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Abstract: Durum wheat debranning fractions (fine and coarse bran) were obtained and included
as an ingredient in the formulation of whole-meal spaghetti to study their chemical–nutritional
characteristics, in particular folate levels and sensorial properties. Experimental raw pasta had a
higher folate content (40.5 µg/100 g) than commercial whole-meal pasta (28.3 µg/100 g), meeting
the requirements for the health claim on folate (Reg. EU 432/2012) and for the nutritional claim on
dietary fiber. After cooking, folate retention in pasta formulated with coarse bran was 80% and scored
an overall “good” sensorial acceptability. Results indicate that whole-meal pasta formulated with
folate-rich debranning fractions may represent a natural functional food that, integrated into the diet,
could improve the health status of the population.

Keywords: debranning; whole-meal; folate; raw and cooked pasta; folate retainment

1. Introduction

In recent years, the demand for whole grain meals/foods has increased due to con-
sumers’ awareness of their health benefits [1]. Several epidemiological studies suggest a
clear inverse relationship between the consumption of whole grain products and the risk of
non-communicable diseases such as cardiovascular diseases, type 2 diabetes (T2D), and
colorectal cancer [2]. These beneficial effects are probably due to the combined action of
dietary fiber, micronutrients (minerals and vitamins), and other bioactive compounds (i.e.,
polyphenols, tocols, alkylresorcinols, phytosterols), which are largely preserved in whole
grain products compared to refined ones [3]. Many studies have demonstrated the positive
effects on human health of wheat bran and its bioactive components in the prevention and
treatment of some chronic diseases such as diabetes, cardiovascular disease, obesity, gas-
trointestinal disease, and colon and breast cancers [4,5]. Beyond the evidence from in vitro
models, animal models, and cell lines, it would also be important to broaden knowledge
on the beneficial outcome of wholegrain intake on healthy people or those suffering from
different diseases. For instance, arabinoxylan-rich fiber can improve blood glucose control
in patients with type II diabetes [6]. A prospective cohort study conducted on 161,737 US
women and a systematic review [7] demonstrated a stronger inverse association between
bran intake and risk of type 2 diabetes.

Among cereal-based products, pasta represents an important carrier of these beneficial
compounds for the population [8–12], given its popularity, relatively low cost, and long
shelf life. Unfortunately, the consumption of whole grain products, which are much more
nutritious, is still low even in countries including Italy [1]. It would be desirable to be able
to formulate a new kind of whole grain pasta naturally enriched in some vitamins such as
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folate, which many population groups are deficient in, and which are necessary for general
health [13–15]. Folate deficiency is associated with several diseases, including megaloblastic
anemia, neural tube defects (NTDs) [16], intrauterine growth restriction and preterm
birth [17], cardiovascular diseases [18], and neurodegenerative diseases (i.e., Alzheimer’s,
dementia) [19]. Folates are mainly localized in the aleurone layer of grain [20,21] and
whole-meal products can be an important source of folate in the diet [22].

Fractionation/recombination technologies applied to cereals are widespread tech-
niques to obtain flours enriched with vitamins or bioactive molecules that can enhance the
nutritional potential of a new product [23–25]. Wheat debranning, for example, consists of
friction/abrasion operations applied to the kernel prior to milling to remove bran layers.
Advantages include the improvement of the refining rate, yield, and safety of semolina
and the simplification of the milling diagram [26–28]. In the literature, previous studies
incorporated durum wheat debranning fractions in cereal-based formulations, enhancing
the content of healthy compounds, along with conducting an assessment of the technolog-
ical profile of the final product [8,28]. In particular, folate-rich fractions can be obtained
with the use of the debranning process of durum wheat [25,29]; these raw materials repre-
sent an important starting point for the development of whole-meal pasta, the nutritional
properties of which are improved.

The aim of the study was to evaluate durum wheat debranning fractions as an ingre-
dient for folate enrichment of whole-meal pasta, assessing the nutritional and organoleptic
acceptability of the final product.

2. Materials and Methods
2.1. Debranning/Milling

Durum wheat grain blends (DWG) (Triticum turgidum L. subsp. durum) were condi-
tioned to about 17% moisture and debranned in two sequential steps using a pilot plant.
Firstly, the grain was debranned at about 2% and the by-product was discarded; then, the
process was repeated to remove about 4% of the outer layers of the debranned kernel (corre-
sponding to a total removal of ~6% of the initial kernel weight). The debranning by-product
obtained after the second debranning step was sorted in a plansichter equipped with six
sieve stacks of different mesh sizes to obtain a fine bran fraction (FB) and a coarse bran frac-
tion (CB). Debranned grain was subsequently ground in an MLU 202 mill (Bühler, Uzwill,
Switzerland) consisting of three break and three reduction rolls, six steel screens, and a
small-scale purifier. Whole-type semolina was used for pasta formulation. A schematic
graphic representation of the milling process is illustrated in Figure 1. All samples were
stored at +4 ◦C before analysis.
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2.2. Particle Size Distribution

Particle size distribution of debranning fractions was determined according to the
Italian standard UNI 10873:2000 [30] by a sieve shaker equipped with a stack of 7 sieves
with different size meshes—630, 560, 400, 355, 250, 180, 100 µm—(Retsch GmbH, Italy).
The sample was weighed (100 g) and sieved for 5 min.

2.3. Pasta Making

Fine bran and coarse bran were mixed with semolina following the different formula-
tions, as reported in Table 1. After folate determination in raw materials, the formulations
were considered to achieve the nutrition and health claims related to folate, according to EC
Regulation No 1924/2006 and EU Regulation No 432/2012 [31,32], and to fall within the
legal limits set for ash for durum wheat whole-meal semolina pasta by the Italian Presiden-
tial Decree No 187/2001 [33]. Whole-meal pasta samples (spaghetti shape) were produced
in two different pasta-making trials through an experimental pasta-making pilot plant,
composed of a press and a dryer (NAMAD, Rome, Italy). The press (capacity 10–20 kg) was
equipped with a vacuum mixing and extruding system, a die, and a water-cooling jacket
for the barrel and the extrusion head (to maintain a constant extrusion temperature lower
than 50 ◦C). Semolina and fine and coarse bran fractions were mixed with cold tap water
in a pre-mixing chamber for 20–30 min, then the doughs were transferred to the vacuum
mixing chamber and extruding system equipped with a bronze die. Extruded spaghetti
was dried by applying drying cycles at low temperatures (<60 ◦C).

Table 1. Formulations and processing conditions of the developed whole-meal pasta samples.

Sample Whole Semolina
(SEM) (%) Fine Bran (FB) (%) Coarse Bran (CB) (%) Dough Moisture

Content (%)

Hydration and Mixing
Duration (Min) in

Pre-Mixing Chamber

WP-FB 94 6 0 30 20

WP-CB 90 0 10 30 20

2.4. Commercial Pasta Sampling

Eight whole-meal pasta samples (CWP1–8) (spaghetti shape) and two semolina pasta
samples (CSP1–2) (spaghetti shape) of different brands were purchased in local supermar-
kets. All the pasta samples were ground using a refrigerated laboratory mill (model IKA
A10-IKA Werke GmbH & Co. KG, Staufen, Germany) and stored at +4 ◦C until analysis.

2.5. Spaghetti Cooking

Spaghetti samples were cooked in tap water (pasta: water ratio of 1:10) until the
optimal cooking time (OCT), according to the International Standard ISO 7304-1:2016 [34].
Cooked samples were drained and cooled for about 10 min at room temperature and freeze-
dried in a VirTis Genesis 25SES Pilot Lyophilizer (VirTis Co., Inc., Gardiner, NY, USA)
for chemical analyses. The freeze-dried cooked samples were ground with a refrigerated
laboratory mill (model IKA A10-IKA Werke GmbH & Co. KG, Staufen, Germany), analyzed
for their residual moisture content, and stored at −20 ◦C before analysis.

2.6. Color

The color determination was performed using a colorimeter model CR300 (Minolta
Italia, S.p.A., Milan, Italy). The results are expressed in terms of CIE (Commission Interna-
tionale de l’Eclairage) 1976 L* a* b* color space parameters, where L* describes lightness, a*
is redness, and b* is yellowness.
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2.7. Chemical Analysis

Moisture and ash contents were analyzed according to ICC Standard Methods
No. 110/1 [35] and International Standard ISO 2171:2007 [36], respectively. Protein content
was determined with the Kjeldahl method according to ICC Standard Method
No. 105/2 [35], using a conversion factor of 6.25. The lipid content was determined by
acidic hydrolysis following the AOAC Official Method 922.06 [37]. The total dietary fiber was
determined using the enzymatic assay kit (Megazyme International Ltd., Bray, Ireland), in
accordance with the AOAC Official Method 985.29 [37].

2.8. Total Folate Content and Apparent Folate Retention Determination

Total folate content was determined using the microbiological assay kit (VitaFast® Folic
Acid microbiological microtiter plate test to quantitate folic acid) distributed by R-Biopharm
AG, Darmstadt, Germany. This procedure is recognized by international standardization
institutes, e.g., EN 14131:2003 and AOAC 960.46 (Method 2004.05). Briefly, 1 g sample was
extracted in 40 mL phosphate buffer (0.05 mol/L, 0.1% ascorbate, pH 7.2) and 10 mg chicken
pancreatin (VitaFast® Chicken Pancreatin (γ-Glutamylhydrolase)) which was purchased
from R-Biopharm AG, Darmstadt, Germany. The extracts were diluted depending on the
concentration range and then inoculated into the wells of a 96-well microtiter plate coated
with Lactobacillus rhamnosus, together with the culture medium. After an incubation period
of 48 h in the dark at 37 ◦C, the turbidity was measured with a microtiter plate reader
at 620 nm. The total folate content of the samples was calculated by comparison with a
calibration curve constructed with the folic acid standard. The certified reference material
BCR-121 (whole-meal flour; action limit: 50 ± 7 µg/100 g d.m.) obtained from the Institute
for Reference Materials and Measurements (Geel, Belgium) was analyzed in each set of
samples as a quality control sample. The average experimental folate content obtained for
the certified reference material was 49 ± 4 µg/100 g of d.m.

Apparent folate retention (AR) was calculated on cooked pasta, defined by
Murphy et al. (1975) [38] as follows:

% AR =
folate content per g of cooked spaghetti(dry basis)

folate content per g of raw spaghetti (dry basis)
× 100

2.9. Furosine Determination

The determination of furosine was carried out according to the method proposed
by Resmini et al. (1990) [39]. A sample amount corresponding to 30–70 mg of pro-
teins was hydrolyzed under nitrogen with 8 mL of 8 N HCl at 110 ◦C for 23 h. The
hydrolysate was filtered on a filter paper Whatmann no. 4. The filtrate (0.5 mL) was
purified on a Sep-Pak C18 cartridge (Waters Corporation, Milford, MA, USA) and analyzed
by HPLC (Dionex, Sunnyvale, CA, USA) equipped with a furosine-dedicated column
(Grace, Reading, Berkshire, UK) and a photodiode array detector (Dionex, Sunnyvale) set
at 280 nm wavelength. The quantification of furosine was achieved using an external
standard purchased from Neosystem Laboratoire (Strasbourg, France).

2.10. Cooking Quality and Sensory Evaluation

Experimental whole-meal pasta samples cooked at the optimal cooking time (OCT)
were subjected to sensory analysis according to the International Standard ISO 7304-
2:2008 [40]. A trained panel of 10 individuals conducted the sensory analysis on the
cooked whole-meal pasta samples in a sensory room. The samples were provided in white
dishes immediately after cooking and in a randomized order. The panelists were asked
to assess the following sensory attributes: liveliness by manual handling, firmness by
chewing, and starch release by manual handling. The final judgment was expressed on a
scale from 10 to 100 and the total score was weighed for the individual sensory attributes
considered.
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2.11. Statistical Analysis

All experiments were performed at least in triplicate and the data were reported as
means ± standard deviation (SD). One-way ANOVA with Scheffé’s post-hoc test was con-
ducted to determine significant differences between means (p < 0.05) using SPSS software
(version 22.0, IBM SPSS Statistics, Armonk, NY, USA).

3. Results
3.1. Particle Size Distribution and Folate Content of Durum Wheat Debranning Fractions

The particle size distribution of the debranning fractions is shown in Figure 2. The
fine bran particles are mainly distributed between 100 and 250 µm (approx. 60%), unlike
the coarse bran particles in which the particle distribution was greater than 630 µm (79%).
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Table 2 shows the ash, protein, and folate distribution in the grain, semolina, and
debranning products. Folate accumulation in grain reached 60.3 µg/100 g d.m. The fine
bran (FB) fractions had a total folate content of 218.9 µg/100 g d.m, while for coarse bran,
(CB) it reached 204.9 µg/100 g d.m. As expected, the semolina was characterized by a drop
of folate content compared to grain, reaching 25.8 µg/100 g f.w. (30.2 µg/100 g d.m.), while
in Ruggeri et al. (2022) [25], commercial semolina displayed values of 35.0–40.2 µg/100 g
f.w. The results confirm the greater localization of folate in the outer cell layers, especially
in the aleurone layer, and in the germ of the wheat grain, coupled with a substantial folate
depletion in the endosperm tissues [21,41]. These results are consistent with previous
studies in grains, despite the large variability in folate accumulation, which may be due to
environmental and genetic factors [42]. In durum wheat, Piironen et al., (2008) [20] found
the range of folate to be 63.7–89.1 µg/100 g d.m., unlike Giordano et al., (2015) [29], who
reported a value of approximately 112 µg/100 g d.m. In the same study, fractions obtained
from wheat pearling 0–5% concentrated 205.0 µg/100 g d.m. folate in common wheat,
and 267.0 µg/100 g d.m. in durum wheat, while with 5–10% pearling, values reached
189.5 µg/100 g d.m. and 265.1 µg/100 g d.m., respectively. In barley, Ruggeri et al. [25]
reported a higher content of folate in pearling by-products compared to kernel, reaching
the highest level (221.7 µg/100 g) in the second pearling step (yield: 19.3%).
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Table 2. Ash, protein (N × 6.25), and folate distribution in milling products.

Sample Moisture
(% f.w.)

Ash
(% d.m.)

Protein
(% d.m.)

Total Folate
(µg/100 g d.m.)

DWG 8.3 ± 0.06 1.98 ± 0.021 c 17.4 ± 0.28 b 60.3 ± 1.5 c

SEM 14.4 ± 0.03 1.32 ± 0.049 d 16.7 ± 0.05 c 30.2 ± 2.31 d

FB 13.0 ± 0.07 8.30 ± 0.040 a 22.3 ± 0.08 a 218.9 ± 2.65 a

CB 14.5 ± 0.11 5.43 ± 0.064 b 21.8 ± 0.06 a 204.9 ± 3.82 b

Mean values ± SD. Mean values within a column with different superscript letters indicate statistically significant
differences (p < 0.05). DWG, durum wheat grain; SEM, semolina; FB fine bran; CB coarse bran.

Overall, according to our results, both the coarse and fine products of the second step
of durum wheat debranning were naturally enriched in folate and can serve as optimal
raw material to increase the folate levels in derived foods.

3.2. Chemical–Nutritional Composition and Colorimetric Indices of Experimental
Whole-Meal Pasta

The composition of the experimental whole-meal spaghetti is shown in Table 3. Pro-
tein content was 15.0% and 15.2% in WP-FB and WP-CB, respectively, while the inclu-
sion of coarse bran in the formulation resulted in a higher accumulation of dietary fiber,
8.3 g/100 g f.w., compared to pasta formulated with fine bran (6.5 g/100 g f.w.). Overall,
the pasta samples had a fiber content greater than 6 g/100 g and, therefore, could be labeled
with the claim “High fibre” according to the European Regulation No 1924/2006 [31] on
nutrition and health claims on food. Studies have shown the significant contribution of
bioactive compounds occurring in bran to multiple physiological effects, especially for
healthy gastrointestinal function. A higher intake of dietary fiber is beneficial for microbiota
diversity and/or abundance [43,44], specifically in relation to the arabinoxylan fraction [45],
also providing an enhancement of the intestinal barrier [44]. Furthermore, interesting evi-
dence is emerging about the possible role of folate in the regulation of immunoregulatory
control of the gastrointestinal tract microbiome [46].

As shown in Table 3, the furosine level was equal to 224 mg/100 g protein in the
WP-FB sample, and 245 mg/100 g in the WP-CB sample. Marti et al., (2017) [47] found
furosine values for whole-meal pasta samples that varied over a wide range between 229
and 836 mg/100 g protein. This variability can be attributed to the drying diagram, as well
as to the characteristics of the raw materials, such as the presence of damaged starch, the
amylase activity, and the content of reducing sugars and proteins [47–49]. Additionally,
no significant differences were found for the colorimetric indexes L* and b* (Table 3). It
is well known that high-temperature drying (>65 ◦C) improves the cooking properties
of pasta, especially when semolina has low/weak gluten [50]. Nevertheless, whole-meal
pasta made with high-temperature drying may be perceived as more bitter and with
weaker appearance, mechanical properties, and firmness than products obtained with
low-temperature drying [51].

The results of this study, combined with previous evidence, show that the use of durum
wheat debranning fractions and the adoption of a low drying temperature enables the
production of whole-meal pasta with low heat/nutritional damage, while also preserving
positive impacts on consumer perception.
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Table 3. Chemical composition, folate, color, and sensorial properties of experimental whole-meal pasta samples.

Pasta
Sample

Moisture
(g/100 g,

f.w.)

Ash
(g/100 g, f.w.)

Protein
(g/100 g,

f.w.)

Fat
(g/100 g,

f.w.)

Total Dietary
Fibre

(g/100 g, f.w.)

Carbohydrate *
(g/100 g, f.w.)

Total Folate
(µg/100 g

f.w.)
L* a* b*

Furosine
(mg/100 g
Protein)

OCT
(Min)

Total
Score

Total
Judgement

WP-FB 10.3 ± 0.04 a 1.52 ± 0.014 a 15.0 ± 0.08 a 2.2 ± 0.01 a 6.5 ± 0.29 b 64.4 ± 0.43 b 37.8 ± 1.80 b 52.8 ± 1.12 a 5.2 ± 0.13 b 21.5 ± 0.29 a 224 ± 5 b 15:00 87 More than
good

WP-CB 10.0 ± 0.07 b 1.53 ± 0.057 a 15.2 ± 0.09 a 2.4 ± 0.01 a 8.3 ± 0.06 a 62.5 ± 0.29 a 43.1 ± 0.74 a 51.6 ± 1.09 a 6.0 ± 0.27 a 20.7 ± 0.56 a 245 ± 4 a 14:09 82 Good

Mean values ± SD. Mean values within a column with different superscript are statistically significantly different (p < 0.05). WP-FB, whole-meal pasta, 94% semolina and 6% fine bran;
WP-CB, whole-meal pasta, 90% semolina and 10% coarse bran. * Calculated by difference.
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3.3. Total Folate Content in Raw Experimental and Commercial Pasta Samples

As reported in Table 3, the experimental samples of whole-meal raw pasta had a
total folate content of 37.8 and 43.1 µg/100 g f.w. in WP-FB and WP-CB, respectively.
Further, Figure 3 also shows the folate content of the experimental and commercial raw and
cooked spaghetti samples (% d.m.). It is noteworthy that the experimental pasta obtained
in this work had a higher folate level (% d.m.) than the average commercial whole-meal
pasta (+42%). In fact, the mean folate value in commercial whole-meal pasta samples
was 31.6 µg/100g d.m., ranging between 25.0 µg/100 g d.m. and 38.7 µg/100 g d.m.
The large variability in commercial whole-meal pasta could be ascribed to the differences
in the folate content of raw materials and milling techniques adopted to obtain whole-
meal flours [52] which, consequently, determine the placing on the market of whole-meal
products with different chemical and nutritional characteristics. As previously discussed,
starchy endosperm tissues of grains are substantially depleted of folate compared to bran
layers; thus, the folate content in whole-meal pasta samples (experimental and commercial)
(Figure 3) exceeded the value found in commercial semolina pasta, which had an average
total folate content of 13.0 µg/100 g d.m. The results of this study evidenced that the total
folate values found in our whole-meal pasta samples (37.8 µg/100 g f.w. and 43.1 µg/100 g
f.w. in WP-FB and WP-CB, respectively) were lower than those reported by Hirawan and
Beta (2014) [53], of 57 µg/100 g, and Ruggeri et al., (2022) (50.5–61.1 µg/100 g f.w.) [25].
However, as previously mentioned, folate levels in cereal-based products are influenced by
agronomic and environmental factors related to raw materials, as well as by milling and
processing techniques.
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Figure 3. Folate variation in raw and cooked pasta samples (mean values ± SD). The asterisk
represents statistically significant differences (p < 0.05) in folate content (% d.m.) between raw
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According to European regulations [31,32,54], nutrition and health claims on folate
can be provided if the food product covers at least 15% of the nutrient reference value
(200 µg). Experimental whole-meal pasta samples met these requirements and achieved
a folate content greater than 30 µg/100 g, and thus were allowed to boast the relevant
nutrition (“source of folate”) and health claims. On the other hand, among the commercial
samples, only CWP5 and CWP8 met the requirements for health claims on folate.

3.4. Folate Content and Retention in Experimental and Commercial Pasta Samples after Cooking

To evaluate the impact of cooking on folate retention, this index (apparent folate
retention—AR) was calculated in the pasta samples (experimental and commercial), consid-
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ering the folate content, before and after cooking, expressed on a dry matter basis (Figure 3).
In all pasta samples, the total folate content was lower in the cooked pasta than in the
raw pasta, with folate losses in WP-FB and WP-CB being 47.5% and 20.4%, respectively.
Given the water solubility of folate, losses of these nutrients during boiling may be due
to both thermal degradation and leaching into the cooking water [55,56]. Nonetheless,
the experimental whole-meal pasta had higher folate levels than the commercial pasta
after cooking.

The experimental whole-meal pasta retained folate in the measure of 52% in WP-FB
and 80% in WP-CB, while the average value in commercial samples was 78%. However,
the highest folate retention was found in semolina pasta samples, with results equal to 89%.
In the scientific literature, few studies have evaluated the effect of the cooking process on
folate retention in pasta. Ranhotra et al., (1985) [57] calculated the “true” retention of folate
in semolina pasta samples, also taking into account the loss of solids during cooking, and
found that the cooked samples retained a significant amount of folate, on average equal to
79% for spaghetti and 77% for macaroni. Liang et al., (2020) [58] found high folate retention
in noodles samples after cooking, equal to an average of 78%, and an average loss of folate
of 13% from boiling degradation. Similarly, Bui and Small (2007) [59] found that boiling the
noodles resulted in an average loss of folate ranging from 13% to 30% for white and yellow
noodles, while for instant noodles, the loss of these nutrients was very low, and between 4%
and 6%. Pasta produced with barley pearling by-products had an average folate retention
of 68.5% according to Ruggeri et al., (2022) [25]. In the same study, whole-meal commercial
pasta samples displayed lower folate retention (49%) compared to our data. Remarkably,
WP-CB was able to retain an amount of folate greater than 30 µg even after cooking, thus
potentially maintaining the health claim for the raw pasta after domestic preparation. In
contrast, in commercial pasta samples CWP5 and CWP8, the folate losses do not allow the
health claim to be maintained after cooking.

These results suggest that the inclusion in the diet of whole-meal pasta produced
using the folate-rich durum wheat debranning fractions could substantially contribute to
meeting dietary reference values for folate intake (250 µg/day [9]).

3.5. Sensorial Properties of Cooked Spaghetti Samples

The use of coarse bran in the formulation resulted in a shorter cooking time (Table 3),
which is probably due to a greater physical disruption of the gluten matrix by coarser
bran particles, leading to increased water absorption. Our evaluation showed that the
whole-meal pasta made with fine bran had slightly better sensory properties (overall
score 87) than the whole-meal pasta made with coarse bran (overall score 82). Firmness
was positively judged for both samples, while also presenting strands of pasta separated
from each other (liveliness) and with no starchy residues (starch release). Additionally,
the panelists perceived the WP-CB samples as having an intense and fragrant flavor of
whole-meal semolina and a slightly woody taste. These results are consistent with those of
Steglich et al., (2015) [60], as bran particle size did not significantly influence the sensory
attributes of liveliness and firmness, while whole-meal spaghetti with larger bran particles
had a more intense flavour than whole-meal spaghetti with smaller bran particles.

4. Conclusions

The incorporation of durum wheat debranning products—fine bran, coarse bran—in
whole-meal pasta contributed to a marked improvement in the folate content of the final
product, by an average of 40.5 µg/100 g. The pasta products can be labeled as “Source
of folate” and boast the related health claims. The study of folate retention after cooking
showed that samples formulated with coarse bran retained the highest amount of folate
(80%), which opened up the possibility of also claiming the health effect on folate after
preparation. The nutritional advantages for healthy adults also included a high availability
of dietary fiber (7.4% on average) combined with overall good sensory acceptability.
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