to the consumption of vegetables in Brazil highlight
the importance of implementing control measures throughout the production chain to
ensure the quality and safety of these products. These measures include Good Agricultural
Practices in primary production and Good Handling Practices during post-harvest stages
and processing, with an emphasis on the use of sanitizers during the disinfection step to
eliminate microbial pathogens and prevent the occurrence of cross-contamination. Addi-
tionally, the cold chain is utilized to preserve the characteristics of these products and delay
microbial growth.

The main limitations of this study were associated with the lack of available data
on the international market for MPVs, particularly on prices and their relationship with
fresh vegetables, which made it unfeasible to compare with the data obtained in Brazil.
Additionally, it was not possible to standardize the microbiological results obtained from
the studies cited in Tables 2 and 3, as some presented a range of counts while others
only presented the average count. Furthermore, it should be noted that there was no
information available regarding whether the reported vegetable-associated outbreaks in
Brazil were specifically linked to the consumption of fresh vegetables or MPVs. To advance
research in this field, it would be valuable to conduct international collaborative studies that
collect and compare data with the aim of gaining a comprehensive understanding of these
products on a global level. Furthermore, conducting in-depth studies on vegetable-related
outbreaks in Brazil would be of great interest to identify any potential involvement of
MPVs in outbreaks.
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