Future Perspective and Technological Innovation in Cheese Making Using Artichoke (Cynara scolymus) as Vegetable Rennet: A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of Relevant Articles
2.2. Study Selection
2.3. Data Extraction and Analysis
3. Key Factors of Milk Coagulation
3.1. Chemical Characteristics of Milk
3.2. Casein in Milk
4. Use of Vegetable Rennet for Cheese Making
Main Enzymes in Vegetable Rennets Responsible for Coagulation
5. Role of Cynara Genus
5.1. Importance of Cardoon (Cynara cardunculus) in the Production of Vegetable Rennet
5.2. Thistle Extract
6. Artichoke as a Source of Clotting Enzymes
6.1. Enzyme Activity of Artichoke (Cynara scolymus)
6.1.1. Artichoke and Its Coagulant Activity on Milk
6.1.2. Artichoke Coagulant Extract
6.2. Future Prospect for Artichoke Use
6.3. Possible Impediments to the Use of Artichoke as a Vegetable Rennet
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ben Amira, A.; Besbes, S.; Attia, H.; Blecker, C. Milk-Clotting Properties of Plant Rennets and Their Enzymatic, Rheological, and Sensory Role in Cheese Making: A Review. Int. J. Food Prop. 2017, 20, S76–S93. [Google Scholar] [CrossRef] [Green Version]
- Silva, G.M.d.S.; da Costa, J.S.; Freire, J.O.; Santos, L.S.; Bonomo, R.C.F. Artichoke Leaf Extracts: Proteolytic Activity, Coagulant and Hplc Analysis. Cienc. E Agrotecnol. 2021, 45, e001721. [Google Scholar] [CrossRef]
- Britten, M.; Giroux, H.J. Rennet Coagulation of Heated Milk: A Review. Int. Dairy. J. 2022, 124, 105179. [Google Scholar] [CrossRef]
- FAO—FAOSTAT. Artichoke Production Statistics Division. Available online: https://www.fao.org/faostat/es/#data/QCL (accessed on 15 February 2023).
- Lattanzio, V.; Kroon, P.A.; Linsalata, V.; Cardinali, A. Globe Artichoke: A Functional Food and Source of Nutraceutical Ingredients. J. Funct. Foods 2009, 1, 131–144. [Google Scholar] [CrossRef]
- Brenes-Peralta, L.; Jiménez-Morales, M.F. Experiencia de Producción de Lechuga Americana (Lactuca sativa) Hidropónica, Tipo NFT. Rev. Tecnol. En Marcha 2014, 27, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Llorente, B.E.; Obregón, W.D.; Avilés, F.X.; Caffini, N.O.; Vairo-Cavalli, S. Use of Artichoke (Cynara scolymus) Flower Extract as a Substitute for Bovine Rennet in the Manufacture of Gouda-Type Cheese: Characterization of Aspartic Proteases. Food Chem. 2014, 159, 55–63. [Google Scholar] [CrossRef]
- Liburdi, K.; Boselli, C.; Giangolini, G.; Amatiste, S.; Esti, M. An Evaluation of the Clotting Properties of Three Plant Rennets in the Milks of Different Animal Species. Foods 2019, 8, 600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Codex Alimentarius Food; Agriculture Organization of the United Nations (FAO). Available online: https://www.fao.org/dairy-production-products/products/codex-alimentarius/es/ (accessed on 21 February 2023).
- Soares, C.; Rocha Júnior, V.R.; Monção, F.P.; Borges, L.D.A.; Caldeira, L.A.; Costa, N.M.; Ruas, J.R.M.; Rigueira, J.P.S.; da Cunha Siqueira Carvalho, C.; de Sales, E.C.J.; et al. Combinations of Cactus Pear with Different Roughage Sources on the Production, Chemical Composition, and Milk Fatty Acid Profile of F1 Holstein/Zebu Cows. Trop. Anim. Health Prod. 2020, 52, 2567–2576. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.W.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-Chemical Characteristics of Goat and Sheep Milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef] [Green Version]
- Zouari, A.; Schuck, P.; Gaucheron, F.; Triki, M.; Delaplace, G.; Gauzelin-Gaiani, C.; Lopez, C.; Attia, H.; Ayadi, M.A. Microstructure and Chemical Composition of Camel and Cow Milk Powders’ Surface. LWT 2020, 117, 108693. [Google Scholar] [CrossRef]
- Kula, J. Dechasa Tegegne Chemical Composition and Medicinal Values of Camel Milk. Int. J. Res. Stud. Biosci. 2016, 4, 13–25. [Google Scholar] [CrossRef]
- Fan, Q.; Wanapat, M.; Hou, F. Chemical Composition of Milk and Rumen Microbiome Diversity of Yak, Impacting by Herbage Grown at Different Phenological Periods on the Qinghai-Tibet Plateau. Animals 2020, 10, 1030. [Google Scholar] [CrossRef] [PubMed]
- Han, B.Z.; Meng, Y.; Li, M.; Yang, Y.X.; Ren, F.Z.; Zeng, Q.K.; Robert Nout, M.J. A Survey on the Microbiological and Chemical Composition of Buffalo Milk in China. Food Control 2007, 18, 742–746. [Google Scholar] [CrossRef]
- Molik, E.; Błasiak, M.; Pustkowiak, H. Impact of Photoperiod Length and Treatment with Exogenous Melatonin during Pregnancy on Chemical Composition of Sheep’s Milk. Animals 2020, 10, 1721. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.W. Goat milk-chemistry and nutrition. In Handbook of Milk of Non-Bovine Mammals; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Brezovečki, A.; Čagalj, M.; Dermit, Z.F.; Mikulec, N.; Ljoljić, D.B.; Antunac, N. Camel Milk and Milk Products. Mljekarstvo 2015, 65, 81–90. [Google Scholar] [CrossRef]
- Dalgleish, D.G.; Corredig, M. The Structure of the Casein Micelle of Milk and Its Changes During Processing. Annu. Rev. Food Sci. Technol. 2012, 3, 449–467. [Google Scholar] [CrossRef] [PubMed]
- Anema, S.G. Role of κ-Casein in the Association of Denatured Whey Proteins with Casein Micelles in Heated Reconstituted Skim Milk. J. Agric. Food Chem. 2007, 55, 3635–3642. [Google Scholar] [CrossRef]
- Anema, S.G.; Li, Y. Effect of PH on the Association of Denatured Whey Proteins with Casein Micelles in Heated Reconstituted Skim Milk. J. Agric. Food Chem. 2003, 51, 1640–1646. [Google Scholar] [CrossRef]
- Phadungath, C. Casein Micelle Structure: A Concise Review. J. Sci. Technol. 2005, 27, 201–212. [Google Scholar]
- Walstra, P. On the Stability of Casein Micelles. J. Dairy. Sci. 1990, 73, 1965–1979. [Google Scholar] [CrossRef]
- Ferrandini, E.; Castillo, M.; López, M.; Laencina, J. Modelos Estructurales de la Micela de Caseína. Dialnet Unirioja Es. 2006, 22, 5–18. [Google Scholar]
- McSweeney, P.L.H.; Fox, P.F. Advanced Dairy Chemistry: Volume 1A: Proteins: Basic Aspects, 4th ed.; Springer: New York, NY, USA, 2013; ISBN 9781461447146. [Google Scholar]
- Horne, D.S.; Lucey, J.A. Rennet-induced coagulation of milk. In Cheese: Chemistry, Physics and Microbiology, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 1. [Google Scholar]
- Kethireddipalli, P.; Hill, A.R.; Dalgleish, D.G. Interaction between Casein Micelles and Whey Protein/κ-Casein Complexes during Renneting of Heat-Treated Reconstituted Skim Milk Powder and Casein Micelle/Serum Mixtures. J. Agric. Food Chem. 2011, 59, 1442–1448. [Google Scholar] [CrossRef]
- Sandra, S.; Ho, M.; Alexander, M.; Corredig, M. Effect of Soluble Calcium on the Renneting Properties of Casein Micelles as Measured by Rheology and Diffusing Wave Spectroscopy. J. Dairy Sci. 2012, 95, 75–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucey, J.A. Rennet-Induced coagulation of milk. In Cheese; Academic Press: Cambridge, MA, USA, 2011; ISBN 9780123744029. [Google Scholar]
- Shah, M.A.; Mir, S.A.; Paray, M.A. Plant Proteases as Milk-Clotting Enzymes in Cheesemaking: A Review. Dairy Sci. Technol. 2014, 94, 5–16. [Google Scholar] [CrossRef]
- Nicosia, F.D.; Puglisi, I.; Pino, A.; Caggia, C.; Randazzo, C.L. Plant Milk-Clotting Enzymes for Cheesemaking. Foods 2022, 11, 871. [Google Scholar] [CrossRef] [PubMed]
- Dako, E.; Dadie, A.T. Characterization of the Purified Coagulant Extracts Derived from Artichoke Flowers (Cynara scolymus) and from the Fig Tree Latex (Ficus carica) in Light of Their Use in the Manufacture of Traditional Cheeses in Algeria. J. Food Technol. 2009, 7, 20–29. [Google Scholar]
- Garsiya, E.R.; Konovalov, D.A.; Shamilov, A.A.; Glushko, M.P.; Orynbasarova, K.K. A Traditional Medicine Plant, Onopordum acanthium L. (Asteraceae): Chemical Composition and Pharmacological Research. Plants 2019, 8, 40. [Google Scholar]
- Lo Piero, A.R.; Puglisi, I.; Petrone, G. Characterization of “Lettucine”, a Serine-like Protease from Lactuca sativa Leaves, as a Novel Enzyme for Milk Clotting. J. Agric. Food Chem. 2002, 50, 2439–2443. [Google Scholar] [CrossRef] [PubMed]
- Roseiro, L.B.; Barbosa, M.; Ames, J.M.; Wilbey, R.A. Cheesemaking with Vegetable Coagulants—The Use of Cynara L. for the Production of Ovine Milk Cheeses. Int. J. Dairy Technol. 2003, 56, 76–85. [Google Scholar] [CrossRef]
- Aggarwal, S.; Mohite, A.M.; Sharma, N. The Maturity and Ripeness Phenomenon with Regard to the Physiology of Fruits and Vegetagles: A Review. Bull. Transilv. Univ. Bras. Ser. II For. Wood Ind. Agric. Food Eng. 2018, 11, 77–88. [Google Scholar]
- Silva, S.V.; Malcata, F.X. Studies Pertaining to Coagulant and Proteolytic Activities of Plant Proteases from Cynara cardunculus. Food Chem. 2005, 89, 19–26. [Google Scholar] [CrossRef]
- Llorente, B.E.; Brutti, C.B.; Caffini, N.O. Purification and Characterization of a Milk-Clotting Aspartic Proteinase from Globe Artichoke (Cynara scolymus L.). J. Agric. Food Chem. 2004, 52, 8182–8189. [Google Scholar] [CrossRef]
- Chazarra, S.; Sidrach, L.; López-Molina, D.; Rodríguez-López, J.N. Characterization of the Milk-Clotting Properties of Extracts from Artichoke (Cynara scolymus, L.) Flowers. Int. Dairy. J. 2007, 17, 1393–1400. [Google Scholar] [CrossRef]
- Sidrach, L.; García-Cánovas, F.; Tudela, J.; Neptuno Rodríguez-López, J. Purification of Cynarases from Artichoke (Cynara scolymus L.): Enzymatic Properties of Cynarase A. Phytochemistry 2005, 66, 41–49. [Google Scholar] [CrossRef]
- Devaraj, K.B.; Gowda, L.R.; Prakash, V. An Unusual Thermostable Aspartic Protease from the Latex of Ficus racemosa (L.). Phytochemistry 2008, 69, 647–655. [Google Scholar] [CrossRef]
- Katsaros, G.I.; Tavantzis, G.; Taoukis, P.S. Production of Novel Dairy Products Using Actinidin and High Pressure as Enzyme Activity Regulator. Innov. Food Sci. Emerg. Technol. 2010, 11, 47–51. [Google Scholar] [CrossRef]
- Yegin, S.; Fernandez-Lahore, M.; Jose Gama Salgado, A.; Guvenc, U.; Goksungur, Y.; Tari, C. Aspartic Proteinases from Mucor spp. in Cheese Manufacturing. Appl. Microbiol. Biotechnol. 2011, 89, 949–960. [Google Scholar] [CrossRef] [Green Version]
- Sousa, M.J.; Malcata, F.X. Advances in the Role of a Plant Coagulant (Cynara cardunculus) in Vitro and during Ripening of Cheeses from Several Milk Species. Lait 2002, 82, 151–170. [Google Scholar] [CrossRef] [Green Version]
- García, V.; Rovira, S.; Boutoial, K.; Álvarez, D.; López, M.B. A Comparison of the Use of Thistle (Cynara cardunculus L.) and Artichoke (Cynara scolymus L.) Aqueous Extracts for Milk Coagulation. Dairy Sci. Technol. 2015, 95, 197–208. [Google Scholar] [CrossRef]
- Mohite, A.M.; Sharma, N.; Aggarwal, S.; Sharma, S. Effect of Tamarindus Coating on Post-Harvest Quality of Apples and Pears Stored at Different Conditions. Carpathian J. Food Sci. Technol. 2018, 10, 17–25. [Google Scholar]
- Zhao, Q.; Zhao, C.; Shi, Y.; Wei, G.; Yang, K.; Wang, X.; Huang, A. Proteomics Analysis of the Bio-Functions of Dregea Sinensis Stems Provides Insights Regarding Milk-Clotting Enzyme. Food Res. Int. 2021, 144, 110340. [Google Scholar] [CrossRef]
- Faheem, M.; Martins-De-Sa, D.; Vidal, J.F.D.; Álvares, A.C.M.; Brandaõ-Neto, J.; Bird, L.E.; Tully, M.D.; Von Delft, F.; Souto, B.M.; Quirino, B.F.; et al. Functional and Structural Characterization of a Novel Putative Cysteine Protease Cell Wall-Modifying Multi-Domain Enzyme Selected from a Microbial Metagenome. Sci. Rep. 2016, 6, 38031. [Google Scholar] [CrossRef] [PubMed]
- Dunn, B.M. Overview of Pepsin-like Aspartic Peptidases. Curr. Protoc. Protein Sci. 2001, 25, 21.3.1–21.3.6. [Google Scholar] [CrossRef]
- Bey, N.; Debbebi, H.; Abidi, F.; Marzouki, M.N.; Ben Salah, A. The Non-Edible Parts of Fennel (Fœniculum Vulgare) as a New Milk-Clotting Protease Source. Ind. Crops Prod. 2018, 112, 181–187. [Google Scholar] [CrossRef]
- Ministerio de Agricultura, Pesca y Alimentación. Gobierno de España Denominaciones de Origen e Indicaciones Geográficas Protegidas. Available online: https://www.mapa.gob.es/es/alimentacion/temas/calidad-diferenciada/dop-igp/Default.aspx (accessed on 28 March 2023).
- Direção-Geral de Agricultura e Desenvolvimento Rural. República Portuguesa Produtos Tradicionais Portugueses (Produtos Agrícolas, Géneros Alimentícios e Pratos Preparados). Available online: https://tradicional.dgadr.gov.pt/pt/produtos-por-regime-de-qualidade/dop-denominacao-de-origem-protegida?start=60 (accessed on 28 March 2023).
- Almeida, C.M.; Simões, I. Cardoon-Based Rennets for Cheese Production. Appl. Microbiol. Biotechnol. 2018, 102, 4675–4686. [Google Scholar] [CrossRef]
- San-Emeterio, L.; Lopez, M.; Cavero, R.Y. Mediterranean Culture of Cardoon, Cynara cardunculus N.: Elementary Composition and Biological Function. Publicaciones Biol. Univ. Navar. 2000, 13, 43–49. [Google Scholar]
- Durham, F.R. Curtis’s Botanical Magazine. Notes Queries 1930, 158. [Google Scholar] [CrossRef]
- Jacob, M.; Jaros, D.; Rohm, H. Recent Advances in Milk Clotting Enzymes. Int. J. Dairy Technol. 2011, 64, 14–33. [Google Scholar] [CrossRef]
- García, V.; Rovira, S.; Boutoial, K.; Ferrandini, E.; López Morales, M.B. Effect of Starters and Ripening Time on the Physicochemical, Nitrogen Fraction and Texture Profile of Goat’s Cheese Coagulated with a Vegetable Coagulant (Cynara cardunculus). J. Sci. Food Agric. 2014, 94, 552–559. [Google Scholar] [CrossRef]
- Cordeiro, M.C.; Xue, Z.T.; Pietrzak, M.; Salomé Pais, M.; Brodelius, P.E. Isolation and Characterization of a CDNA from Flowers of Cynara cardunculus Encoding Cyprosin (an Aspartic Proteinase) and Its Use to Study the Organ-Specific Expression of Cyprosin. Plant Mol. Biol. 1994, 24, 733–741. [Google Scholar] [CrossRef]
- Cordeiro, M.C.; Pais, M.S.; Brodelius, P.E. Tissue-specific Expression of Multiple Forms of Cyprosin (Aspartic Proteinase) in Flowers of Cynara cardunculus. Physiol. Plant 1994, 92, 645–653. [Google Scholar] [CrossRef]
- González-Rábade, N.; Badillo-Corona, J.A.; Aranda-Barradas, J.S.; Oliver-Salvador, M.; del, C. Production of Plant Proteases In Vivo and In Vitro—A Review. Biotechnol. Adv. 2011, 29, 983–996. [Google Scholar] [CrossRef] [PubMed]
- Ordiales Rey, E. Caracterización del Cardo (’Cynara cardunculus, L.’) Para su Uso Como Cuajo Vegetal en el Proceso de Elaboración de la Torta del Casar. Ph.D. Thesis, University of Extremadura, Badajoz, Spain, 2013. [Google Scholar]
- Heimgartner, U.; Pietrzak, M.; Geertsen, R.; Brodelius, P.; da Silva Figueiredo, A.C.; Pais, M.S.S. Purification and Partial Characterization of Milk Clotting Proteases from Flowers of Cynara cardunculus. Phytochemistry 1990, 29, 1405–1410. [Google Scholar] [CrossRef]
- Pino, A.; Prados, F.; Galán, E.; McSweeney, P.L.H.; Fernández-Salguero, J. Proteolysis during the Ripening of Goats’ Milk Cheese Made with Plant Coagulant or Calf Rennet. Food Res. Int. 2009, 42, 324–330. [Google Scholar] [CrossRef]
- Prados, F.; Pino, A.; Fernández-Salguero, J. Effect of a Powdered Vegetable Coagulant from Cardoon Cynara cardunculus in the Accelerated Ripening of Manchego Cheese. Int. J. Food Sci. Technol. 2007, 42, 556–561. [Google Scholar] [CrossRef]
- O’Mahony, J.A.; Sousa, M.J.; McSweeney, P.L.H. Proteolysis in Miniature Cheddar-Type Cheeses Made Using Blends of Chymosin and Cynara cardunculus Proteinases as Coagulant. Int. J. Dairy Technol. 2003, 56, 52–58. [Google Scholar] [CrossRef]
- Basay, S. Study of the Structure of Artichoke (Cynara scolymus L. ) Flowers. J. Agric. Sci. Technol. 2022, 24, 913–924. [Google Scholar]
- Miraj, S.; Kiani, S. Study of Therapeutic Effects of Cynara scolymus L.: A Review. Pharm. Lett. 2016, 8, 168–173. [Google Scholar]
- Ahmed, I.A.M.; Morishima, I.; Babiker, E.E.; Mori, N. Characterisation of Partially Purified Milk-Clotting Enzyme from Solanum dubium Fresen Seeds. Food Chem. 2009, 116, 395–400. [Google Scholar] [CrossRef]
- Esposito, M.; Di Pierro, P.; Dejonghe, W.; Mariniello, L.; Porta, R. Enzymatic Milk Clotting Activity in Artichoke (Cynara scolymus) Leaves and Alpine Thistle (Carduus defloratus) Flowers. Immobilization of Alpine Thistle Aspartic Protease. Food Chem. 2016, 204, 115–121. [Google Scholar] [CrossRef]
- Ricceri, J.; Barbagallo, R.N. Role of Protease and Oxidase Activities Involved in Some Technological Aspects of the Globe Artichoke Processing and Storage. LWT 2016, 71, 196–201. [Google Scholar] [CrossRef]
- Abdel-Raouf, H.-A.H.; El-Neshwy, A.A.; Rabie, A.M.; Khalifa, S.A. Evaluation of Rennet Substitute from Artichoke (Cynara scolymus L.) Flowers Extracts: Study the Factors Affecting the Activity of Milk Clotting. Zagazig J. Agric. Res. 2017, 44, 2203–2219. [Google Scholar] [CrossRef]
- Domingos, A.; Cardoso, P.C.; Xue, Z.T.; Clemente, A.; Brodelius, P.E.; Pais, M.S. Purification, Cloning and Autoproteolytic Processing of an Aspartic Proteinase from Centaurea calcitrapa. Eur. J. Biochem. 2000, 267, 6824–6831. [Google Scholar] [CrossRef] [PubMed]
- Bueno-Gavilá, E.; Abellán, A.; Bermejo, M.S.; Salazar, E.; Cayuela, J.M.; Prieto-merino, D.; Tejada, L. Characterization of Proteolytic Activity of Artichoke (Cynara scolymus L.) Flower Extracts on Bovine Casein to Obtain Bioactive Peptides. Animals 2020, 10, 914. [Google Scholar] [CrossRef] [PubMed]
- El-Kholy, A.M. Ras Cheese Making with Vegetable Coagulant -a Comparison with Calf Rennet. World J. Dairy Food Sci. 2015, 10, 82–89. [Google Scholar]
- Abd El-Sal, B.A.E.-Y.; Ibrahim, O.A.E.-H.; El-Sayed, H.A.E.-R. Purification and Characterization of Milk Clotting Enzyme from Artichoke (Cynara cardunculus L.) Flowers as Coagulant on White Soft Cheese. Int. J. Dairy Sci. 2017, 12, 254–265. [Google Scholar] [CrossRef] [Green Version]
Animal/Component | Water % | Protein % | Fat % | Ash % | Lactose % | References |
---|---|---|---|---|---|---|
Cow | N/R | 3.5 | 3–4 | N/R | 5 | [9] |
N/R | 3.2 | 3.6 | 0.7 | 4.7 | [11] | |
N/R | 3.1–3.3 | 2.6–2.7 | 0.6–0.8 | 4.8–5.0 | [12] | |
85–87 | 3.2–3.8 | 3.7–4.4 | 0.7–0.8 | 4.8–4.9 | [13] | |
Buffalo/Yak | 83 | 4–6 | 6–9 | N/R | 5 | [9] |
N/R | 4.4–5.7 | 5.4–6.7 | N/R | 4.8–5.5 | [14] | |
82–84 | 3.3–3.6 | 7.0–11.5 | 0.8–0.9 | 4.5–5 | [13] | |
N/R | 4.3–5.5 | 6.5–9.5 | 0.7–0.8 | 4.5–5.15 | [15] | |
Sheep | N/R | 5 | 5 | N/R | 6 | [9] |
79–82 | 5.6–6.7 | 6.9–8.6 | 0.9–1.0 | 4.3–4.8 | [13] | |
N/R | 5.42–6.86 | 6.0–8.4 | - | 4.32–5.18 | [16] | |
N/R | 6.2 | 7.9 | 0.9 | 4.9 | [11] | |
Goat | N/R | 3.5 | 2–5 | N/R | 5 | [9] |
N/R | 3.4 | 3.8 | 0.8 | 4.1 | [11] | |
87–88 | 2.9–3.7 | 4.0–4.5 | 0.8–0.9 | 3.6–4.2 | [13] | |
N/R | 3.5 | 3.8 | 0.8 | 4.1 | [17] | |
Camel | N/R | 4 | 3–4 | N/R | 5 | [9] |
86–88 | 3.0–3.9 | 2.9–5.4 | 0.6–0.9 | 3.3 | [13] | |
N/R | 2.7–2.9 | 2.6–2.9 | 1.1–1.3 | 4.6–4.8 | [12] | |
81.4–87 | 3.03–3.28 | 5.94–6.67 | N/R | 2.77–3.12 | [18] |
Type of Protease | Protease Name | Source | References |
---|---|---|---|
Aspartic | Cardosins and cyprosins | Cynara cardunculus | [2,30,37] |
Cynarase | C. scolymus | [38,39,40] | |
Procirsin | Cirsium vulgare | [30] | |
Oryzasin | Oryza sativa | [30] | |
Cysteine | Ficin | Ficus racemosa | [30,41] |
Caprifig coagulant | Ficus carica sylvestris | [30] | |
Actinidin | Actinidia chinensis | [30,42] | |
Serine | Cucumisin | Cucumis melo | [30] |
Lettucine | Lactuca sativa | [30] | |
Streblin | Streblus asper | [30] |
Type/Name | Country/Region | Type of Plant | References |
---|---|---|---|
Torta del Casar | Spain/Extremadura | Cynara cardunculus | [51] |
Queso Flor de Guía | Spain/Canary Islands | C. cardunculus, C. scolymus | |
Queso de la Serena | Spain/Extremadura | C. cardunculus | |
Queijo da Beira Baxa | Portugal | C. cardunculus | [52] |
Queijo de Azeitão | Portugal | C. cardunculus L. | |
Queijo Évora | Portugal | C. cardunculus L. | |
Queijo de Nisa | Portugal | C. cardunculus L. | |
Queijo Serra da Estrela | Portugal | C. cardunculus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bravo Bolívar, M.S.; Pasini, F.; Marzocchi, S.; Ravagli, C.; Tedeschi, P. Future Perspective and Technological Innovation in Cheese Making Using Artichoke (Cynara scolymus) as Vegetable Rennet: A Review. Foods 2023, 12, 3032. https://doi.org/10.3390/foods12163032
Bravo Bolívar MS, Pasini F, Marzocchi S, Ravagli C, Tedeschi P. Future Perspective and Technological Innovation in Cheese Making Using Artichoke (Cynara scolymus) as Vegetable Rennet: A Review. Foods. 2023; 12(16):3032. https://doi.org/10.3390/foods12163032
Chicago/Turabian StyleBravo Bolívar, Michael Steven, Federica Pasini, Silvia Marzocchi, Cesare Ravagli, and Paola Tedeschi. 2023. "Future Perspective and Technological Innovation in Cheese Making Using Artichoke (Cynara scolymus) as Vegetable Rennet: A Review" Foods 12, no. 16: 3032. https://doi.org/10.3390/foods12163032
APA StyleBravo Bolívar, M. S., Pasini, F., Marzocchi, S., Ravagli, C., & Tedeschi, P. (2023). Future Perspective and Technological Innovation in Cheese Making Using Artichoke (Cynara scolymus) as Vegetable Rennet: A Review. Foods, 12(16), 3032. https://doi.org/10.3390/foods12163032