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Abstract: SlAREB1, a member of the abscisic acid (ABA) response element-binding factors (AREB/ABFs)
family, was reported to play a crucial role in the expression of ABA-regulated downstream genes
and affect the ripening of tomato fruit. However, the downstream genes of SlAREB1 are still unclear.
Chromatin immunoprecipitation (ChIP) is a powerful tool and a standard method for studying the
interactions between DNA and proteins at the genome-wide level. In the present study, SlAREB1 was
proved to continually increase until the mature green stage and then decrease during the ripening
period, and a total of 972 gene peaks were identified downstream of SlAREB1 by ChIP-seq analysis,
mainly located in the intergenic and promoter regions. Further gene ontology (GO) annotation
analysis revealed that the target sequence of SlAREB1 was the most involved in biological function.
Kyoto Encylopaedia of Genes and Genomes (KEGG) pathway analysis showed that the identified
genes were mainly involved in the oxidative phosphorylation and photosynthesis pathways, and
some of them were associated with tomato phytohormone synthesis, the cell wall, pigment, and the
antioxidant characteristic of the fruit as well. Based on these results, an initial model of SlAREB1
regulation on tomato fruit ripening was constructed, which provided a theoretical basis for further
exploring the effects of the regulation mechanism of SlAREB1 and ABA on tomato fruit ripening.
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1. Introduction

Fruit ripening has attracted much attention because of its particularity to plant bi-ology
and its critical impact on fruit quality and shelf life, which involves changes in various
appearance and flavor qualities, including color, texture, taste, and aroma [1,2]. Based
on the presence or absence of respiration and ethylene transition peaks during ripening,
fruit was divided into climactic and non-climactic fruit [3,4]. Tomato, a typical climacteric
fruit, was widely used as a model plant for the study of fruit ripening due to its economic
importance, obvious ripening period, short life cycle, extensive genome information, and
significant metabolic changes [1,5–8].

Abscisic acid (ABA) is a crucial phytohormone involved in the ripening process of
tomato fruit. A number of studies demonstrated that ABA has a positive impact on
tomato fruit ripening [1,9,10]. Exogenous ABA treatment was shown to accelerate fruit
color transition and firmness reduction and increase ethylene production during tomato
ripening, as well as affect the metabolism of sugar and organic acids [11], accumulation of
volatile compounds [12], and antioxidant properties [13].

The current ABA signaling model in plant can be described as follows: in the absence of
ABA, PP2C inhibits SnRK2s activity through physical interactions and phosphatase activity,
resulting in the inability of ABA to complete signaling. In the presence of ABA, the binding
of ABA molecules to the ABA receptor PYR/PYL/RCAR induces the structural change
in the receptor, which allows the ABA receptor to interact with PP2C and inhibit PP2C
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activity; this leads to the release of SnRK2s and, subsequently, activates the downstream
ABFs/AREB/ABI5-type bZIP (basic region leucine zipper) transcription factor [14,15]. ABA
response element-binding factors (AREB/ABFs), a subfamily of the basic leucine zipper
(bZIP) family, are important downstream target genes of SnRK2. They can be activated by
protein kinases such as SnRK2.2, SnRK2.3, and SnRK2.6 and then specifically bind to ABA
response elements (ABREs and PyACGTGG/TC) in the promoter regions of downstream
target genes to realize the biological regulatory function of ABA in plants [16]. In tomato,
two AREB transcription factors, SlAREB1 and SlAREB2, were isolated and identified. Both
of them were induced by exogenous ABA treatment, while SlAREB1 was reported as
mainly involved in regulating the expression of stress-related genes and the ripening
process in tomato fruit [17–19]. Xu et al. [20] found that SlAREB1 had a strong response
to ABA and saline–alkali stress. The SlAREB1-mediated ABA signaling pathway may
regulate fruit-ripening-related metabolic processes by inducing the expression of genes
that encode organic acids (citric acid and malic acid), sugars (glucose and fructose), and
amino acid (glutamic acid)-related synthetases in tomato fruit [17,21]. Compared with
wild-type tomato fruit, the transcription levels of ethylene synthesis genes SlACS2, SlACS4,
SlACO1, and SlACO3 were significantly increased in SlAREB1-overexpresseion fruit and
decreased in antisense inhibition lines [21]. Yang et al. [22] found that SNAC9 interacted
with SlAREB1 to affect ABA signaling and further regulate the ripening of tomato fruit
and that silencing SNAC9 fruit would downregulate the expression of SlACS2 and SlACO1.
Furthermore, Mou et al. [23] found that SlAREB1 interacted with NOR to promote ethylene
synthesis during tomato fruit ripening. These studies suggested that SlAREB1-mediated
ABA signaling may be involved in the regulation of ethylene biosynthesis and the metabolic
processes associated with ripening by inducing the transcription of the corresponding genes
and finally affecting tomato fruit ripening. However, the specific regulation mechanism
remains to be explicated.

Chromatin immunoprecipitation (ChIP) is a powerful tool and a standard method for
studying the interactions between DNA and proteins at the genome-wide level. In recent
years, ChIP-Seq technology, which combines ChIP with next-generation high-throughput
sequencing technology, has been widely used to identify the target gene regions that
transcription factors potentially regulate in plants, owing to its advantages of having a
high resolution, a low signal-to-noise ratio, and broad coverage [24–28]. Studies showed
that SlAREB1 could regulate tomato fruit ripening, but the downstream target genes that it
binds are still unclear. In this study, ChIP-Seq was performed on SlAREB1-overexpression,
transgenic, mature green tomato fruit to analyze the downstream regulatory network
of SlAREB1, which could provide references and research ideas for understanding the
regulation mechanism of SlAREB1 and ABA on tomato fruit ripening.

2. Materials and Methods
2.1. Tomato Fruit and Exgenous ABA Treatment

Cherry tomatoes were cultivated in Aisijia Picking Garden in Linying County, Luohe
city of Henan Province, China. Approximately 36 days after anthesis, mature green tomato
fruit (Solanum lycopersicum L.) were manually harvested. Around 600 intact tomato fruit of
uniform size were randomly collected at equal height from different plants.

The ABA treatment and storage of tomato fruit were performed per our previous
study [12]. Briefly, the collected tomato fruit was sterilized and treated with 1 mM ABA
(98%, HPLC, Aladdin) or sterile water (the control) under vacuum (60 kPa) for 180 s and
then incubated at 20 ◦C and 90% relative humidity in darkness for 13 d. During the storage
period, tomato fruit was sampled every 3 days, with three batches (8 fruit per batch)
randomly sampled per group each time, and the pericarp tissues were frozen with liquid
nitrogen and maintained at −80 ◦C for further use.

Tomato fruit at 6 ripening stages, including immature green (IMG1 and IMG2), mature
green (MG), breaker (Br), turning (T), and red ripe (RR), were harvested, and the sampling
method was the same as above.
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2.2. qRT-PCR Analysis

Total RNA was extracted with RNAiso (TaKaRa, Tokyo, Japan), quantified with a
BioPhotometer (D30, Eppendorf AG, Hamburg, Germany), and reverse-transcribed to
cDNA using the PrimeScript® RT Reagent Kit (DRR047A, TaKaRa, Japan). Primers for
selected genes were designed using the Primer 5.0 software, and the obtained sequences are
shown in Table S1. The qRT-PCR experiment was performed according to the protocol of TB
Green® Premix Ex Taq™ II (RR820, TaKaRa, Japan) using the QuantStudioTM 3 Real-Time
PCR Instrument. Actin gene (AK328563.1) was used as the reference gene, and the results
were calculated using the 2−∆∆CT method.

2.3. Construction and Identification of SlAREB1-Overexpression Transgenic Tomato Plants

The genomic DNA of the mature green tomato fruit was extracted with high-efficiency
plant genomic DNA rapid extraction kit (D200, GeneBetter, Beijing, China), the full length
of the open reading frame (ORF) of SlAREB1 was amplified and cloned into pCAMBIA1301
vector via T4 ligase with NcoI and BstEII as double restriction sites, the primers used are
shown in S1, and the Flag gene (3 repeats) was inserted in front of the SlAREB1 coding
region during the cloning process for subsequence detection and ChIP analysis. The
SlAREB1-overexpression transgenic tomato plants were obtained via the agrobacterium-
mediated method with Micro-Tom plant and Hygromycin B as resistance genes [29], then
the positive plants (T0 generation) were cultivated, and PCR analysis was performed
both on leaves and mature green fruit of the transgenic plants to verify the successful
overexpression of SlAREB1. Further ChIP-Seq analysis was carried out on the selected
SlAREB1-overexpression transgenic mature green fruit.

2.4. ChIP-Seq Analysis

ChIP-Seq analysis was conducted following the method of Yang et al. [30] with modi-
fications. Specifically, approximately 4 g of tomato peel from the SlAREB1-overexpression
transgenic lines were pulverized in liquid nitrogen and cross-linked with 1% formaldehyde
at room temperature for 15–30 min, and then 2.5 mL glycine (125 mM) was added to
terminate the cross-linking reaction, followed by three washes to remove excess formalde-
hyde. Afterwards, the chromatin was extracted from the nuclei on ice using a lysis buffer
containing protease inhibitors and then sonicated to obtain between 200–500 bp (20 µL
of sonicated DNA were used as input sample). For the enrichment of DNA fragments
bound to the target protein, 5 µL of Flag antibody (F1804, Sigma, Alexandria, VA, USA) was
added to 20 µL of sonicated DNA fragment to form antibody-target protein–DNA complex,
and the resulting antibody-target protein–DNA complex was immunoprecipitated using
protein G beads (L00277, Sigma, Alexandria, VA, USA). The complex was eluted with
elution buffer and subjected to overnight incubation at 65 ◦C with 20 µL of 5 M NaCl
to reverse the cross-linking. Simultaneously, an input sample was mixed with 500 µL of
elution buffer and 20 µL of 5M NaCl to decompose the cross-linking and was used as
control. Then, the decross-linking product was mingled with 10 µL of 0.5 M EDTA, 5 µL
of RNase, 20 µL of Tris-Hcl (pH 7.0), and 2 µL of proteinase K and incubated at 45 ◦C
for 1 h. ChIP DNA Clean and Concentrator™ (Zymo Research Corp., Irvine, CA, USA)
was used to purify the ChIP DNA, which was subsequently sequenced using Illumina
HiSeq PE150. The quality of obtained reads was assessed with the fastqc software (version:
0.11.5) and filtered using Trimmomatic (version: 0.36). The obtained clean reads were
mapped to the tomato genome (https://solgenomics, version:4.0, accessed on 11 May 2023)
using BWA software (version: 0.7.15-r1140), and the peak information was analyzed with
MACS software (version: 2.1.1.20160309). The entire ChIP-Seq experiment and analysis
was performed with the assistance of Aijibaike Biotechnology Co., Ltd., Wuhan, China.

2.5. Statistical Analysis

Analysis of variance (ANOVA) and SPSS 22.0 software (IBM, New York, NY, USA)
were used to analyze the data of SlAREB1 gene expression at a significant level of

https://solgenomics
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p < 0.05. The qRT-PCR results were presented as mean ± standard deviation, and the
gene expression plot in this paper was created using Origin 2018 (OriginLab).

3. Results
3.1. Gene Expression of SlAREB1 during Tomato Fruit Ripening and the Effect of Exogenous ABA
Treatment on It

The transcription levels of SlAREB1 in tomato fruit at different growth and develop-
ment stages (immature green, mature green, breaker, turning, and red ripe) are shown in
Figure 1A. The expression of SlAREB1 gradually increased during the early ripening stage,
peaked at the mature green stage, declined thereafter, and exhibited a resurgence at the
red ripening stage. The effect of exogenous ABA treatment on SlAREB1 gene expression
is shown in Figure 1B, and, compared to the control group, ABA-treated tomato fruit had
higher expression levels of SlAREB1 from the seventh day after ABA treatment. These
results suggested that SlAREB1 may take part in the regulation of tomato fruit ripening,
and ABA induced the expression of SlAREB1 during the ripening process.
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Figure 1. Expression of SlAREB1 during tomato fruit ripening (A) and the effect of exogenous ABA
treatment on it (B). Error bars represent the standard error (SE) of three biological replicates. In (A),
the gene expression of SlAREB1 at the immature green stage is normalized to one, and the asterisk (*)
indicates the expression level of the gene in other stage is significantly different from the expression
level at IMG1 (p < 0.05); in (B), the expression of SlAREB1 in the control group on day 1 is normalized
to one, and the asterisk (*) indicates the expression level of the gene in the ABA treatment group is
significantly different from that in the control group at the same time (p < 0.05).

3.2. Identification of SlAREB1-Overexpression Transgenic Tomato Plants

The results of PCR identification for SlAREB1-overexpression transgenic tomato plants
are shown in Figure S1. The presence of clear and singular bands in the trans-genic tomato
leaves confirmed the successful integration of SlAREB1 into the genome of transgenic
tomato plants. To obtain a clearer view of the effect of SlAREB1 on tomato fruit ripening,
we recorded the phenotypic changes in wild-type and transgenic tomatoes at different times
after flowering. As shown in Figure 2A, the growth rates of the transgenic and wild plants
were similar, and no obvious difference in phenotype was observed between them. The
PCR identification results of SlAREB1-overexpression transgenic tomato fruit at the mature
green stage are shown in Figure 2B; the clear and single bands in transgenic tomato fruit
demonstrating that SlAREB1 was successfully overexpressed in the transgenic tomato fruit.
Moreover, the qRT-PCR results showed that the expression of SlAREB1 in transgenic tomato
fruit was significantly higher than that in wild-type tomato fruit (Figure 2C). Therefore, the
transgenic, mature green tomato fruit was suitable for further ChIP-Seq analysis.
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Figure 2. Construction of SlAREB1-overexpression transgenic tomato plants. (A) Phenotypes between
wild-type and SlAREB1-overexpression transgenic tomato fruit; (B) PCR products’ identification of
SlAREB1-overexpression transgenic tomato fruit at mature green stage; 1–3 are the control tomato
plants, and 4–6 are the transgenic tomato plants; (C) qRT-PCR validation of SlAREB1 overexpression
in transgenic tomato fruit. The samples of wild-type tomato fruit at the mature green stage are
normalized to one, and the asterisk (*) indicates the SlAREB1 expression level between the transgenic
and wild-type tomato fruit at the mature green stage is significantly different at the significance level
of p < 0.05.

3.3. ChIP-Seq Analysis
3.3.1. ChIP-Seq Peak Analysis

The overview of the ChIP-Seq data of SlAREB1 is shown in Table 1, and the raw reads
obtained from the two sequenced samples of SlAREB1-IP and the input were 52,720,466
and 36,263,534, respectively. The input was the control, which was the genomic DNA after
ultrasound interruption. Without immunoprecipitation treatment, the DNA was directly
delinked, purified, and analyzed. After quality filtration, 51,618,544 and 35,588,840 clean
reads were obtained for SlAREB1-IP and the input, respectively. Subsequently, the obtained
clean reads were aligned to the tomato genome, and the mapped ratios of SlAREB1-IP and
the input were 75.23% and 98.14%, respectively.

Table 1. Statistical analysis of raw data.

Sample Raw Reads Clean Reads Clean Ratio Mapped
Reads Map Rate

SlAREB1-IP 52,720,466 51,618,544 97.91% 38,834,545 75.23%

Input 36,263,534 35,588,840 98.14% 34,927,951 98.14%
Raw reads: the number of original sequencing reads; clean reads: the number of reads obtained by filtering raw
reads; mapped reads: the total number of reads on the alignment; mapped rate: the proportion of the total number
of reads on the alignment.

A total of 972 peaks were enriched and identified in SlAREB1-overexpression trans-
genic tomato fruit (Table S2). These peaks on the genome were distributed in 13 chromo-
somes (Figure 3A). The distribution of the SlAREB1 target sequences on the gene functional
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elements was as follows: 48.1% in the intergenic region, 27.45% in the promoter region,
13.59% in the exon region, 8.91% in the intron region, 1.06% in the 3′-UTR end, and 0.88%
in 5′-UTR end (Figure 3B).

Figure 3. Peak distribution of SlAREB1 enriched genes. (A) Distribution of peaks on the genome.
(B) Distribution of peaks on gene functional elements.

3.3.2. Transcription Factor Prediction of Peak-Associated Genes

A total of 28 transcription factors (TFS) were identified in the enriched sequences,
which were grouped into 17 TFS families, and the proportion of each TFS family to the
total TFS is shown in Figure 4. The identified factors mainly focused on zf-HD-, FAR1-, and
MADS-M-type transcription factor families, and the detailed gene information is listed in
Table S3.
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3.3.3. Gene ontology (GO) and Kyoto Encylopaedia of Genes and Genomes (KEGG)
Analysis of SlAREB1 Target Sequences

GO annotation analysis showed that the target sequences of SlAREB1 were most
involved in biological processes and less involved in molecular functions (Figure 5A). In
terms of cell components, they were mainly related to the cell, cell part, and organelle. For
the biological processes, the enrichment sequences were mainly observed in the metabolic
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process and cellular process. For the molecular functions, the main functional annotations
were involved in binding and catalytic activity.
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KEGG pathway analysis provided insights into the metabolic pathways and the
specific distribution of the SlAREB1 target sequences. The top 20 metabolic pathways, as
illustrated in Figure 5B, revealed that the SlAREB1 target sequence was predominantly
distributed in the oxidative phosphorylation and photosynthesis pathways.

3.3.4. Downstream Candidate Genes of SlAREB1

For the 972 peak genes obtained above, the relevant information of these genes was
analyzed by matching the tomato genome. As shown in Table 2, a total of 20 and 18 genes
were found associated with the oxidative phosphorylation and photosynthesis pathways,
respectively. Additionally, 8 hormone-related genes (including 3 genes related to ethylene,
1 gene related to auxin, 1 gene related to gibberellin, and 1 gene related to brassinosteroid,
respectively), 18 pigment-related genes, 6 cell-wall-related genes, and 3 antioxidant-related
genes were identified. More detailed information for all the downstream candidate genes
is listed in Table S4.

Table 2. Target genes of SlAREB1 (partial).

Gene ID Subject Length Subject Start Subject End Subject Annotation

Oxidative
phosphorylation

Solyc00g013180.1 3901 9,741,922 9,745,822 NADH-ubiquinone oxidoreductase chain 4

Solyc00g014830.3 2241 10,120,367 10,122,607 NADH dehydrogenase subunit 7

Solyc00g019730.2 1112 10,827,171 10,828,282 Cytochrome c oxidase subunit 3

Solyc00g019950.1 1415 10,844,935 10,846,349 NADH dehydrogenase subunit 9

Solyc00g117655.1 195 15,444,467 15,444,661 NADH-ubiquinone oxidoreductase chain 1

Solyc01g020470.2 199 30,837,743 30,837,941 NADH dehydrogenase subunit 9
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Table 2. Cont.

Gene ID Subject Length Subject Start Subject End Subject Annotation

Solyc01g056670.1 493 55,571,581 55,572,073 NADH dehydrogenase subunit 4L

Solyc03g013460.1 247 45,900,762 45,901,008 Cytochrome c oxidase subunit 3

Solyc03g043610.2 146 7,121,382 7,121,527 ATP synthase subunit a

Solyc05g016220.1 138 15,092,149 15,092,286 Ycf1

Solyc05g023920.1 318 30,101,773 30,102,090 NADH-ubiquinone oxidoreductase chain 1

Solyc07g019510.3 338 11,845,804 11,846,141 Cytochrome c oxidase subunit 1

Solyc08g029260.1 1096 37,265,408 37,266,503 NADH dehydrogenase subunit 2

Solyc10g045750.1 212 35,863,088 35,863,299 NADH-ubiquinone oxidoreductase chain 4

Solyc10g049470.1 157 45,831,441 45,831,597 Ycf1

Solyc11g021240.2 149 13,415,639 13,415,787 Ycf1

Solyc11g021300.1 154 13,419,577 13,419,730 Ycf1

Solyc11g030570.1 339 22,056,502 22,056,840 NADH-ubiquinone oxidoreductase chain 4

Solyc12g035550.1 330 41,911,350 41,911,679 Ycf1

Solyc12g035930.1 153 44,564,598 44,564,750 DNA-directed RNA polymerase subunit beta

Photosynthesis

Solyc00g230070.1 2413 18,659,728 18,662,140 Photosystem II CP43 chlorophyll apoprotein

Solyc01g017090.3 247 23,795,390 23,795,636 NADH-quinone oxidoreductase subunit L

Solyc01g017440.1 143 23,869,851 23,869,993 DNA-directed RNA polymerase subunit alpha

Solyc01g017740.1 146 25,041,926 25,042,071 Cytochrome b6

Solyc01g056870.2 356 57,175,864 57,176,219 Ycf2

Solyc02g011755.1 159 14,135,562 14,135,720 Photosystem I iron-sulfur center

Solyc02g080635.1 291 45,373,848 45,374,138 Photosystem II CP43 reaction center protein

Solyc03g122000.3 437 71,495,017 71,495,453 Cytochrome b6-f complex subunit 4

Solyc04g049003.1 174 38,943,033 38,943,206 Cytochrome c biogenesis protein CcsA

Solyc05g016220.1 138 15,092,149 15,092,286 Ycf1

Solyc10g012230.1 146 4,687,502 4,687,647 Ycf2

Solyc10g047410.1 214 40,732,147 40,732,360 Photosystem II CP43 chlorophyll apoprotein

Solyc10g049470.1 157 45,831,441 45,831,597 Ycf1

Solyc11g018700.2 172 9,107,418 9,107,589 Ycf15

Solyc11g021210.1 152 13,408,194 13,408,345 Cytochrome c biogenesis protein ccsA

Solyc11g021240.2 149 13,415,639 13,415,787 Hypothetical chloroplast RF1

Solyc11g021300.1 154 13,419,577 13,419,730 Hypothetical chloroplast RF1

Solyc12g035550.1 330 41911350 41,911,679 Ycf1

Phytohormones

Solyc07g026650.3 196 30,146,537 30,146,732 ACO5

Solyc09g059510.3 445 54,883,435 54,883,879 ERF

Solyc00g179240.2 171 17,318,514 17,318,684 MADS-box

Solyc10g045690.1 143 35,000,925 35,001,067 Gibberellin 20-oxidase

Solyc12g006350.2 344 870,483 870,826 Auxin response factor 6

Solyc12g006860.2 187 1,281,524 1,281,710 Brassinosteroid hydroxylase
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Table 2. Cont.

Gene ID Subject Length Subject Start Subject End Subject Annotation

Pigment

Solyc00g019730.2 1112 10,827,171 10,828,282 Cytochrome c oxidase subunit 3

Solyc00g049210.1 378 12,649,895 12,650,272 Cytochrome c-type biogenesis protein CcmF

Solyc01g017740.1 146 25,041,926 25,042,071 Cytochrome b6

Solyc02g021770.1 186 24,252,669 24,252,854 Cytochrome c oxidase subunit 1

Solyc03g013460.1 247 45,900,762 45,901,008 Cytochrome c oxidase subunit 3

Solyc03g013390.1 296 46,389,354 46,389,649 Cytochrome c oxidase subunit 3

Solyc03g122000.3 437 71,495,017 71,495,453 Cytochrome b6-f complex subunit 4

Solyc05g023720.1 248 29,081,746 29,081,993 Apo cytochrome f

Solyc05g025700.1 314 35,921,169 35,921,482 Cytochrome c biogenesis FC

Solyc07g019510.3 274 11,845,109 11,845,382 Cytochrome c oxidase subunit 1

Solyc07g032450.1 167 39,127,895 39,128,061 Cytochrome b6

Solyc09g015880.3 170 11,297,889 11,298,058 Cytochrome c oxidase subunit 2

Solyc09g050020.2 851 35,489,756 35,490,606 Cytochrome b

Solyc11g021210.1 152 13,408,194 13,408,345 Cytochrome c biogenesis protein ccsA

Solyc11g028160.1 432 20,552,580 20,553,011 Cytochrome c biogenesis

Solyc11g039360.1 445 45,467,509 45,467,953 Cytochrome c biogenesis FC

Solyc11g056410.2 277 45,648,871 45,649,147 Cytochrome c oxidase subunit 2

Solyc11g063620.2 262 49,936,635 49,936,896 Cytochrome c biogenesis FN

Cell wall

Solyc07g042220.2 161 55,403,948 55,404,108 Beta-galactosidase

Solyc10g076430.1 152 59,507,919 59,508,070 Pectinesterase

Solyc00g011890.3 171 9,408,568 9,408,738 Galactokinase-like protein

Solyc03g071520.1 191 19,361,038 1,9361,228 Galactosyltransferase family

Solyc05g025500.3 192 32,902,298 32,902,489 Glucan endo-1 3-beta-glucosidase 6

Solyc07g017730.3 202 7,823,023 7,823,224 Glucan endo-1 3-beta-glucosidase 5

Antioxidant

Solyc01g067460.2 207 75,956,536 75,956,742 Glutaredoxin family protein

Solyc02g092580.3 137 54,267,591 54,267,727 Peroxidase

Solyc06g050530.3 191 33,316,524 33,316,714 Laccase

4. Discussion

ABA was proved to be a promoter of tomato fruit ripening. SlAREB1, belong-ing to
the AREB/ABFs transcription factor family, played an important role in the regulation of
ABA downstream gene expression. Studies demonstrated that SlAREB1 participated in the
expression of stress-related genes in tomato fruit and the regulation of fruit ripening [17,18].
In this study, the expression level of SlAREB1 gradually increased in the early ripening
stage of tomato fruit, peaked at the mature green stage, and decreased afterwards. After
ABA treatment, the expression level of SlAREB1 commenced to rise on the seventh day
and was significantly higher than that in the CK group, which was consistent with the
results of Mou et al. [23], suggesting that SlAREB1 may play a pivotal role in the regulation
of tomato fruit ripening and may actively participate in the ABA-mediated regulatory
cascade. In addition, the growth rate and phenotype of SlAREB1-overexpression transgenic
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tomatoes were similar to those of wild-type tomatoes, which was in line with the findings of
Bastías et al. [21], indicating that SlAREB1 is mainly involved in the regulation of metabolic
programs during fruit ripening but not for the fruit phenotype.

Fruit ripening and stress were a highly intricate but coordinated process, which were
predominantly regulated at the transcriptional level, and transcription factors played a piv-
otal role in the expression of ripening-related and stress-related genes [31,32]. Hu et al. [33]
found that the zf-HD gene family primarily functions in the abiotic stress responses in
tomato. In addition, the FAR1 transcription factor family was proved to be implicated
in stress responses in tomato fruit, with Solyc09g057880.3 downregulated by ABA treat-
ment and potentially serving a crucial role in stress response [34]. The MADS-box family
transcription factors were reported to be involved in diverse developmental processes in
plants, particularly in the specification of floral organs, fruit development, and ripening.
Among them, Solyc07g017343.1 and Solyc06g034317.1 were found to exhibit distinct ex-
pression patterns in different tomato fruit development stages, and they may play a role
in fruit development and ripening [35]. In the present study, 28 transcription factors were
identified downstream of SlAREB1; mainly focusing on zf-HD, FAR1 and MADS-M-type
transcription factor families, this indicates that SlAREB1 may be involved in the regulation
of metabolic programs and fruit ripening by regulating these transcription factors.

Photosynthesis is a fundamental physiological process in plants that converts light
energy into biological energy to maintain growth and development [26]. Mou et al. [36]
found that ABA inhibited the expression of most photosynthesis-related genes in the pro-
cess of tomato fruit ripening, indicating that ABA may modulate fruit ripening through its
influence on photosynthesis. Given that SlAREB1 is an important response factor down-
stream of the ABA signaling pathway, it is plausible that SlAREB1 regulates photosynthesis
during tomato fruit ripening. In this study, the target sequences of SlAREB1 were mainly fo-
cused on the oxidative phosphorylation and photosynthesis pathways. Notably, studies on
postharvest photosynthesis of fruit are limited; therefore, our findings provide a valuable
insight into the intricate interplay between photosynthesis and fruit ripening after harvest.

Oxidative phosphorylation is a complex metabolic process that occurs in mitochondria,
involving the utilization of energy generated through the oxidation of sugars, lipids, and
amino acids to produce adenosine triphosphate (ATP), by facilitating the combination
of adenosine diphosphate (ADP) and inorganic phosphate [37], and represents a major
pathway for ATP generation in plant cells [37,38]. Wang et al. [39] found that oxidative
phosphorylation showed a downward trend during the red-coloring process of strawberry
fruit, and the downregulation of the key genes involved in oxidative phosphorylation
through Virus-Induced Gene Silencing (VIGS) inhibited respiration and ATP biosynthesis,
while promoting the accumulation of sugar, ABA, ethylene, and polyamines (PA), ulti-
mately accelerating strawberry ripening. The oxidative phosphorylation pathway, which
includes the electron transport chain and phosphorylation [40], was shown to be linked
to the generation of reactive oxygen species (ROS). Additionally, some enzymatic reac-
tions involved in the biosynthesis of antioxidant compounds require energy generated
from ATP decomposition [38,41]. Under unfavorable environmental conditions, plants
may experience excessive accumulation of ROS, leading to oxidative stress and potential
diseases or cytotoxicity from abiotic stress [42,43]. The activity of antioxidant enzymes is
crucial in determining a plant’s ability to scavenge ROS. The antioxidant enzymes in plants
include superoxide dismutase (SOD), catalase (CAT) [44], peroxidase (POD), polyphenol
oxidase (PPO), etc. [13,45]. Glutaredoxin, a small redox protein, was also involved in
the ROS scavenging pathways [46]. In the present study, three antioxidant-related genes
were identified, namely the glutaredoxin family protein, peroxidase, and laccase. Laccase
is a copper-containing polyphenol oxidase that also plays a role in the plant oxidation
process [47]. Therefore, SlAREB1 may potentially affect the antioxidant activity of tomato
fruit by interacting with these antioxidant enzymes, which influences the ROS scavenging
pathways. These findings suggested that oxidative phosphorylation may play a role during
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tomato fruit ripening, and SlAREB1 could potentially impact tomato fruit ripening by
modulating the oxidative phosphorylation pathway.

Fruit ripening is accompanied by various changes in taste (sweetness and acidity),
texture (softening and firmness), and appearance (color) [48]; fruit color is one of the most
important quality attributes of tomatoes that are favored by consumers and is primarily
determined by pigments [49,50]. In this study, 18 pigment-related genes were identified
to be SlAREB1 target genes, suggesting that SlAREB1 may potentially interact with these
pigment genes to influence tomato fruit color. Furthermore, Wu et al. [51] found that ABA
and ethylene synergistically regulated the accumulation of tomato fruit pigments, thereby
influencing fruit color development. Since SlAREB1 played a pivotal role in the expression
of ABA downstream genes, it is conceivable that it could affect these pigment-related genes,
thus contributing to the modulation of tomato fruit color.

Fruit development and ripening are complex processes involved in the inter-play
of multiple phytohormones, which can influence fruit quality, nutrition, and taste [52].
Mou et al. [36,53] found that exogenous ABA promoted ethylene biosynthesis and signal
transduction by regulating multiple genes in ethylene synthesis and signaling pathways,
thereby promoting tomato fruit ripening. 1-Aminocyclopropane-1-carboxylic acid (ACC)
synthase [54] and ACC oxidase (ACO) [55] are two key enzymes in ethylene synthe-
sis [56,57]. ACO5, a member of the ACO family, also plays a role in ethylene synthesis [58].
Ethylene response factors (AP2/ERFs) are the response factors in the ethylene signaling
pathway, and they can also feedback-regulate the biosynthesis of other plant hormones
such as cytokinin, gibberellin, and abscisic acid and are involved in signaling responses to
hormones such as auxin, cell division, abscisic acid, and jasmonic acid [59]. In this study,
the ACO5 gene and ERF genes were identified as the SlAREB1 target genes, indicating that
SlAREB1 may influence ethylene biosynthesis and signaling by interacting with the ACO5
gene and ERF genes, thereby regulating tomato fruit ripening. GA-20 oxidase (Gibberellin
20-oxidase) is the key rate-limiting enzyme for gibberellin (GA) biosynthesis, and its syner-
gistic effect is necessary for the growth of tomato fruit [60,61]. Chen et al. [62] found that
exogenous gibberellic acid treatment can delay the maturation period of tomato fruit by
regulating the transcriptional levels of ethylene-related genes. The auxin response factor
(ARF) plays an important role in plant growth and development [63]. Brassinosteroids
(BR) is a class of hormones that played an important role in plant growth and develop-
ment [64]. Zhu et al. [65] found that BR positively regulated tomato fruit ripening and
promoted ethylene synthesis. The brassinosteroid hydroxylase may affect the synthesis of
brassinosteroid [66]. In this study, a GA-20 oxidase, an auxin response factor-ARF6, and
a brassinosteroid hydroxylase were identified among the target genes of SlAREB1, but
the direct impact of ARF6 on tomato fruit ripening was not demonstrated, indicating that
SlAREB1 may regulate tomato fruit ripening by influencing the biosynthesis of ethylene,
gibberellin, and brassinosteroids. Gibberellin and brassinosteroids potentially mediate
ethylene synthesis. Further studies are needed to elucidate the exact mechanisms and
interactions related to phytohormone biosynthesis and signaling involved in regulating
fruit ripening by SlAREB1 and its target genes.

Fruit firmness is one of the important characteristics of tomato fruit ripening, and
the metabolism of the cell wall plays a crucial role in determining the change rate of fruit
firmness during ripening [67]. Several enzymes, including endogenous glucanase [68],
polygalacturonase (PG) [69,70], expansin [71], pectin methylesterase [72], and PL [73],
were shown to be involved in cell wall metabolism and fruit softening [74]. In addition,
Zeng et al. [67] found that ABA treatment can accelerate fruit softening and promote the
gene expression of β-galactosidase, SlTBG3, and SlTBG4. In this study, a total of six cell-
wall-related genes were identified, including β-galactosidase and pectinesterase., indicating
that SlAREB1 may regulate tomato fruit softening by modulating the expression of cell-
wall-related genes, including β-galactosidase and pectinesterase, in response to ABA or
other signaling pathways.
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Based on the results mentioned above, a regulation model of SlAREB1 on tomato fruit
ripening was drawn (Figure 6). According to the model, SlAREB1 may primarily regulate
genes related to ethylene synthesis and signal transduction, gibberellin synthesis, brassi-
nosteroid synthesis, oxidative phosphorylation, photosynthesis, antioxidants, pigment,
and the cell wall, all of which play important roles during tomato fruit ripening. However,
the regulatory model of SlAREB1 on tomato fruit ripening is limited as it was only deter-
mined by ChIP-Seq experiments on SlAREB1-overexpression transgenic tomatoes. Further
experiments are needed to verify its interaction with related genes to clarify the regulatory
model of SlAREB1 on tomato fruit ripening. In addition, it is worth noting that many of
the target genes of SlAREB1 in the model have not been extensively studied, so further
research is needed to fully validate and refine the proposed model. Additional experi-
mental evidence and functional studies are necessary to elucidate the precise mechanisms
by which SlAREB1 regulates these target genes and their roles in tomato fruit ripening.
Further verification and improvement of the regulatory model will contribute to a more
comprehensive understanding of the regulatory network governing tomato fruit ripening
and the role of SlAREB1 in this process.
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5. Conclusions

In this study, the expression level of SlAREB1 was examined in different stages of
tomato fruit ripening, and the influence of ABA on its expression was confirmed, further
supporting its role in tomato fruit ripening and its regulation by ABA. Subsequent analysis
using ChIP-Seq technology identified the target genes of SlAREB1, which were found to
be mainly distributed in the oxidative phosphorylation pathway and the photosynthesis
pathway. Moreover, SlAREB1 was found to be involved in the regulation of tomato fruit
ethylene synthesis and signal transduction, gibberellin synthesis, brassinosteroid synthesis,
the cell wall, pigment, and antioxidant defense. These results provide valuable references
and a theoretical basis for further investigations into the mechanism of SlAREB1 and ABA
in tomato fruit ripening.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/foods12122357/s1. Table S1: Primer sequences used in this study. Table S2:
Peak information statistics. Table S3: Transcription factor. Table S4: Target genes of SlAREB1.
Figure S1: PCR Identification of SlAREB1 transgenic tomato plants. 1–3 were the control tomato
plants, 4–5 were the transgenic tomato plants.
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