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Abstract: Chinese sweet rice wines (CSRW) are traditional, regionally distinct alcoholic beverages that
are generally brewed with glutinous rice and fermentation starters. This study aimed to characterize
microbial communities and volatile compounds of CSRW starters and explore correlations between
them. The major volatiles in starters include 1-heptanol, 1-octanol, 2-nonanol, phenylethyl alcohol,
2-nonanone, acetophenone, and benzaldehyde. Microbiological analysis based on high-throughput
sequencing (HTS) technology demonstrated that starter bacterial communities are dominated by
Weissella, Pediococcus, and Lactobacillus, while Saccharomycopsis and Rhizopus predominate in fungal
communities. Carbohydrate and amino acid metabolism are the most active metabolic pathways in
starters. Spearman correlation analysis revealed that 15 important volatile compounds including
alcohols, acids, aldehydes and esters were significantly positively correlated with nine microbial
genera (|r| > 0.7, p < 0.05), including five bacterial genera (i.e., Weissella, Pediococcus, Lactobacillus,
Bacillus, and Nocardiopsis) and four fungal genera (i.e., Saccharomycopsis, Rhizopus, Wickerhamomyces,
and Cyberlindnera), spanning 19 distinct relationships and these microorganisms were considered
the core functional microorganisms in CSRW starters. The most important positive correlations
detected between phenylethyl alcohol and Weissella or Saccharomycopsis and between 2-nonanol and
Pediococcus. This study can serve as a reference to guide the development of defined starter cultures
for improving the aromatic quality of CSRW.

Keywords: Chinese sweet rice wine; volatile compounds; microbial community; metabolic function;
correlation analysis

1. Introduction

Rice wine is popular in East and Southeast Asian countries, such as Chinese sweet rice
wine and yellow rice wine, Japanese sake, Korean rice wine, and Vietnamese black glutinous
rice wine. Chinese sweet rice wine (CSRW) is a traditional beverage consumed in China and
prized by consumers for its unique flavor and purported nutritional properties related to its
enrichment with oligosaccharides, polypeptides, vitamins, minerals, and amino acids [1].
CSRW is generally brewed with glutinous rice and has a low alcohol content, ranging from
0.5% to 14% (v/v), with a savory sweet taste that differs from Chinese yellow rice wine,
which is brewed with rice or millet and has a higher alcohol content of 14–20% (v/v) [2,3].
In addition, CSRW fermentation also requires the addition of specific fermentation starters,
also known as Jiuqu. Jiuqu likely originated over 5000 years ago in China, and records of its
use are found in the QiMin YaoShu text written in the 6th century AD (ca. 544 AD) [1]. The
Jiuqu for CSRW is made with rice flour and Chinese herbal medicine under open conditions,
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which is different from the wheat Qu (fermented by Aspergillus) used for Chinese yellow rice
wine [4,5]. Regional variations in the wild native microbes and environmental conditions
of Jiuqu production can potentially influence the microbial community composition and
quality of Jiuqu, especially in non-sterile fermentation processes [6]. The influence of
environment in different regions can also lead to differences in CSRW starters, which may
impart distinct sensory profiles, flavors, and other characteristics to the CSRW [7].

Starters cultures are enriched with various microbes that participate in saccharification,
fermentation, and the production of flavor-related metabolites, such as yeasts, filamentous
fungi, and an array of bacterial taxa [8]. The microbial populations specific to different
starters show variation in their metabolic capabilities that could determine the final flavor
profile of Chinese rice wines [9]. For example, hydrolases, glucoamylases, proteases,
esterases, lipases, and alcohol acetyl transferase are produced by various bacteria during
fermentation to degrade the raw material substrates, all of which could lead to accumulation
of aroma-related compounds or secondary metabolites and intermediates [10,11]. The
fungal communities in starter cultures have also been shown to play an essential role in
starch and protein hydrolysis, as well as in the production of ethanol, organic acids, higher
alcohols, and esters [12].

Differences in raw materials can lead to differences in the number and diversity of mi-
croorganisms in starters [1,13,14]. Previous studies investigating the microbial diversity and
volatile profiles of Chinese yellow rice wine starters have proposed that different microor-
ganisms determine the different volatile compounds of the starter, which may affect the
flavor of products. For instance, some studies have indicated that microbial heterogeneity
in wheat Qu is responsible for significant differences in volatile compounds [5,13]. Another
study found that bacterial and fungal communities varied significantly in different starters
of Hongqu yellow rice wine (produced in Fujian, China) and that core microorganisms
were positively correlated with specific organic acids and aromatic esters in the starters [14].
In addition, Chen et al. [15] reported that distinct microbial communities in three different
traditional rice wine starters were associated with significantly different aroma components
in the final fermented rice wines. One study comparing eight CSRW starter samples from
different regions of southern China identified significant variation in the bacterial and
fungal composition, which likely contributed substantial differences to the final flavor
quality of the respective CSRWs [1]. While each of these studies provide some clues into
the relationship between starter microbes and CSRW flavor, further detailed investigation
of the metabolic characteristics, microbial composition, volatile compound profiles, and
correlations between these factors in CSRW starters from different geographical regions are
warranted to facilitate the development of defined starters that could improve the aromatic
quality of CSRW. Furthermore, a more complete understanding of the microorganisms and
their metabolic functions is needed to establish standardized strategies for industrial CSRW
production.

In this paper, the composition, structure, diversity, and metabolic function of micro-
biota in CSRW starters from different geographic locations were compared using high-
throughput metagenomic rDNA sequencing (i.e., 16S rRNA and ITS genes). In addition,
we used gas chromatography–mass spectrometry to characterize volatile compounds in
CSRW starters from different regions in order to examine whether and how different mi-
crobes in these CSRW starters might be correlated with specific aroma-related metabolites.
Functional inference analysis was also conducted to compare enriched metabolic pathways
in microbial communities of CSRW starters. Overall, correlations between microbes and
aroma profiles from different regions, suggesting a link between microbiota function and
flavor profiles associated with different CSRW starters, can improve our understanding of
microbial community function and contribution to the flavor of traditional CSRW.
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2. Materials and Methods
2.1. Sample Collection

Seven kinds of rice wine starters were sampled from a range of rural CSRW production
regions in China, including YC1 and YC2 (Yichang, Hubei), XG (Xiaogan, Hubei), NT1 and
NT2 (Nantong Jiangsu), NJ (Neijiang, Sichuan) and MZ (Meizhou, Guangdong) (Figure 1).
The starter samples were delivered to the laboratory in a sterile sampling box containing
ice bags and stored at −20 ◦C prior to GC-MS and sequencing analyses.
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Figure 1. Samples from different parts of southern China.

2.2. Volatile Compound Profile Analysis

Volatile compounds in rice wine starters and sweet rice wine samples were ana-
lyzed by headspace solid-phase microextraction coupled with gas chromatography–mass
spectrometry (HS-SPME-GC-MS) [13]. Briefly, 0.8 g samples were mixed with 8 mL sat-
urated NaCl solution in a 20 mL transparent round-bottom headspace sample bottle, to
which was added 1 µL 2-octanol as the internal standard. For both wines, 1 µL 2-octanol
internal standard and 2 g NaCl were added to 8 mL of each sample in a 20 mL vial.
Carboxen/polydimethylsiloxane (CAR/PDMS) SPME fibers (75 µm, Fused Silica 24 Ga,
Manual Holder, 3 pk, Supelco, St. Louis, MO, USA) were used for volatile compound
extraction. The fiber was headed into the SPME device, which was inserted in the vial
to extract volatile compounds at 60 ◦C for 50 min. Compounds were desorbed for 3 min
at 280 ◦C in splitless mode, using a 0.75 mm dedicated SPME liner. The extraction of
volatile compounds was carried out on an Agilent 7890 GC (Agilent Technologies, Santa
Clara, CA, USA); equipped with a DB-5 capillary column: (60 m × 0.25 mm × 0.25 µm,
Agilent Technologies, California, USA). The carrier gas was ultrahigh-purity helium at a
constant flow of 1.0 mL/min [16]. Programmed temperature rise: initial temperature 50 ◦C,
hold for 2 min; heated at 2 ◦C/min to 115 ◦C, hold for 3 min, 4 ◦C/min rise to 200 ◦C;
6 ◦C/min rise to 230 ◦C, hold for 10 min. Mass spectra (Agilent 5977B MS) were gener-
ated in the electron impact (EI) mode at 70 Ev ionization energy using the full scan mode
(50–550 amu). Compounds were identified by comparison with the NIST11 mass spectral
database. Semi-quantitation of the volatile compounds was achieved using 2-octanol as an
internal standard and applying the formula C_2 = A_2/A_1 × C_1, where C_2 is the rela-
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tive concentration of analyzed sample, C_1 is the final concentration of internal standard
in sample, A_2 is the peak area of analyzed sample, and A_1 is the peak area of internal
standard. The results were reported as the mean of three replicates of starter samples.

2.3. Bacterial and Fungal DNA Extraction and Sequencing

DNA was extracted from 0.3 g of starter samples using a PowerSoil Total DNA
Isolation Kit (MO BIO, Carlsbad, CA, USA) according to manufacturer instructions. Ex-
tracts were made in triplicate and combined into a single extract of each sample. The
concentration and quality of the extracted DNA were determined by spectrophotom-
etry (NanoDrop 2000; Thermo, Japan) and 1% agarose gel electrophoresis. The 338F
(5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′)
primers were used to amplify the V3–V4 region of bacterial 16S rRNA genes [17]. The ITS1
(5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2 (5′-GCTGCGTTCTTCATCGATGC-3′)
primers were used to amplify the ITS1 region of the fungal rRNA gene [18]. Libraries
were prepared for high-throughput sequencing using a TruSeq® DNA PCR-Free Sample
Preparation Kit (Illumina, San Diego, CA, USA) and sequenced on the Illumina MiSeq
PE300 platform by Majorbio Co., Ltd. (Shanghai, China), and the Illumina sequencing
raw data were deposited in the Sequence Read Archive (SRA) in the National Center for
Biotechnology Information (NCBI) database as a BioProject (https://www.ncbi.nlm.nih.
gov/sra/PRJNA955836, accessed on 10 June 2023), accession number is PRJNA955836.

2.4. Bioinformatic Analysis

Raw pair-end reads were assembled after trimming adaptors and barcodes and filter-
ing low-quality reads using Quantitative Insights into Microbial Ecology (QIIME) 1.9.1,
resulting in clean, paired-end, high-quality reads. These sequences were then clustered
into operational taxonomic units (OTUs) with 97% sequence similarity using Uparse soft-
ware (version 7.1) and default parameters. The representative OTU sequences were also
annotated using the Silva (version 138) and Unite (version 8.0) databases, respectively, with
RDP-classifier (v.2.2) [16]. OTU abundance information was normalized using a standard
sequence number corresponding to the sample with the fewest sequences to obtain the
normalized data. Alpha and beta diversity metrics were calculated using QIIME 1.9.1. Phy-
logenetic investigation of communities by reconstruction of unobserved states 2 (PICRUSt2)
was used to predict the functional of microbial communities based on the Green-genes
database [19].

2.5. Statistical Analysis

Statistical calculations were performed using SPSS Statistics (v.22.0.0) software (IBM,
Armonk, NY, USA). The volatile profiles were visualized with heatmap using R software
(v.4.05) with the “heatmap” package. Differences in volatile metabolite profiles and beta
diversity were visualized by principal component analysis (PCA) and principal coordinate
analysis (PCoA) in R (v.4.05), respectively. The relative abundances of the representative
taxa were visualized with R (v.4.05). To check the association of volatile flavor compounds
with bacterial and fungal community composition, network analysis was performed using
Spearman correlation analysis and visualized in the Gephi software (Version 0.8.2).

3. Results
3.1. Volatile Compounds in Different Starters

The analysis of volatile compounds in the different traditional CSRW fermentation
starters was performed by SPME-GC-MS. A combined total of 68 volatile compounds were
identified in seven CSRW starters, mainly including nine alcohols, eight esters, six acids,
fourteen aldehydes, four ketones, seven alkanes, eight terpenes, and twelve aromatic com-
pounds; their detailed contents are listed in Supplementary Table S1, and the distribution of
all of the volatile compounds is visualized in Figure 2. Close examination of the types and
contents of volatiles in each sample (Supplementary Table S2) indicated that starters from
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MZ had the highest number of different volatile compound species as well as the highest
content of all volatile compounds compared with other samples. Alcohols were the most
abundant compounds and comprised the largest proportion of compounds detected in
starters, accounting for 30.46–73.55% of samples. Among the different samples, XG had the
highest alcohol content. In particular, phenylethyl alcohol was detected at relatively high
levels in all samples. Acids (0–41.88%) and aldehydes (2.65–15.08%) were also relatively
abundant among the volatile compounds in starters, with MZ samples having the highest
content and types of acids and aldehydes. By contrast, ketones, esters, alkanes, terpenes,
and aromatic compounds were relatively less abundant.
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Furthermore, some volatile compounds were exclusively found in specific starter
samples, such as 2-heptanone (V21), 2-butyl-2-octenal (V40), and hexadecane (V46) in YC2;
eicosane (V47) and p-cresol (V65) in NT1; dimethyl phthalate (V17), 1,2-dimethoxy-benzene
(V66), 2,5-dimethyl-Pyrazine (V67) and 3-ethyl-2,5-dimeth-yl-pyrazine (V68) in NT2; α-
phenethyl alcohol (V6), 3-phenyl-2-propenal (V30), undecane (V44), aromandendrene
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(V53), chamigrene (V55), and phenol (V63) in NJ; and 2,4,7,9-tetramethyl-5-decyn-4,7-diol
(V8), 5-butyldihydro-2(3H)-furanone (V10), dihydroactinidiolide (V11), heptanoic acid
(V23), n-hexadecanoic acid (V24), nonanoic acid (V25), 5-methyl-2-furancarboxaldehyde
(V32), (E)-2-octenal (V35), 2-hydroxy-benzaldehyde (V37), vanillin (V39), and pentadecane
(V45) in MZ. By contrast, no volatile compounds were unique to XG or YC1 samples.
Furthermore, 1-heptanol (V1), 1-octanol (V2), 2-nonanol (V3), phenylethyl alcohol (V4), 2-
nonanone (V18), acetophenone (V19) and benzaldehyde (V29) were detected in all samples
and at relatively high concentrations compared with other volatiles and were therefore
considered the major volatile constituents of CSRW starters in this study. Some of these
compounds were previously detected in CSRW [2,20]. Hierarchical clustering analysis of
these samples indicated that YC1 and YC2 clustered together, and NT1 and XG clustered
together, and that these two pairs of samples formed a group that clustered apart from NT2,
NJ, and MZ samples. This clustering pattern indicated greater similarity in the volatile
compound profiles among the former four samples than with those of the latter three
samples.

A PCA distance plot of samples based on the relative contents of all of the volatile
compound was used to visualize the variation among volatile profiles of different starters
(Figure 3A), which was consistent with the hierarchical clustering analysis results men-
tioned above. The first principal component (PC1) accounted for 48.0% of the total variation,
while PC2 explained 19.8%, collectively representing 67.8% of the total variability of volatile
compounds. This result implied that the volatile profiles of YC1, YC2, NT1, and XG were
more similar to each other (PC1 vs. PC2) than they were to the other three samples, and
all grouped together in the second quadrant. In addition, NJ, NT2 and MZ exhibited little
similarity to the other starters. These results indicated that samples from Yichang (YC1 and
YC2) and Xiaogan (XG), two cities in Hubei Province, have similar aroma characteristics,
while the samples from Nantong city (NT1 and NT2) in Jiangsu Province showed marked
differences. In addition, these results identify differences in the aroma characteristics of
samples from different regions, which could potentially lead to variation in the aroma
profiles of the final products, making each CSRW regionally distinct, as proposed by Su
and co-workers [7]. A loading plot of the 68 compounds is shown in Figure 3B. The
14 main contributors (contribution > 1%) to regional variation in volatiles were 1-heptanol
(V1), 1-octanol (V2), phenylethyl alcohol (V4), benzaldehyde (V29), 2-nonanol (V3), dode-
cane (V42), 2-nonanone (V18), acetophenone (V19), d-limonene (V50), β-Cedrene (V56),
2-methyl-phenol (V60), styrene (V51), 3-nonanone (V20), and 2,4-bis(1,1-dimethylethyl)-
phenol (V59) (Figure 3C).

3.2. Alpha Diversity Analysis of Different Starters

In order to assess the microbial diversity in CSRW starters, trimmed and filtered
sequencing data were pooled and reads were clustered at a 97% similarity level, resulting
in a total of 1110 bacterial OTUs, and 103 fungal OTUs. Good’s coverage was higher
than 99.7% for each sample, indicating that the sequencing depth was sufficient to reliably
describe the full diversity of microbial communities. Chao1, ACE, Shannon, and Simpson
indices were calculated to characterize the α-diversity of microbiota in each starter sample
(Supplementary Table S3).

The Chao1 and ACE indices show the abundance of microbial communities, with
higher scores indicating higher total abundance of OTUs, which differed between bacteria
and fungi. For bacterial OTUs, Chao1 and ACE revealed that NT1 and NT2 had greater
microbial community richness, followed closely by YC1, XG and YC2. For fungal OTUs,
YC1 had the most abundant microbial community, followed by NT2 and NT1. The Shannon
and Simpson indices reflect the diversity of the microbial community, with higher Shannon
scores and lower Simpson scores indicating higher microbial community diversity, which
also differed among bacteria and fungi. For bacterial OTUs, NT2 starter samples had the
highest microbial diversity, while YC2 had the lowest microbial diversity. Among fungal
OTUs, YC1 had the highest diversity, whereas YC2, XG, and MZ had lower diversity. In
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general, NT2 had greater bacterial community richness and higher bacterial community
diversity, while YC1 had greater fungal community richness and diversity.
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3.3. Beta Diversity Analysis of Different Starters

To analyze the beta diversity of bacteria and fungi in the samples of starters from
different regions, microbial community profiles were compared by generating Bray–Curtis
PCoA plots. In the bacterial community profiles (Figure 4A), PC1 and PC2 accounted for
36.83% and 33.21% of the observed variability, respectively, collectively explaining 70.04%
of the total variability of the bacterial community. The resulting PCoA plots revealed that
bacterial communities in starter samples clustered into four distinct groups, with XG and
YC2 in quadrant 2, YC1 on the horizontal ordinate, NJ and MZ in quadrant 3, NT1 and
NT2 in quadrant 4. This result highlighted the effects of differences in CSRW starters in
different regions.

Principal coordinate plots of fungal communities in these samples indicated that PC1
and PC2 explained 70.62% and 15.94% of the observed variability, respectively, collectively
representing 86.56% of the total variability among starter fungal communities (Figure 4B).
By contrast with bacterial communities, the fungal communities clustered into only three
different groups by quadrant, with NT2 in quadrant 2; NJ, YC1, and NT1 (which had
relatively similar fungal distributions) forming a group in quadrant 3; and XG, YC2, and
MZ samples clustered in quadrant 4, which differed slightly from the results of the bacteria.
Hierarchical clustering of the CSRW starter samples based on the abundance of bacterial
and fungal genera showed similar results to the PCoA plot (Figure 4C,D). Taken together,
these results showed that the microbial communities of CSRW starters from different
regions exhibited both variability and similarities, which was consistent with findings in
previous analyses of CSRW starters [1,6]. The close position among samples indicated
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similarities in the composition of principal genera, while more distant samples in the PCoA
plot reflected differences in these principal genera. Fungal communities in these samples
showed large differences in PC1 values, indicating their large differences in principal
genera. These findings led us to further explore the differences in microbial community
composition among samples.
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3.4. Microbial Composition and Core Microbiota of Starters
3.4.1. Bacterial Composition

A total of 594 bacterial genera were detected in seven starter samples, of which 11
had a relative abundance greater than 1%, including Weissella (0.13–94.87%), Pediococcus
(0–68.25%), Lactobacillus (0.06–52.81%), unclassified_k__norank_d__Bacteria (0–27.93%),
Glutamicibacter (0–27.74%), Enterococcus (0–10.50%), Staphylococcus (0–12.28%), Lactococcus
(0–9.44%), Bacillus (0–12.43%), Enterobacter (0–8.53%), and Nocardiopsis (0–9.70%) (Figure 5A).
Weissella, which was the most abundant genus in CSRW starters, had a higher abundance
in YC1, YC2, and XG, and was especially characteristic of YC2 and XG. Other LAB gen-
era were also abundant in samples, including Pediococcus, Lactobacillus, Lactococcus, and
Enterococcus. Among these, Pediococcus was more abundant in MZ, NJ, and YC1 than other



Foods 2023, 12, 2932 9 of 18

the samples, and was the characteristic genus in MZ and YC1, although this genus was
undetectable in NT1. Lactobacillus and Lactococcus each accounted for a large proportion of
bacterial genera in the starter samples. In particular, Lactobacillus was found at its highest
relative abundance in NJ, while Lactococcus was most abundant in XG compared to the
other samples. In addition, Enterococcus was found in high levels in NT2, NT1, and XG
samples.
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(A), Fungi (B).

The predominant genus in NT1 samples was Glutamicibacter. Among other prevalent
genera, Staphylococcus and Enterobacter were found mainly in NT1 and NT2 samples, while
Bacillus was detected at particularly high levels in NT2. A less abundant genus, Nocardiopsis,
was largely found in NT1 samples.
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3.4.2. Fungal composition

Analysis of fungal taxa revealed a total of 58 genera in the seven combined starter
samples. Among these, six genera had a relative abundance higher than 1%, including Sac-
charomycopsis (0–99.84%), Rhizopus (0.11–92.86%), Aspergillus (0–67.94%), Candida (0–33.91%),
Wickerhamomyces (0–31.52%), and Cyberlindnera (0–14.03%) (Figure 5B). Saccharomycopsis ac-
counted for a considerable proportion of fungi in MZ, YC2, and XG samples. However, this
genus was not detected in NT1 and NT2 samples, suggesting that, despite its prevalence in
some samples, Saccharomycopsis was not ubiquitously present in CSRW starters. In contrast
with Saccharomycopsis, Rhizopus was found in high abundance in NT1, NJ, YC1, and NT2
samples and was the only core fungus present in all samples. Aspergillus also accounted
for a considerable proportion of fungi in these samples, particularly in NT2. Compared
with the above-mentioned microbes, Candida, Wickerhamomyces, and Cyberlindnera occupied
a relatively smaller proportion of fungi. Candida was found primarily in the NJ samples,
while Wickerhamomyces was more abundant in YC1. Cyberlindnera was prevalent in the YC1
sample.

3.5. Microbial Function Prediction

To better understand how different taxa in starters may contribute to the specific
flavor properties of CSRW, PICRUSt2 (phylogenetic investigation of communities by re-
construction of unobserved states 2) analysis [21] was conducted to infer the functional
metabolic capabilities of microbial communities based on their composition in 16s rRNA
gene metagenomic data in different starters [15]. The predicted functional genes enriched
in the CSRW starters were related to metabolism (73.51–79.39%), genetic information pro-
cessing (6.27–10.68%), environmental information processing (5.95–7.83%), human diseases
(2.96–3.99%), cellular processes (2.28–3.93%), and organismal systems (1.38–1.91%) among
the level 1 KEGG pathways (Figure 6A). Metabolism-related pathways were markedly
enriched in most samples, especially NT1, and NT1 samples had a relatively low abun-
dance of predicted genes related to human disease. Among the level 2 KEGG pathway
categories, the most abundant predicted metabolic capabilities were related to carbohy-
drate metabolism, followed by amino acid metabolism, membrane transport, and energy
metabolism (Figure 6B). Inferred carbohydrate metabolism pathways were prominent in
MZ and NJ samples while amino acid metabolism pathways were prominent in NT1 and
NT2 samples, which may have contributed to the observed variation in volatile compound
profiles between these samples.

3.6. Correlation Analysis between Volatile Components and Representative Microbiota

In order identify significant relationships between specific microbial taxa and the
production of specific flavor compounds, a Spearman correlation analysis was conducted
for the predominant bacterial (n = 11, relative content > 1%) and fungal (n = 6, relative
content > 1%) genera and the full set of detected volatile compounds. This analysis yielded a
total of 57 significant pair-wise correlations (|r| > 0.7, p < 0.05) between 24 different volatiles
and 15 microbial genera, including 25 positive correlations (red lines) and 32 negative
correlations (blue lines). Among these correlations, one pair of highly significant positive
correlations and four pairs of highly significant negative correlations (|r| > 0.7, p < 0.01)
emerged (Figure 7).
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Red lines represent positive correlations between volatile components and microorganisms, blue lines
represent negative correlations between volatile components and microorganisms. Bold connecting
lines represent highly significant correlations (|r| > 0.7, p < 0.01).

In particular, an important positive correlation was observed between Weissella and
phenylethyl alcohol (V4), while this genus negatively correlated with acetophenone (V19)
(p < 0.01). Pedioccoccus was positively correlated with 2-nonanol (V3), benzyl alcohol (V7),
octanoic acid (V26), furfural (V31), 3-furaldehyde (V36), heptanal (V38), and dodecane
(V42). In addition, Lactobacillus had similar positive correlations with the same volatile
components as Pedioccoccus. The relatively low-abundance genus, Nocardiopsis, was posi-
tively correlated with some volatile compounds such as benzoic acid (V22), eicosane (V47),
2,4-bis(1,1-dimethylethyl)-phenol (V59), and p-cresol (V65). Enterococcus was positively
correlated with cis-1-Butyl-2-methylcyclopropane (V48). Bacillus was positively correlated
with benzoic acid (V22) and was significantly negatively correlated with 2-octyl benzoate
(V15) (p < 0.01). Enterobacter shared a highly significant negative correlation with dode-
cane (V42) (p < 0.01), while Glutamicibacter was negatively correlated with 2-nonanol (V3).
Among fungi, Saccharomycopsis was positively correlated with phenylethyl alcohol (V4)
and d-limonene (V50); Rhizopus was positively correlated with 2-octanolacetate (V13);
Wickerhamomyces was positively correlated with 2-octyl ester pentanoic acid (V12), but
was negatively correlated with benzoic acid (V22) (p < 0.01); Cyberlindnera shared a highly
significant positive correlation with 2-octyl benzoate (V15) (p < 0.01) and was positively
correlated with dihydro-5-pentyl-2(3H)-furanone (28).

In general, bacteria had 19 positive pair-wise associations with volatile components,
while fungal taxa shared 6 positive pair-wise associations, suggesting that bacteria may
exert somewhat greater influence on the aroma profiles of CSRW starters, and which
is consistent with previous findings in Wheat Qu [13]. In addition, the most important
positive correlations between two major volatile compounds and three dominated microbial
genera, including Weissella and Saccharomycopsis and phenylethyl alcohol, Pediococcus and
2-nonanol. This study showed that alcohols, acids, and aldehydes account for the largest
proportion of volatile compounds in starter samples, in addition, esters were also the
primary volatile compounds in Chinese rice wine [22]. Based on their significant correlation
with these important volatile compounds, the five bacterial genera (including Weissella,
Pediococcus, Lactobacillus, Bacillus and Nocardiopsis) and four fungal genera (including
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Saccharomycopsis, Rhizopus, Wickerhamomyces, and Cyberlindnera) were considered the core
functional microorganisms in CSRW starters.

3.7. Relationship between CSRW and Starter Cultures in Volatile Compounds

In order to understand the relationship and difference between aroma substances in
CSRWs and in CSRW starters, and better understand the factors that lead to the formation
of aroma in CSRWs, lay a foundation for later research on the relationship between microbes
of CSRW starters and aroma in CSRWs, we determined the aroma of CSRWs. The research
results show that a combined total of 85 volatile compounds were identified in the seven
CSRWs (Supplementary Table S4), mainly including thirteen alcohols, twenty-seven esters,
ten acids, seven aldehydes, one ketone, twelve alkanes, five terpenes, and ten aromatic
compounds. Compared with the starter samples, CSRWs had a greater number of different
alcohols, esters, organic acids, and alkanes, with esters found in notably greater relative
abundance in CSRWs than starters. While starters from MZ have the widest variety of
volatile metabolites, CSRWs from YC1 and YC2 reportedly have more complex aroma
profiles. Similarly, starter samples from MZ have the highest contents of aromatic com-
pounds, and CSRW from NJ have higher aromatic compound contents than those from MZ,
indicating that both CSRW and starters are distinct between regions, and that the content
and diversity of metabolites in starters do not necessarily determine the aroma profiles their
respective fermentation products. Twenty-three volatile compounds overlapped between
the CSRW samples and starters (Supplementary Table S5), among which alcohols and
alkanes comprised the largest proportion. In addition, some of the predominant volatile
compounds found in relatively high concentration in CSRWs were also present in starters,
including 1-heptanol, 1-octanol, 2-nonanol, phenylethyl alcohol, 2-nonanone, and benzalde-
hyde. Among these identified volatile compounds, phenylethyl alcohol and benzaldehyde
had markedly higher contents in CSRWs than in starters (Supplementary Tables S1 and S2).

4. Discussion

In this study, we characterized microbiota and volatile compounds and explore cor-
relations between them associated with fermentation starters for Chinese sweet rice wine
from seven regions across China. Through GC-MS analysis, we found that alcohols, acids,
and aldehydes are the main aroma substances, accounting for a high proportion. Alcohols
are the main aroma components in brewed rice wine and higher alcohols make a great
contribution to the smell and taste and provide the alcohol precursor required for the
synthesis of desirable esters in rice wine [22]. Volatile organic acids are known to contribute
to distinctive flavors in rice wine, with aromas described as acidic, or similar to cheese
and sweat, while aldehyde volatiles impart floral and nutty qualities to rice wine [22,23].
Esters were relatively less abundant in CSRW starters, although esters related to floral and
fruity flavors have been proved to be the main aroma substances of rice wine, which may
be due to esters produced by microbial metabolism during fermentation and a series of
reactions of chemical substances in wine [14,16]. In addition, we have reported 1-heptanol,
1-octanol, 2-nonanol, phenylethyl alcohol, 2-nonanone, acetophenone, and benzaldehyde
as the predominant volatile compounds among a wide range of potential flavor-related
metabolites. Among the predominant organic volatiles, the higher alcohols 1-heptanol (V1),
1-octanol (V2), 2-nonanol (V3), and phenylethyl alcohol (V4) were the major quantitative
components of rice wine, mainly contributing a unique flavor of sweet, floral, fruit and
rose aroma, according to previous studies [9,24]. 2-nonanone (V18), as a common aroma
in rice wine, reportedly contributes flower, fruit and herb aromas, acetophenone (V19)
contributed a flowery aroma, and benzaldehyde (V29), an important aldehyde substance
in rice wine, contributed almond and burnt sugar aromas [2]. Some of these compounds
were previously detected in CSRW, implying that these volatile compounds in starters may
be further produced during fermentation, and contribute to the aroma profile of the final
rice wine. Furthermore, the large majority of these compounds have been identified in
starters for different types of wine, such as wheat Qu, used to start Chinese yellow rice
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wine, and Hong Qu, the fermentation starter for Hongqu yellow rice wine [13,14]. It is
worth noting that 2-methyl-phenol (V60) and 2,4-bis(1,1-dimethylethyl)-phenol (V59) were
unique volatile compounds in this study and have not been previously reported in other
fermentation starters.

Metagenomic 16s rRNA gene analysis indicated that the bacterial composition was
relatively variable among the regional starter samples, which is in agreement with previous
findings that wheat Qu for yellow rice wine and Da Qu starters for Chinese liquor produc-
tion also show high regional variability [13,25]. Despite the variability, these starter samples
were generally dominated by lactic acid bacteria (LAB). As purported probiotics, LAB are
considered beneficial to human health. The majority of LAB genera, especially Lactobacillus,
which were found to be positively correlated with 2-nonanol, benzyl alcohol, octanoic acid,
furfural, 3-furaldehyde, heptanal, and dodecane in our study, can produce lactic acid and
a variety of antimicrobial agents to exclude pathogens, and thus enhance the relatively
safety of fermentation environments during the brewing process [26]. Moreover, LAB play
critical roles in the production of proteins and metabolites such as esterases, lipases, and
alcohol acetyl transferases that reportedly contribute to the formation of flavor-related
components of wine [10]. Among the prevalent LAB genera, Weissella showed the highest
abundance, especially in YC1, YC2, and XG starters, consistent with previous studies that
found Weissella is the dominant genus in rice wine koji [6], although other studies have
identified Bacillus as a dominant genus among starter microbiota [1]. In addition, Weissella
is a representative genus in CSRW starters of Hubei province, which was consistent with
previous studies that showed Weissella was a representative genus in Wheat Qu of Hubei
province [13]. As lactic acid bacteria (LAB), Weissella can produce short-chain fatty acids
and esters during food fermentation [26,27]. In this study, an important positive correlation
was observed between Weissella and phenylethyl alcohol, supporting that Weissella has
been shown to play an important role in the flavor properties of rice wine [28]. By contrast,
MZ and YC1 samples were characterized by high levels of Pediococcus, which is commonly
identified as a core microbe in starters for different sweet rice wines [1,4], although it was
undetectable in some samples in the current study (i.e., NT1). The correlation analysis
showed that Pedioccoccus was positively correlated with some main volatile compounds,
including alcohols, acids, and aldehydes, which provides a new reference for the bacteria
to improve the aroma of rice wine, and it was reported that Pediococcus can increase the
content of organic acids, short-chain fatty acids and esters during food fermentation [27,29].
The result supports the conclusion that Pediococcus enhanced the production of volatile
acids, alcohols, and esters in Shaoxing-jiu [28]. Pediococcus can also reportedly stabilize
fermentation communities against food spoilage bacteria and pathogens [29]. Enterococcus
was positively correlated with cis-1-Butyl-2-methylcyclopropane. Research showed that
Enterococcus was regarded as one of the major flavor producers in the fermentation of
food [30]. These collective results supported the likelihood that lactic acid bacteria can
promote the accumulation of flavor substances during food fermentation [26]. The pre-
dominant genus in NT1 samples was Glutamicibacter, which was previously shown to be
associated with chili pepper [31]. Given that this is a plant-associated genus, this discovery
might reflect the addition of the Chinese herbal medicine lalaocao, similar to chili pepper,
in starter samples. Staphylococcus and Enterobacter, also frequently identified among rice
wine microbiota, were also found mainly in NT1 and NT2 samples [5,30], both of which
can pose a threat to food safety and human health in some contexts [1]. Bacillus was found
in particularly high levels in NT2 and was positively correlated with benzoic acid. This
finding is unsurprising, given the important role of this genus in the fermentation of several
foods through extensive secretion of hydrolytic enzymes such as amylases, acid proteases,
and fibrinolytic enzymes, and this activity may also facilitate the formation of flavor-related
volatile metabolites in rice wine [11]. Moreover, Bacillus can directly produce a broad
range of volatile compounds such as pyrazines, aldehydes, ketones, and alcohols [1]. A
less abundant genus, Nocardiopsis, was largely found in NT1 samples, but has been rarely
reported in other studies.
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For fungi, our study showed that Saccharomycopsis accounted for a considerable pro-
portion in starter samples. This non-Saccharomyces yeast is frequently identified in starter
samples and rice wines with varying abundance [30] and is present in the fermentation
starters of various foods [32]. In addition, Saccharomycopsis can secrete amylase, protease,
and β-glucosidase, which contributes to saccharifying starches during fermentation [33].
The correlation analysis revealed that Saccharomycopsis was positively correlated with
phenylethyl alcohol and d-limonene and a previous study found that non-Saccharomyces
yeast of Saccharomycopsis could regulate alcohol content and enhance the wine aromatic
quality, by co-fermenting with Candida [14]. However, this genus was not detected in NT1
and NT2 samples, suggesting that despite its prevalence in some samples, Saccharomycopsis
is not ubiquitously present in CSRW starters. In our study, Rhizopus was the only core
fungus present in all samples. Due to its high capacity for amylase and glucoamylase
production, Rhizopus was commonly found in various amylolytic fermentation starters,
and made a great contribution to the flavor formation of wine and can decompose starch
into glucose, subsequently producing lactic acid and alcohol [28]. Rhizopus is well-known
to substantially contribute to metabolite production in rice wine [30,34]. In addition, our
study showed that Rhizopus was positively correlated with 2-octanolacetate and this result
proved the conclusion that Rhizopus can produce many hydrolytic enzymes and flavoring
compounds, including esters [1]. Among the fungal taxa, Aspergillus is a well-studied
genus of filamentous fungi that can reportedly affect flavor by producing various hy-
drolytic enzymes (including amylases, glucoamylases, proteases, lipases, and xylanases)
that hydrolyze starch, protein and lipid macromolecules into dextrin, maltose, glucose,
small peptides, and fatty acids, which are then consumed as a growth substrate by yeasts
and other microorganisms [35]. Candida and Wickerhamomyces are both non-Saccharomyces
yeasts, and previous studies have shown that such yeasts may play a prominent role in
the production of secondary metabolites that influence the flavor and sensory profiles of
wine [36]. Co-fermentation of non-Saccharomyces yeast with Saccharomyces can potentially
improve both alcohol content and the aromatic qualities of wine [37]. In our study, the
correlation analysis showed that Wickerhamomyces was positively correlated with pentanoic
acid, 2-octyl ester, but was negatively correlated with benzoic acid and Wickerhamomyces
has been frequently isolated from wines and their secondary metabolites are related to
the taste and flavor of wine [14,16]. Cyberlindnera was prevalent in the YC1 sample, and
our study showed that Cyberlindnera shared positive correlation with 2-octyl benzoate
and dihydro-5-pentyl-2(3H)-furanone. Previous studies have shown that Cyberlindnera
is positively correlated with β-glucosidase content and increased aroma compounds in
tea [38].

In the current work, inferred function analyses supported enrichment for carbohydrate
and amino acid metabolism pathways in these starters, implying that flavor formation
in these samples was likely linked to protein and starch metabolism [13,15]. The main
metabolic pathways varied in different starter samples, which may have contributed to
the observed variation in volatile compound profiles between these samples. The analysis
of CSRWs from different regions showed that esters were the most important aroma sub-
stances, supporting that esters are the main and characteristic substances in rice wine [16];
relatively few esters are detectable in CSRW starters, suggesting that ester formation is
likely attributable to microbial metabolism during the fermentation and aging processes. In
addition, twenty-three volatile compounds were present in both starter samples and CSRWs
samples; these results indicated that the aroma-related compounds in starters were retained
in the final CSRW products, and possibly further produced during fermentation, suggesting
a starter-specific contribution to the final aroma profile, as proposed in previous studies [39].
Among these identified volatile compounds, phenylethyl alcohol and benzaldehyde had
markedly higher contents in CSRWs than in starters (Supplementary Tables S1 and S2),
supporting the likelihood that these two predominant volatiles did not solely originate
in the starters, but were produced by metabolic processes during fermentation. Overall,
the aroma profiles of the CSRWs were more complex, and characterizing their constituent
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volatile compounds can improve our understanding of the factors underlying aroma quality
and facilitate the exploration of the mechanisms responsible for shaping aroma profiles.
In addition, these findings provide a basis for future targeted studies of the relationship
between CSRW aromas and specific taxa in starters. Moreover, based on the results, better
starter cultures may be developed.

5. Conclusions

This study explores the volatile compounds, microbial diversity, and their relation-
ship in CSRW starters from different geographic regions of China. A total of 68 volatile
flavor-related compounds were detected. Weissella, Pediococcus and Lactobacillus were
dominant bacterial genera, while Saccharomycopsis and Rhizopus were dominant among
fungal genera in CSRW starters. Correlation analysis revealed 15 important volatiles were
significantly positively correlated with nine microbial genera, including five bacterial gen-
era (i.e., Weissella, Pediococcus, Lactobacillus, Enterococcus, Bacillus, and Nocardiopsis) and
four fungal genera (i.e., Saccharomycopsis, Rhizopus, Wickerhamomyces, and Cyberlindnera)
(p < 0.05, |r| >0.7), and these microorganisms were considered the core functional mi-
croorganisms in CSRW starters. The most important positive correlations were detected
between phenylethyl alcohol and Weissella or Saccharomycopsis and between 2-nonanol and
Pediococcus. Twenty-three volatile compounds overlapped between CSRWs and starters,
suggesting that starters contribute to shaping the final aroma profile of CSRWs. This study
can facilitate the isolation and culture of these taxa for the development of defined CSRW
starters for targeted flavor profiles in future work.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods12152932/s1, Table S1: Relative content of volatile compounds
within Chinese sweet rice wine starters; Table S2: Volatile compounds of type and content (µg/L)
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