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Abstract: In the past couple of years, cellulose has attracted a significant amount of attention and
research interest due to the fact that it is the most abundant and renewable source of hydrogels. With
increasing environmental issues and an emerging demand, researchers around the world are focusing
on naturally produced hydrogels in particular due to their biocompatibility, biodegradability, and
abundance. Hydrogels are three-dimensional (3D) networks created by chemically or physically
crosslinking linear (or branching) hydrophilic polymer molecules. Hydrogels have a high capacity to
absorb water and biological fluids. Although hydrogels have been widely used in food applications,
the majority of them are not biodegradable. Because of their functional characteristics, cellulose-based
hydrogels (CBHs) are currently utilized as an important factor for different aspects in the food industry.
Cellulose-based hydrogels have been extensively studied in the fields of food packaging, functional
food, food safety, and drug delivery due to their structural interchangeability and stimuli-responsive
properties. This article addresses the sources of CBHs, types of cellulose, and preparation methods of
the hydrogel as well as the most recent developments and uses of cellulose-based hydrogels in the
food processing sector. In addition, information regarding the improvement of edible and functional
CBHs was discussed, along with potential research opportunities and possibilities. Finally, CBHs
could be effectively used in the industry of food processing for the aforementioned reasons.

Keywords: cellulose-based hydrogels (CBHs); food industry; functional food; biodegradation;
food packaging

1. Introduction

Gels are networks of polymers that are swollen by a large amount of solvent and have
three dimensions. Hydrogels are structures that are mostly made of biopolymers and/or
polyelectrolytes and retain a great amount of water [1]. According to the source, there are
two types of hydrogels: those that are made from natural polymers and those that are made
from synthetic polymers. Based on cross-linking, hydrogels can be put into two groups:
chemical gels and physical gels. Physical gels are made when molecules stick together on
their own through ionic or hydrogen bonds. Chemical gels are made when molecules stick
together through covalent bonds [2]. The first hydrogels were described by Wichterle and
Lim [3]. Notably, hydrogels have several potential uses in the fields of food, agriculture,
water purification and biomaterials, etc. Recently, researchers have actively contributed to
the development of innovative hydrogels for implementations such as recyclable materials
for drug delivery [4,5], tissue engineering [6–8], sensors [9,10], contact lenses [11,12], and
purification [13], etc. There have been reports of synthetic polymer-based hydrogels, such as
those made by crosslinking polyethylene glycol [14], polyvinyl alcohol [15], polyamidoamine [16],
poly(N-isopropylacrylamide) [17], polyacrylamide [18], polyacrylic acid [19], and their
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co-polymers [20]. Synthetic hydrogels, such as PEG-based hydrogels, have benefits over nat-
ural hydrogels, for example the potential for photo-polymerization, adjustable mechanical
characteristics, and simple operation of scaffold architecture and chemical characteristics.
However, due to their bio-inert nature, PEG hydrogels are unable to provide an optimal
environment in which cells can practice adhesion and tissue engineering [21]. A portion of
polysaccharides are comparable to PEG in terms of biocompatibility; they have low protein
and cell adhesion, and can biodegrade into nontoxic, easily absorbed compounds [22].
Utilizing hyaluronate [23], alginate [24], starch [25], gelatin, cellulose [26], chitosan, and
their derivatives [27–29], numerous hydrogels from biopolymers have already been created,
demonstrating potential application in the biomaterials field due to its safety, wettability,
and bio-compatibility. Cellulose is the basic structural component of plants, and since
plants are the first link in the food chain (which defines the feeding relationships between
all living creatures), cellulose is a crucial substance. The most prevalent biopolymer found
in nature [30,31]. The primary component of numerous natural fibers, such as cotton and
higher plants, is cellulose [32,33]. It consists of lengthy chains of anhydro-D-glucopyranose
units (AGU), with the exception of the terminal ends, each cellulose molecule having three
hydroxyl groups per AGU [32].

Recent studies have shown that cellulose-based hydrogels can be used as freshness
metrics. These hydrogels can detect modifications in pH, chemical breakdown, and the de-
velopment of microorganisms in food based on the generation of metabolic pathways in the
food. In addition, cellulose-based hydrogels are usually employed for food packaging [34],
which improves the freshness and safety of perishable goods, especially those that are not
pre-packaged. Cellulose gives the packaging material barrier properties by slowing the
diffusion of liquids, gases, and solids. Furthermore, CBHs serve as a method of regulating
humidity, particularly for damp food sources such as ready-to-serve products and items
that absorb and release water (powdered form food), by lowering water activity, prevent-
ing microbe growth, and reducing the degree to which dry, crunchy foods are softened
(biscuits and fried potatoes) [35]. Similarly, flavor or volatile substances are important and
complex metrics in foods that are unsteady due to environmental factors. CBHs prevent the
deterioration of flavor compounds [36]. Studies have shown evidence of the production of
cellulose-based gels and their applications over the years [27–29]. More recently, cellulose-
based hydrogels are being investigated for a wide variety of food applications. Therefore,
a systematic review dealing with the production of cellulose gel, their mechanisms, and
their extensive food applications should provide substantial knowledge on gel production
and their novel food applications. For instance, Thivya et al. [37] reviewed the recent
studies on cellulose-based hydrogels being limited to food industry applications. Thus, a
comprehensive review of the latest trends in CBHs production, mechanism, characteristics,
and food applications is necessary. Hence, this review primarily focuses on the possibilities
and advancements of cellulose-based hydrogels in the food processing sector. Furthermore,
a clear and concise explanation of the fundamental ideas, classifications, and preparation
techniques pertaining to hydrogels is also presented.

2. Sources of Cellulose-Based Hydrogels Production

Cellulose is the most abundant natural glucose polymer, and it is abundantly gener-
ated from various agricultural residues (Figure 1A). Cellulose has superior heat stability
during excessive temperatures and acts as a UV ray protector. Because of their mechanical
strength, biocompatibility, and environmental sustainability, cellulose and its derivatives
have received a lot of attention inside the international market, especially regarding food,
biomedicine, and fabric applications.

Bacterial cellulose (BC) or microbial cellulose is chemically identical to plant cellulose
(PC), but their physical structures and macromolecular structures are distinct. The insolu-
bility in water and other solvents as well as the high crystallinity of the cellulose in both PC
and BC are a result of the 1,4-β-glucosidic bonds between glucose units [38]. This quantity
exceeds 60% for BC and falls between 40% and 60% for PC [39]. The nanosized fibers are
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the outcome of BC biosynthesis and are approximately two orders smaller than PC fibers.
Therefore, BC cellulose has an ultrafine and distinctive fiber network with greater flexibility
and greater water retention than PC [39]. In addition, BC is composed solely of PC, which is
unrelated to the remaining biogenic components, such as pectin and lignin [40]. Therefore,
anytime BC is utilized by bacteria, PC must be refined and reformed. In the meantime,
further modification of BC might be performed ex situ or in situ (Figure 1B,C), in order
to generate desirable form and properties utilizing various types of additives, such as
conductive polyaniline nanoparticles.

Figure 1. Cellulose sources for hydrogel production (A), and modification of bacterial cellulose
using (B) ex situ and (C) in situ methods. Figure 1A is adapted from Chen et al. [41] and is an
open access article (Copyright © 2022 by authors) distributed under the terms and conditions of the
Creative Commons Attribution (CC BY) license, while Figure 1 (B and C) is adapted with permission
(Copyright © 2019 Springer Nature Switzerland AG, Cham, Switzerland) from Sabbagh et al. [42].
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3. Different Types of Hydrogels

Hydrogels are classified according to their physical parameters, nature of swelling,
preparation methods, ionic charges, sources, rate of degradability, and observed nature of
crosslinking [43] as shown in Figure 2.

Figure 2. Classification of hydrogels. Figure 2 is adapted with permission (Copyright © 2022 Elsevier
B.V., Amsterdam, The Netherlands) from Hasan et al. [44].

In physical gels, the crosslinking process is physical in nature. Typically, this is accom-
plished through physical processes including hydrophobic association, chain aggregation,
crystallization, polymer chain complexion, and hydrogen bonding. In contrast, a chemical
process, namely chemical covalent crosslinking (simultaneously or post polymerization),
is used to prepare a chemical hydrogel. As a result of conformational changes, physical
hydrogels are reversible, whereas chemical hydrogels are permanent and irreversible.

Due to electrostatic interaction, the combination of physically and chemically cross-
linked hydrogels results in the formation of dual-network hydrogels. Recently, it has
been used to address the limitations of using only chemical or physical hydrogels with a
high liquid uptake capacity over a wide pH range and greater sensitivity to pH changes
than chemical hydrogels. Cong et al. [45] and Yalpani [46] recently reported another
graphene-polymer composite material that forms a dual-network with exceptional mechan-
ical properties and self-healing abilities.

4. Crosslinking in Hydrogels

Different methodological approaches are used to make hydrogels for different pur-
poses. Due to this, hydrogel characteristics such as the highest mechanical performance,
chemical characteristics, density, degradability, biological response, and response to the sur-
rounding have been different [47]. Table 1 shows the materials, methods, and applications
employed in the preparation of hydrogels.
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Table 1. Materials, methods, and applications employed in the preparation of hydrogels.

Materials Methods Applications References

Polyacryl amide
Hydroxyethyl cellulose

Radiation-induced
Chemical crosslinking

Agricultural product processing
Wound dressing

[48]
[49]

Free-radical polymerization Self-healing [50]
Grafting Bacteriostasis [51]

Carboxymethyl cellulose

Freeze–thaw
Layer-by-layer assembly
(Fabrication method)

Enzyme immobilization
Improved preservation of beef

[52]
[53]

Gamma radiation Hemostat hydrogel [54]
Grafting Metal ions removal [55]
Co-polymerization Pigment removal [56]
Chemical crosslinking Drug carrier agent [57]
Chemical crosslinking Anti-counterfeiting and labelling [58]

Hydroxypropyl methylcellulose
Chemical crosslinking Drug delivery [59]
Radiation Scaffolds [60]
Chemical crosslinking Controlled release [61]

Hydroxypropyl cellulose

Pre-polymerization Anti-fouling [62]
Freeze–thaw Biomedical [63]
Chemical crosslinking Thermoresponsive hydrogel [64]
Photo-crosslinking Biomedical [65]

Polyvinyl alcohol

Freeze–thaw Biomedical [66]
Freeze–thaw Regenerative medicines [67]
Freeze–thaw Drug release [68]
Freeze–thaw
Freeze–thaw

Radome materials
Food packaging

[69]
[70]

Polyethylene glycol
Gamma-radiation Scaffolds [71]
Photo-polymerization Implants [72]
Chemical crosslinking Anti-biofilm activity and food

packaging
[73]

Starch

Cellulose nanofibril

Radical polymerization Wound dressing [74]
Freeze–thaw
Air-drying castingCombined
with Polyvinyl alcohol and
ascorbic acid

Biomedical
Food packaging
Food 3D-printing materials

[75]
[76]
[77]

4.1. Physical Crosslinking

Physical crosslinking has been an intriguing technique for preparing hydrogels due to
the nature of crosslinking agents used. In addition, physical crosslinking does not disrupt
living organisms, though it does enhance hydrogel formation. There are a wide variety of
incarnations for each method of physical crosslinking. The subsequent procedures are used
to create physically cross-linked hydrogels (Figure 3).

4.1.1. Crosslinking by Radical Polymerization

The amount of the cross-linker can determine how much the hydrogel swells, which
is one of the characteristics that distinguish hydrogels. Furthermore, the inclusion of a
cross-linker with specific characteristics can result in the creation of materials that are
responsive to external stimuli. In addition to obtaining chemically cross-linked hydrogels
through the radical polymerization of mixtures of vinyl-monomers, radical polymerization
of water-soluble polymers that have been modified with polymerizable groups is another
method for obtaining chemically cross-linked hydrogels. In order to create hydrogels with
this technique, a range of water-soluble polymers, including synthetic, semi-synthetic, and
natural varieties, have been used.
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Figure 3. Different crosslinking methods used to produce hydrogels. Figure 3 is adapted from
George et al. [78] and is an open access article (Copyright © 2019 by authors) distributed under the
terms and conditions of the Creative Commons Attribution (CC BY) license.

4.1.2. Crosslinking by Ionic Interactions

Hydrogels can be classified by the types of interactions between their hydrophilic
backbones and ions (anionic, cationic, and amphoteric). Moreover, the inclusion of di- or tri-
valent counterions caused ionic contact between the polymers, leading to the formation of a
hydrogel system. The basic idea behind this technique is to cause a polyelectrolyte solution
to gel by adding multivalent ions with opposite charges. Anionic hydrogel is formed from
polymers with a negative charge, whereas cationic hydrogel is produced from polymers
with a positive charge [79]. Positive and negative ions are present in equal numbers in
neutral hydrogel [80]. The swelling impact of the aqueous medium determines the degree
of ionic chain dissociation in cationic hydrogels. Similarly, in acidic environments with low
pH, cationic hydrogels disintegrate, whereas anionic hydrogels swell better. At a particular
pH, amphoteric hydrogels balance both positive and negative charges. Changes in the
pH of the solution can have an effect on the ionic characteristics of these hydrogels [81].
Non-ionic hydrogels swell in aqueous solution in the absence of crosslinkers. By replacing
a hydrophilic backbone with pendant hydrophobic groups and modifying the temperature
of the aqueous solutions, the hydrophobic groups in hydrogels are modified, resulting in a
formulation that balances the interactions of hydrophilic and hydrophobic groups.

4.1.3. Crosslinking by Host-Guest Interactions

Development of supramolecular polymer hydrogels based on the host-guest assembly
method is of particular interest because these substances have unique non-covalent and dy-
namic binding motifs that can be targeted by external stimuli and easily tuned by changing
the crosslinks’ architecture and density. Numerous studies on cyclodextrin (CD) inclusion
complex-based supramolecular polymer hydrogels have been published. CD chemically
linked on cellulose chains [82], cellulose derivatives [83], or CNCs surfaces [84] serve as the
host when creating supramolecular CBHs. The guest polymers can be adamantane (AD)
moities [85], azoben zene [84], pluronic polymers [84], or azoben polymers [83].

Cucurbit [8]uril (CB [8]) is another macrocyclic molecule that can accommodate up
to two aromatic guest molecules at the same time inside its cavity to form either 1:2
CB [8]•(guest)2 homoternary complexes with monocationic guests or 1:1:1 heteroternary
complexes with both a dicationic and a neutral guest [86,87], which is the best choice
as a crosslinker when making polymer gels. Naphthyl-functionalized CNC (CNC-g-
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P(DMAEMA-r-NpMA)) [88] and methyl-viologen-functionalized PVA were held together
by CB [8] through supramolecular crosslinks created by dynamic host-guest interactions
as well as selective and simultaneous binding of naphthyl and methyl viologen moieties.
These kinds of methods can be used to make advanced, dynamic materials from renew-
able sources. Using single emulsion droplet microfluidics and macrocyclic host–guest
complexation between the macrocyclic host cucurbit [8] uril (CB [8]) and the guest of
anthracene-functionalized hydroxyethyl cellulose (Ant-HEC) polymers, supramolecular
hydrogel microcapsules have been made [89]. The head-to-tail arrangement of two an-
thracene moieties within the cavity of CB [8] allows multiple non-covalent crosslinks to
form between adjacent anthracene-functionalized polymer chains, creating supramolecular
polymer hydrogel skins at the water-in-oil interface of single micro-droplets.

4.1.4. Crosslinking by Crystallization

PVA [poly(vinyl alcohol)] is a polymer that is water-soluble. PVA aqueous solutions
kept at ambient temperature transform into a weak gel over time. Interestingly, a highly
elastic gel is created when the aqueous solutions of this polymer undergo a freeze–thaw
cycle [90]. The gel’s characteristics depend on the molecular weight of PVA, the concentra-
tion of PVA in water, the freezing temperature and time, and the number of freezing cycles.
The formation of PVA crystallites that serve as physical crosslinking sites in the network is
attributed to gel formation. Gels prepared under ambient conditions are steady at 37 ◦C for
six months [91]. Hydrogels with physical cross-links are typically made from multiblock or
graft copolymers. The latter can have either a hydrophobic chain with a water-soluble graft
attached to it or a polymer backbone that is soluble in water but to which hydrophobic
units have been attached. H-bonding [45], polymerization in suspension [92], chemical
reaction of identical groups caused by irradiation [93] and protein crosslinking [94] have
also been reported as methods of crosslinking, but they all require the use of a crosslinking
agent, which can be toxic and raise questions about the gel’s durability. For this reason,
physically cross-linked hydrogels are now available and can be prepared via a variety of
crosslinking methods such as hydrophobic interaction, H-bonding, protein interaction, and
crystallization of ionic interactions [95].

4.1.5. Freeze–thaw Process, Hydrogen-Bonding, and Complex Coacervation

Simple mixing of polycation and polyanion produces hydrogels produced by com-
plicated coacervation. Due to their opposing charges, the polymers adhere to one another
and create soluble and insoluble complexes depending on the concentration and pH of
the solutions. The freeze–thaw process causes the formation of microcrystals inside the
structure of the substance as a consequence of repeated cycles of freezing and thawing.
These hydrogels’ linked hydrogen bonding networks provide them spongier, porous, rub-
berier, and more elastic characteristics [96]. Currently, such hydrogels are frequently used
in the biotechnology fields, especially for the immobilization of entire cells and molecules
(protein, peptides) [97]. A non-covalent bonding method called “H-bonding” is used to
create physically crosslinked hydrogels. The sodium ion in carboxymethyl cellulose (CMC)
replaces the hydrogen ion as it dissolves in 0.1 M HCL [98]. The elasticity of the hydrogel
created by H-bonding lowers the solubility of CMC in water.

4.1.6. Maturation

Hydrogels with precise molecular structure measurements are made using the matu-
ration process, which involves heat-induced aggregation. Arabic-gum-cellulose is the best
example of heat-induced hydrogels. Gum Arabic (Acacia gums) is a carbohydrate whose
structural protein content ranges from 2–3% [99]. Heating distinct protein groups, such
as arabinogalactan protein, arabinogalactan, and glycoprotein with differing molecular
weights, causes the accumulation of proteinaceous groups [100]. In order to enhance their
ability to bind water and mechanical strength, cellulose and gum-Arabic hydrogels gener-
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ate cross-linked networks by converting low molecular weight protein groups into high
molecular weight protein groups.

4.2. Chemical Crosslinking

Chemical crosslinking in hydrogels typically focuses on the linkages between the
polymer and the crosslinking agent. A certain functional group of the crosslinking agent
determines the hydrogel’s properties, particularly its mechanical strength. Polymers having
hydroxyl groups can be crosslinked with glutaraldehyde under extreme conditions: low
pH, high temperature, and the inclusion of methanol as a quencher [91]. Crosslinking
polysaccharides with 1,6-hexamethylene diisocyanate, divinyl sulfone, and other com-
pounds can result in the formation of hydrogels [101]. The goal of these chemicals is to
ensure that a specific polymer or functional group creates a network of interconnecting
linkages to produce hydrogels [102].

4.2.1. Citric Acid (CA)

Citric acid has been employed as a crosslinking agent because it is cheap, nontoxic,
water-loving, and a natural organic with 3–OH groups that can form a network in most
hydrogel preparations. It has been shown that citric acid can make strong hydrogen-bonds
that make water expand and stay stable at high temperatures. It has an additional binding
site and contains hydrogen-bonds, which help maintain hydrophilicily balance [103–105].
Food contact materials, water softeners, anticoagulants, antiviral tissues, and cleaning
supplies all feature citric acid, also known as food-additives [106,107]. CA also makes
the hydrogel network stronger by improving the tensile properties, heat resistance, and
impermeability better [108–110]. CA is widely recognized as an effective crosslinking
agent that is utilized a lot to make cellulose hydrogels, which improves their properties.
Additionally, CA is an organic substance that has been authorized by the FDA (Food &
Drug Administration) for use as a secure crosslinking agent or to be consumed by the body.
Researchers have found that CA is the easiest cross-linker to utilize at ambient temperature
to make hydrogels [111,112].

The esterification-crosslinking process was used to generate β-cyclodextrin–
carboxymethylcellulose (βCD-CMC) hydrogel films for the controlled release of keto-
conazole (model drug) [113]. The active βCD content, carboxyl content, and degree of
crosslinking in the hydrogel films increased as the concentration of βCD in the feed in-
creased; however, at high concentrations, the carboxyl content and interpolymer crosslink-
ing decreased [114]. The presence of βCD in the hydrogel films assisted in minimizing the
drug’s burst release. The βCD-CMC hydrogel films were able to control the drug release
over an extended period of time [113]. The hemolytic assay revealed the biocompatibility
of the hydrogel films. Therefore, βCD-CMC hydrogel films are more effective than βCD-
HPMC hydrogel films; although their efficacy for drug delivery cannot be proven until
cytocompatibility and in vivo tests have been conducted [113].

4.2.2. Epichlorohydrin

Ethylene-co-glycol (ECH) is a common cross-linker used in different types of biopoly-
mers, including cellulose, starch, and others. An odorless, colorless, mildly dissolved in
water but undissolved in a polar solvent solution with a low-molecular weight is produced
when ECH is used to make hydrogels [115,116]. Gelation occurs at the very end of the
polymer chain because ECH has a reaction with the hydroxyl group that is present in every
polysaccharide. As a result of ECH, the pore size distribution, chemical stability, mechanical
resistance, and adsorption/desorption capacity of a material can all be enhanced [117].
Increased water-holding capacity in the hydrogel network is a result of the addition of ECH
as a cross-linker, which also increases pore size and pore formation in the hydrogel. How-
ever, the use of ECH in the preparation of chitosan hydrogels inhibits chitosan dissolving
throughout heavy metal adsorption under acidic conditions and enhances metal adsorption
capacities. As a result, epichlorohydrin induces phase separation and the formation of
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a heterogeneous network, which increases the hydrogel water absorption capacity [118].
The different concentrations of crosslinking agents in the solution cause phase separation.
Rapid water diffusion in the hydrogel network is caused by a high ECH concentration,
resulting in a large water absorption capability. The crosslinking chemical bond increases
the water-absorption capacities as the amount of crosslinker increases.

4.2.3. Glutaraldehyde

Due to its low toxic effects, sufficient crosslinking capacity, high reactivity, relatively
inexpensive, and ease of processing [119], glutaraldehyde is prevalently used as a crosslink-
ing agent. It has been found that crosslinking glutaraldehyde with the hydrogen group
is incredibly effective in developing functional polymeric materials from protein, amino
polysaccharides, and synthetic polymers [120,121]. Instead of hydrogels, glutaraldehyde
can be used as a ligands-modifier to remove heavy metal ions. In order to eliminate metal
ions and increase the film’s water absorption, it is combined with chitosan as a crosslinking
agent for modifying ligands efficiency [122,123]. Optometric drug delivery is another area
where it is being studied. It was used as a chemical crosslinking agent in the synthesis
of carboxyl-methyl chitosan hydrogels, producing hydrogels with a unique combination
of properties. Hydrogels improve their bioactivity, swelling behavior, pH sensitivity, and
rheological properties after gelation [124].

4.2.4. Chemical Reaction of Complementary Groups

Water-soluble polymers have solubility due to the presence of functional groups
(mostly OH, COOH, and NH2) that can be exploited to make hydrogels. Covalent linkages
can be formed between polymer chains through the interaction of functional groups with
complementary reactivity, such as an amine-carboxylic acid or isocyanate-OH/NH2 reac-
tion, or through Schiff base formation. In addition, it has been reported that the chemical
hydrogels can be cross-linked in a number of ways, including by condensation reactions,
addition reactions, high-energy irradiation, and the use of enzymes.

4.2.5. Enzyme Mediated Crosslinking

Enzymatic crosslinking has been utilized successfully to make polysaccharide-based
hydrogels under controlled reaction conditions [125,126]. However, the implementation
of the enzymatic crosslinking approach is constrained by its high cost and substrate speci-
ficity. Through the breakdown of hydrogen peroxide, horseradish peroxidase (HRP) can
accelerate the coupling of phenol or aniline derivatives [127]. The acyl-transfer interaction
between the γ-carbonyl group of a glutamine residue and the ε-amino group of a lysine
residue is catalyzed by microbial transglutaminase (MTGase) [126]. To satisfy the substrate
requirements of various enzymes, polysaccharides must first be changed. Therefore, it
is difficult to achieve the performance requirements for wound dressings with a single
crosslinking strategy. Combining the use of two or more different crosslinking techniques
may result in additive benefits. For instance, chemical and physical links may be allocated
to a single hydrogel, with the chemical linkages being in charge of the hydrogel’s stiffness
and the physical linkages being in charge of its toughness. Exact management is necessary
to maintain a delicate equilibrium between each interaction. Double-network hydrogels,
made of two different kinds of polymer components with opposing physical natures, have
been proposed in recent years [128,129]. Cross-linked rigid skeletons serve as the first
network’s minor components, whereas poorly cross-linked ductile materials serve as the
second network’s significant components [130]. Hydrogels may now operate in a variety of
ways while also being mechanically durable due to new techniques.

4.2.6. Disulfide Bonds

Incorporating dynamic disulfide groups into the main chains of cellulose is an additional
efficient method for producing reversibly cross-linked cellulose-based hydrogels [131–133].
The disulfide bonds are reversible covalent bonds based on thiol/disulfide dynamic exchange
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reactions and are sensitive to pH or redox potential [134], providing a new physiologically
compatible strategy for preparing dissociable materials hydrogels and micelles for drug and
gene delivery [135,136].

Tan et al. [131] synthesized thiolated hydroxypropyl cellulose derivatives (HPC-SH)
in 2011 without destroying the thermosensitive property of HPC. The cellulose nanogels
were produced by the self-association of HPC-SH in solution at 45 ◦C, followed by the
oxidation of thiol groups to disulfide bonds, which stabilized the associated structure.
In this method, neither monomer nor cross-linker was used to prepare HPC nanogels,
and the resulting nanogels exhibited both thermo- and redox-sensitive properties. The
substitution degree of thiol groups (-SH) in the thiolated HPC could control the degree of
cross-linking of the nanogels. The hydrodynamic radius of the nanogels can be adjusted
by varying the degree of cross-linking, concentration of HPC-SH, and temperature. The
dual stimuli-sensitive nanogels could find use in controlled drug release, transfer switch
devices, and sensors. Following that, Hou and colleagues [133] demonstrated a novel
pH and redox dual-responsive cellulose-based nanogel and used controlled release of
agrochemicals. To facilitate the cross-linking reaction, aldehyde groups were grafted
onto hydrophobic carboxymethyl cellulose (HCMC) through the addition of glyoxal. The
obtained product (HCMC-a) was combined with solutions of salicylic acid (SA) and 3,3′-
dithiobis (propionohydrazide) (DTP) to form a dual-responsive nanogel that exhibited pH
and glutathione (GSH)-triggered release behaviors of SA.

In the same system, Liu et al. [137] created a cellulose-based multi-responsive hydrogel
with enamine and disulfide bonds. The cellulose hydrogel was created by simply mixing at
room temperature aqueous solutions of cellulose acetoacetate (CAA) and cystamine dihy-
drochloride (CYS). Because it contained a pH-responsive enamine moiety and a redox-active
disulfide moiety, the cellulose-based hydrogel demonstrated dual-responsive properties
with tunable release in response to pH and dithiothreitol (DTT) concentration changes.

Growing interest has also been shown in the structurally dynamic disulfide bond for
the design of reversible bonding adhesive hydrogel. Cudjoe et al. [132] recently reported a
strong, rebondable, semicrystalline disulfide nanocomposite network in which the thiol-
endcapped polymer was dynamically cross-linked with thiol-functionalized CNCs via
disulfide bonds. Due to the melting of the semicrystalline phase and the induction of the
dynamic behavior of the disulfide bonds, increasing the temperature from 80 to 150 °C
resulted in the rebonding of the nanocomposites with minimal loss in adhesive shear
strength during rebonding.

4.3. Polymerization Method

Polymerization is another process for crosslinking in the production of hydrogels.
Polymerization can be classified into three types: bulk polymerization, solution copoly-
merization, and irradiation polymerization. In bulk polymerization, only monomers and
monomer-soluble initiators are utilized, and the concentration of the monomer affects the
rate and degree of polymerization. Bulk polymerization has been shown to make hydrogel
with a glassy, stiff, transparent hydrogel matrix [138,139].

In copolymerization, two types of polymerizations must be hydrophilic and arranged
in a random, structured, block, or alternating network polymer configuration. Additionally,
when the co-polymeric block is used in situ, it can form a hydrogel, which proves that
the hydrogel is biodegradable and compatible with the body. Copolymerization makes
hydrogel, which is usually used as a slow-drug release because it can release both drugs
that do not mix with water and drugs that do. Co-polymerization can also be used to
encase cells and repair damaged tissues [140].

According to Zainal et al. [62], synthetic polymers are often produced using irradiation
polymerization. Its quick gelation period and the interaction of hydrophilic synthetic
polymers and biopolymers with reactive groups result in the formation of macromolecule
monomers. Hydrogels produced by irradiation polymerization could also be used in
chemical applications. Thermo-responsive hydrogels are another type of hydrogels that
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are produced via irradiation-induced polymerization. Thermo-responsive hydrogels are
widely used in drug release and cell adhesion. Radiation-polymerized thermo-responsive
hydrogels exhibit great degradability under alkaline conditions and can be converted into
oligomers for cell adhesion.

This has led to the acceptance of polymerization-based physical crosslinking as a stan-
dard procedure for making hydrogels. For the more challenging procedure, polymerization
could be a widely employed method that aids in both production time and quality. In
addition, hydrogel manufacturing relies heavily on crosslinking to preserve the 3D polymer
network structure, which can be either chemical or physical [141].

5. Cellulose Derivatives
5.1. Hydroxypropyl Methylcellulose (HPMC)

The cellulose derivative HPMC is utilized a lot in controlled release applications
because of its ability to thicken, gel, and swell. Additionally, it is safe to be using, easy
to compress, has properties that make it swell, and can handle high drug levels. Due to
its excellent bioactivity, HPMC can be a thermo-sensitive natural polymer that forms a
transparent, highly stable colorless hydrogel, rheological properties, and changes in texture.
Gårdebjer et al. [142] investigate the pore-forming effects of hydroxypropyl methylcellulose
mostly in MFC (micro-fibrillated cellulose) film and adjust the wettability characteristics of
the films. The results demonstrate that HPMC can have a potent reaction with MFC films
where it might create h-bonds at the surface of the film.

Hydroxypropyl methylcellulose, being used in scaffold engineering, was created from
cross-linked chitosan by Hu et al. [143]. After promoting cellular characteristics, they
demonstrate that crosslinking hydroxypropyl methylcellulose with chitosan can give the
recovery process structural strength and shape. The use of HPMC as a composite hydrogel
in scaffold engineering was also maintained by Yin et al. [144]. This research implies that the
HPMC composite hydrogel can facilitate faster healing, a more uniform distribution of cells,
and a reduced risk of complications during osteoplasty procedures. Hydrogel scaffolds,
films, and membranes are typical applications for HPMC in the sector of medicine.

5.2. Ethyl Cellulose (EC)

The glucose units in cellulose are changed into the ethyl ether groups to produce EC,
which is a biopolymer. The EC of this polymer is unaffected by the pH of the environment.
It does not dissipate in water because it is non-ionic, but it does dissipate in solvents that
are polar. This polymer functions as an insoluble component in matrix or coating strategies
and as a non-swelling polymer [145]. Because the active ingredient is sensitive to water, EC
is used in dosage processing when water-soluble binders cannot be employed.

It is possible to coat the tablets with this polymer so they will not react with another
substance. This polymer may also be utilized in combined application with other polymers
to protect against the discoloration of easily oxidized materials, such as vitamin C. In order
to create a sustained-release film coating for coating tablets, pellets, and microparticles, this
polymer was mixed with water-soluble polymers [146].

5.3. Carboxymethyl Cellulose (CMC)

CMC is a water-soluble derivative of cellulose that is widely used in the biopolymer
industry. It is made when 2, 3, and 6 of the hydroxyls on the backbone of cellulose
are replaced by carboxymethyl groups [147]. Cellulose containing numerous hydroxyl
groups is an abundant and inexpensive natural biopolymer, making it an attractive starting
material. In addition, CMC possesses bioactivity, solubility, and bio-degradability. CMC
is prepared in a non-aqueous monochloroacetic acid/soda solvent medium in order to
reach the substitution degree via carboxymethylation [62]. Hydrogel composed of CMC
has potential applications in enzyme immobilization, wound healing, drug delivery, and
adsorption. Hydrogels composed of nanoparticles/CMC can be utilized for antimicrobial
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properties, wound healing, drug development, and tissue formation. The nanoparticles
added to carboxymethyl cellulose hydrogel improve the hydrogel’s performance.

Nanoparticles contribute to the enhancement of carboxymethyl cellulose hydrogels
through their superior mechanical, electronic, optical, and physicochemical characteristics.
Carboxymethyl cellulose derived from pineapple plants serves as an efficient carrier for
papain immobilization and forms a strong H-bond between the employed materials. Even
though CMC can be easily extracted from biomass resources, bagasse and empty fruit
bunch were also used to produce carboxymethyl cellulose. Every type of biomass resource
imparts unique characteristics to CMC, such as exceptional absorption and adsorption, a
high swelling ability, and superior optical properties. In addition to being advantageous for
the production of CMC hydrogels, the high level of methylation group in various biomass
wastes is also beneficial.

5.4. Nanocellulose (NC)

With a density of 1.6 g/cm3, a low molecular weight, a large surface area, stiffness up
to 220 Gpa elastic modulus, and strength up to 10 Gpa TS, nano-cellulose, which is pro-
duced from pure cellulose at the nanoscale, possesses a number of amazing qualities [148].
Cellulose nanocrystals (CNC), nano fibrillated cellulose (NFC), and bacterial nano-cellulose
(BCNC) are three styles of nano-cellulose with comparable chemical components but dis-
tinct morphologies [149]. CNC is created by the acid hydrolysis of cellulose nano-fibrils,
additionally referred to as 100 percent cellulose nano-whiskers.

NFC is likewise referred to as cellulose nano-fibers, nano-fibrils, nano-cellulose fibrils,
cellulose micro-fibrils, and micro-fabricated cellulose. NFC is adaptable, has a prolonged,
tangled configuration, and has a radius of 1 to 100 nm and a length of 500 to 2000 nm [150].
NFC is made up of 100% cellulose, which may be either crystalline or crystalline [151]. NFC
is bigger than CNC in phrases of floor location, element ratio, and duration. The size of
BCNC is 20–100 nm [152], and it looks like a twisted ribbon. Gluconacetobacterxylinus is a
bacterial species that produces lower molecular weight sugars that are commonly used
to make [153]. In current years, nano-cellulose has been used a lot to make hydrogels for
many different uses, particularly in the food packaging industry.

5.5. Cellulose Nitrate (CN)

Nitrocellulose, also known as CN or gun cotton, is a key component of smokeless
gunpowder due to its propensity to decompose explosively. By nitrating cellulose obtained
from wood or cotton linter pulp using potent nitrating chemicals, like nitric acid, CN is
created. Because of the electrophilic outburst of NO2

+ ions on the OH moieties during
the nitration process, the hydroxyl groups on the surface of cellulose are transformed
with nitrate esters [154]. This mechanism was initially studied in the presence of alcohol
and amine nitration, and further research has demonstrated that it applies to cellulose as
well. A complete nitration of cellulose is characterized by a final nitrogen concentration of
13.5% or more in CN [155]. The applications of CN depend significantly on the nitrogen
content. CN containing between 12.6% and 13.3% nitrogen is categorized as an explosive
and utilized as a gun propellant, but CN containing less than 12.6% nitrogen possesses high
biocompatibility and physicochemical stability and is deemed suitable for biomedical uses.
Non-covalent interactions between the nitro groups of the polymer and the amine functional
groups in the protein structure make CN membranes useful for protein preservation. In
addition to their use in biosensors and hemodialysis, this quality makes them a versatile
material. Furthermore, CN is used in electrophoresis films, osmosis membranes, and
ultrafiltration membranes [154].

5.6. Cellulose Sulphate (CS)

Cellulose sulphate (CS) is an ester of cellulose produced using homogeneous, quasi-
homogeneous, and heterogeneous sulfation techniques. CS possesses high levels of water
solubility, a high substitution degree, and antibacterial properties. When the sulfonic acid
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groups are raised from 528 to 689 µmol/g, CS is easily soluble in water, resulting in a
translucent solution [156]. In the transitional reaction of CS, cellulose nitrate is produced.
The sulfation was accomplished by dissolving cellulose in N, N-dimethylformamide with a
mixture of sulfating agent (chlorosulfuric acid) and acetylating agent (acetic anhydride),
then cleaving the acetyl group and converting cellulose acetate-sulfate into CS upon precip-
itation. This is known as acetosulfation or a quasi-homogeneous process.

The sulfation was accomplished based on the hydroxyl groups of anhydrous glucose
unit C2 and C3 sites; for instance, the presence of hydroxyl groups in C2 and C3 positions
suggests acetosulfation, whereas the absence of hydroxyl groups in C2 and C3 positions
shows homogeneous sulfation. Therefore, the biological characteristics of CS depend
mostly on the degree of cellulose interconversion and its molecular weight [154]. Recently,
Christian Willems et al. created bioactive hydrogel by mixing oxidized CS with cross-linked
carboxymethyl chitosan [157]. Based on molecular weight and degree of oxidation, they
found that the hydrogels are biocompatible against cytotoxicity for 14 days with live cells.
This hydrogel can be utilized in tissue engineering as a replacement to several types of
connective tissue. The oxidized CS and carboxymethyl chitosan-based hydrogels have a
greater G′′ value as the molecular weight, crosslink density, mixing ratio, and time are
increased towards the maximum number of crosslinking that can form in the hydrogels.
The G′′ value explains the gelation property of hydrogel, with a higher G′′ value indicating
greater gelation [158].

Gelation is a very important process that turns a liquid into a solid. This process
makes it possible to make a wide range of foods with different textures. Ting et al. made
microcapsule hydrogels with polyphosphates patched onto CS-chitosan hydrochloride to
deliver 5-aminosalicylic acid, an anti-inflammatory drug used to treat ulcerative colitis and
Crohn’s disease [159]. The microcapsules are good drug delivery vehicles because they can
hold about 66.9% and 4.6% of the drug and encapsulate it well. The structure and properties
of microcapsules are similar to those of sago, which is made from starch and is often used
in porridge and cold coffee. In the same way, the microcapsules could also be used to
deliver bioactive compounds such as vitamins, minerals, natural flavors, antioxidants,
antimicrobials, and other compounds that help treat diseases in human diseases.

5.7. Cellulose Acetate (CA)

Acetic anhydride is used to create cellulose acetate (CA) from wood pulp. CA is also
generated from cotton through a reaction of sulfuric acid and acetic acid. Acid hydrolysis
can be used to convert the resulting cellulose triacetate into cellulose diacetate and CA.
The degree of substitution in cellulose ester is critical for its solubility and biodegradability.
CA is insoluble in water and has excellent mechanical qualities, low water content, and
low swelling. CA’s hydrophilic nature and water solubility are mostly due to its hydroxyl
groups [154]. The CA is employed as a membrane in a variety of applications, particularly
biomedical fields, for separation, adsorption, biosensing, drug administration, catalysis, and
tissue engineering. Electrospinning, progressive electrostatic assembly, phase inversion by
solvent evaporation, and immersion precipitation are the most often utilized manufacturing
procedures for CA synthesis. CA fibers created by electrospinning offer a wide range of
uses, including packaging, hydrogels, sensor composites, fiber films for wound healing
mats, medication delivery, scaffolds in tissue engineering, protein control membranes,
and biosensors.

CA with a degree of substitution (DS) of 2.5 is used to make the hydrogel, which is
then combined with ethylenediaminetetraacetic dianhydride (EDTAD) as a crosslinking
agent. Triethylamine is added after complete mixing to improve viscosity and act as
an esterification catalyst in hydrogel production. For 5–10 min, the water absorption
capacity was determined to be 550% at 25 ◦C and 1000% at 50 ◦C [160]. Furthermore, via
esterification crosslinking and using triethylamine as a catalyst, the hydrogel from CA
(DS 2.5) with EDTAD was used as a reduction substrate of NPK fertilizer in soil. The
created hydrogel works well as a substrate for slow release, water retention, and fertilizer
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leaching reduction. Due to its high-water retention capacity, non-toxic, biodegradable, and
environmentally friendly nature, this can be utilized in drought-prone locations where
water availability is limited for agriculture and horticultural production [161].

Regenerated cellulose nanofibers derived from deacetylated electrospun CA nanofibers
demonstrated greater compressive strength, water imbibition, increased biomineralization,
and improved pre-osteoblast cell survival, adhesion, and proliferation. This study shown
that CA-based hydrogels can be effective 3D bio-scaffolds for bone tissue engineering [162].
The study was focused on biomedical and food applications. As a result, CA-based hy-
drogels may have use in food packaging as humidity absorbers in high moisture foods,
extending the shelf-life of packed meals. More research is needed to build CA-based func-
tional hydrogels with the addition of diverse bioactive chemicals that have good impacts
on human health.

6. Potential Applications in the Food Industry

Hydrogels are utmost widely utilized polymer classes due to their versatility in a
wide variety of applications across the biomedicine. These include contact lens material,
bone marrow cartilage, and pharmaceutical and cosmetics industries. The popularity of
hydrogels in the field of food processing continues to increase annually at the academic
level, but not in the commercial sector due to less knowledge and understanding on the
part of the public zone. This has prompted researchers to concentrate on developing
and eventually marketing hydrogel-based food processing products for use in the food
manufacturing industries (Figure 4).

Figure 4. Applications of cellulose-based hydrogels (CBHs) in different fields. Figure 4 is adapted
with permission (Copyright © 2010 Elsevier Ltd., Amsterdam, The Netherlands) from Chang and
Zhang [163].

6.1. Food Biosensors

Nutrition and safety are crucial in the food processing sector. Conventional analysis
methods are repetitive, time-consuming, and require experienced workers, necessitating
rapid, efficient food standards and quality control. Biosensors replace conventional meth-
ods; because of their velocity, ease of mass fabrication, precision, field applicability and
economics, and biosensors are becoming important in the agricultural and food indus-
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tries. The gadgets incorporate a transducer and an immune response, organelle, enzyme,
or microorganism. Organic compound interacts with analytes, and transducers convert
organic responses to electric signs. Biosensors detect the fermented carbohydrates, alcohol,
and acids.

A hydrogel biosensor is a rapid, inexpensive, and non-destructive method to assess
the food’s quality. A functional hydrogel consisting of silver ions, D-glucose pentaacetate,
and agarose is utilized to evaluate the growth of biogenic amines (BAs), which indicate the
freshness of fish. Unlike other BAs sensors that have been reported before, this hydrogel-
based biosensor does not need to make a fluorescence probe first. This makes it cheaper
and easier to use for monitoring the cleanliness of fish. The hydrogel is also used to test
bacterial trapping and toxicity assessments.

CNC is employed in biosensors due to its structure resembling biological tissue,
viscoelasticity, biocompatibility, and self-healing. CNC-based hydrogels can identify pH
changes in food products due to their surface-bound fluorophores and hydroxyl groups.
CNC-based hydrogel can detect toxic compounds and pesticide residues in food. The
biosensor made from CA/CNTs/cholesterol oxidase demonstrated superior performance
and high accuracy with a limit of detection of 108 M. In another study, a biosensor made of
cotton N,N-dimethylacetamide/cellulose/Titanium dioxide/lithium chloride nanoparticles
measured glucose. Physical adsorption links the glucose oxidase enzyme to Titanium
dioxide in the nanocomposites biosensor. The glucose biosensor was linear from 1–10 mM.
As a biosensor for food quality, hydrogel is being researched. The evaluation suggested
that research be done in this field because of its quick response time, cost-effectiveness,
and biodegradability.

6.2. Hydrogels Based on Cellulose for the Industry of Food Processing

Utilizing hydrogel as a component of a smart packaging system or as a carrier system
that is successfully incorporated into food items are a few examples of potential applications
in the food industry. Their principal purpose as a component of a smart packaging system
is to communicate information regarding the freshness of the fresh food contained inside
or as a quick testing method for determining the presence of dangerous compounds such
as aflatoxin. Other innovations of hydrogel also provide their use as carriers of flavors
or biologically active compounds such as carotenes, which are typically implemented
in nano-emulsions.

6.3. Food Packaging Industry

CBHs have the potential to be utilized in food packaging systems. Recent attention
has been generated by moisture absorption techniques for processed meals that rely on
“absorbent pads” with water-removal capabilities because they may lower the danger
of microbial contamination while keeping the sensuous qualities of packaged food [164].
This active food packaging can serve multiple purposes, including the absorption of food-
derived fluids, reconfiguration of the packaging headspace, and anti-microbial properties.

Most commonly, absorbent materials are used in food packaging systems in which a
plastic tray or container is used to collect liquids released from food while it is being stored.
Hydrogels can be used to control the water activity of food products while also absorbing
any exudates that might be released during packaging.

There are four guidelines that must be fulfilled when using absorbent materials in food
packaging systems. The absorbent material must satisfy several criteria: (i) after absorption,
it must maintain the exudate in the 3-dimensional formation; (ii) the packaged food’s good
aesthetic presentation and sensory qualities must be preserved using absorbent materials
at a fair price; (iii) the absorbent material must exhibit specific performance qualities to
guarantee the framework’s structural integrity throughout storage; and (iv) the absorbent
material must lengthen the storability of storage food product [165,166].

Hydrogels derived from cellulose can be employed as energetic packaging and mois-
ture content regulators in packaged meats, fruits, vegetables, and other products with
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high water content [167]. Another study found that using lactic and acetic acids to clean
meat are healthful. Due to their low cost and ease of use, solid anti-microbial are widely
used in the food manufacturing business. Enzymatic crosslinking of cellulose and its
derivatives with lactic and acetic acids creates anti-microbial hydrogels. In comparison to
Listeria monocytogenes, Escherichia coli was more resistant to cellulose-based hydrogel films
containing ZnO, CuO, and AgNPs. Cellulose-based hydrogel film can extend fresh potato
storability [168]. Raw potatoes are wrapped and placed in plastic boxes because their higher
rate of respiration throughout the storage causes fogging. CBH films’ antioxidants (ferulic
acid) prevented butter lipid oxidation. The literature identifies that CBHs are important
in active and intelligent food packaging. Hydrogels’ active compounds protect food from
deteriorative reactions, increasing shelf life and quality.

6.4. Hydrogels Derived from Cellulose for Use in Healthy Foods
6.4.1. Enzyme Immobilization

Enzymes are unsteady, non-reusable, and have a short lifespan, which is important in
food processing. Enzyme immobilization improves the stability, reusability, and longevity of
biocatalysts utilizing various carriers. An immobilized cellulose-based hydrogel with enological
Pectinase can be used as a biocatalyst in wine production because it reduces grape juice turbidity
at 25 ◦C for 160 min. This biocatalyst can be excluded and reused after clarification, reducing
wine manufacturing costs [169]. Immobilized hydrogels containing pectinase are used to clarify
fruit juice. For those who are lactose intolerant, enzyme immobilized hydrogel is used to
create low-dose or lactose-free milk. With hydrolysis of regular lactose and UHT milk lactose,
immobilized lactase activity varied between 95.92–55.03% and 95.92–72.85% from 0 to 10 cycles,
respectively. To make lactose-free milk, use hydrogel-immobilized lactase for 10 hydrolysis
cycles [170,171].

According to the findings of some studies, CBH-fortified hydrogel has potential
as a functional ingredient. Due to oral mucosa absorption and slow-release properties,
functional hydrogels can deliver the target nutrient, increase its bioavailability, and better
human health. Jell-O is a gelatin, sweetener, artificial color, and flavor hydrogel product.
This product helps develop functional hydrogels. It is made from synthetic chemicals that
can harm the body if consumed excessively or regularly.

6.4.2. Encapsulation

Many diseases can be cured via encapsulation, which protects and delivers bioactive
molecules to their target areas. It also meets the growing demand for nutritious and tasty
foods [172]. During microencapsulating of CBHs, primary, secondary, and tertiary parame-
ters should be considered. The main determinants are the choice of biopolymer, molecular
production techniques, and material characteristics including polarity, charge, and environ-
mental sensitivity. Secondary factors include sensory characteristics (flavor, appearance,
texture), storage conditions (temperature, ionic strength, aw, pH, and mechanical stresses),
and shelf-life. Tertiary factors determine the release location, profile, and conditions. The
process of encapsulating active ingredients improves the solubility or dispersion of the
ingredient in the food, as well as the ability to mask the taste, maintain storage stability, and
control the release of the ingredient. CBHs can protect probiotic cells in a capsule from the
harmful environment, thus extending their life. Hydrogels help probiotic microorganisms
live in the intestines and at different temperatures. According to the study, enough live cells
can endure handling, storing, and digestion in order to make it to the gut unharmed [173].

6.5. Texture and Disease Control

A significant number of studies are investigating the possibility that hydrogel particles
could be incorporated into food in order to impart a different consistency. Cellulose based
hydrogel microspheres can be utilized in place of fat (starch granules and fat droplets)
to make foods lower in calories. Hydrogel particles have the same microstructure and
rheological characteristics as swollen starch granules, such as high yield stress and high
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shear viscosity. Additionally, the way cellulose melts, absorbs oil, and stays stable at high
temperatures are important parts of fat-rich foods. When CBHs are made stronger with
gelatin, they can be as reliable as fat droplets in the mouth [174].

CBHs enhance the biologically active substances that will aid in the treatment of a
variety of health disorders by incorporating bioactive compounds into food systems such
as fluid gel (sauces, smooth cream, and beverages), soft gel (heavy cream, ghee, and choco-
late cake), and hard gel (cheesecake) (sauce, ketchup, and candies) [175]. Silver, copper,
titanium, and zinc nanoparticles are the most widely used, and they exhibit remarkable
antimicrobial properties. Liver damage and cancer are facilitated by nanoparticles, which
can be easily absorbed into the blood after migrating from food packaging. Therefore,
cellulose encapsulation of nanoparticles to prevent nanoparticles migration is a potential
solution to this issue [176].

6.6. Food Preservation

Several factors have been identified as causing post-harvest deterioration and damage
to fruits and vegetables in studies. Climate and weather conditions, such as heavy rain
and high winds that cause harvesting damage, have the significant influence on the quality
of fruits and vegetables. Inadequate fruit and vegetable handling, including the use of
ineffective equipment and the absence of improved materials and equipment with the
passage of time, transit, and storage, is also a significant issue. If enough care is not exercised
in packaging and marketing scenarios, post-harvest losses may occur. Other factors, such as
bacteria, bruising and cuts, bugs and rats, birds and other animals, inadequate packaging
and low-quality storage buckets, and the use of wooden boxes, all contribute to the rapid
deterioration of fruits and vegetables. To address the bulk of these concerns, cellulose and its
derivatives are used in packaging. Hydrogels are used in the food industry to improve the
stability and bioavailability of bioactive food ingredients [177]. Edible hydrogels can also
be used to extend the shelf life and quality of products by encapsulating active ingredients
such as antimicrobials and antioxidants [178]. Chen et al. [179] examined the use of food
proteins as substrates in nutraceutical hydrogel delivery systems. The hydrogels formed
provided biocompatible carriers for the oral administration of sensitive nutraceuticals in a
variety of food products. Biodegradable food packaging is another common application for
hydrogels in the food industry [180].

Edible coatings offer a cost-effective and ecologically responsible way to improve food
quality and extend food preservation during refrigerated storage. Coatings can be made
from a variety of materials, including carbohydrates (starch, cellulose, alginates), proteins
(gelatin, whey protein, casein, and zein), and lipids (waxes, oils, fats) [181]. Hydrogels,
oleogels, and bigels were used as coatings on fresh meat and fishery products. As a result,
edible coatings could be made from systems such as hydrogels, oleogels, or a mixture of the
two, known as bigels [182]. The meal is directly immersed in a liquid solution during the
coating process. Edible coatings can act as a barrier to oxygen and water ingress in food,
reducing oxidation reactions and maintaining moisture. Various edible coatings, such as
chitosan coatings on Indian oil sardines (Sardinella longiceps) [183], chitosan-gelatin coatings
on shrimp (Litopenaeusvannamei) [184], and sodium alginate or whey protein coatings on
rainbow trout (Oncorhynchus mykiss) fillets [185] have been studied for the preservation of
fishery products during refrigerated storage.

Hydrogels are three-dimensional, hydrophilic macromolecular networks that retain a
considerable amount of water due to interactions between the polymeric chains of a gelling
agent [186]. Furthermore, most hydrogels are reversible, with the ability to change their
rheological characteristics in response to changes in external circumstances (temperature,
pH, ionic solution strength, etc.) [187]. Because of its gelling properties and resistance to
dehydration, light, and oxygen, gelatin is an excellent coating material.

Oleogels are three-dimensional, anhydrous, viscoelastic gels that are formed when
low molecular weight or polymeric structures are added to edible oils, which cause the
continuous phase of the solution to become structured [188]. Low molecular weight
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oleogelators include waxes, fatty acids and alcohols, lecithin, monoglycerides (MGs), and
a combination of phytosterols with oryzanol [189] or MGs [190]. Structured oil has been
shown in studies to effectively replace animal fat in foods [191–194]. The potential for
oleogel and oleogel-based devices as delivery platforms for lipophilic bioactive chemicals
is enormous [195].

Bigels (hybrid gels) are biphasic systems in which the lipid and aqueous phases,
respectively, are organized as oleogels and hydrogels [196,197]. Technically, bigels resemble
emulsions with a gel network in both their aqueous and lipid phases, but they have superior
physicochemical stability over time compared to simple emulsions [197]. Bigels are formed
by dispersing one phase into the other, with oleogel-in-hydrogel bigel systems being the
majority [198]. Bigels are advantageous for the regulated distribution of both hydrophilic
and lipophilic bioactive compounds due to their two structural phases [199]. In addition,
their relatively simple manufacture [200], spreadability [199], longer shelf life [200], and
stability for 6 to 12 months at ambient temperature [201] make these systems suitable for
use as edible coatings for meals. Some food-grade bigels are currently used as possible fat
alternatives in food products [202,203].

6.6.1. Fruits Preservation

Fruits are perishable and regularly consumed. Fruits are an essential part of our diet
since they are rich in necessary nutrients, vitamins, and minerals, all of which contribute
to a balanced diet. The high sugar and water content in fruits creates an ideal home for
microorganisms. Ethylene is a natural chemical produced by ripening fruits and responsible
for their decomposition [204]. Cellulose containing methylcyclopropene has proven to be a
significant and effective therapy for ethylene production prevention [205]. The invasion of
microorganisms is another way spoiling can develop. The majority of fruit deterioration is
caused by microorganisms. Cellulose is actively utilized to include diverse antimicrobial
compounds in order to ensure their continuous release from the matrix following activation.
A wide variety of factors can contribute to spoilage, including but not limited to: ethylene
gas, microbial spoilage, improper storage conditions, rodents and insects, poor grading
during harvest and storage, moisture in storage areas, improper cutting or harvesting
techniques, and contaminated packaging. To improve this, these fruits are packaged with a
variety of packaging materials. Water loss, surface dehydration, translucency, softening,
browning, germs, texture loss, off flavor, and disagreeable odor are the primary reasons
of the deterioration of freshly cut fruits and vegetables. Moisture-absorbent pads used in
trays of freshly cut fruits and vegetables can also contribute to food spoilage by serving as
a breeding ground for numerous types of bacteria, hence causing food waste [206]. All of
these problems can be solved by using materials for food packaging that is safe, natural,
and compatible, for example, cellulose.

6.6.2. Vegetable’s Preservation

Freshly cut vegetables are gaining popularity because they are simple to prepare and
save a great deal of time. The weakening of freshly cut vegetables is one of the most
significant problems associated with freshly cut foods. This may be owing to the chopping,
dicing, and slicing techniques needed to prepare vegetables, which cause them to lose
their firmness. As fibers are slashed, juices seep out, leading in the softening of food,
particularly vegetable tables [206]. This could result in texture loss, which is unacceptable
to consumers. Modified environment packaging does not aid in texture preservation.
According to scientists, edible wrapping is one of the most practical ways to avoid the
softening of vegetables. Consequently, cellulose is among the utmost significant of edible
covering materials and is commonly used in packaging [207]. Calcium chloride and other
additives that improve the texture can be used with cellulose in a straightforward manner
without having an effect on the substance’s qualities. The encapsulation and activation of
naturally occurring antibacterial components are both helped along by cellulose. In foods
such as tomatoes, one of the signs of spoilage is the emergence of translucency, which is
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characterized by the darkening of certain places that take on the appearance of bruises.
This type of injury, which is known as chilling injury, is more common in colder regions.
This is one of the most widely known problems associated with vegetables, and it makes
the freezing preservation process challenging [206]. As a consequence of this, cellulose is
used as a stabilizer, and it also includes a wide variety of preservatives and compounds that
contribute to the solution of problems of this nature. The process of preserving vegetables
by employing cellulose packaging is broken down in Table 2, along with the functioning of
cellulose and the various films that can be used.

Table 2. Cellulose and its derivatives used with the other polymers to preserve food.

Polymers Role of Cellulose Film’s Activity References

Cellulose/silver nanoparticles Add silver particles for
antibacterial protection and to
increase shelf life.

The film demonstrated significant
antibacterial action against
Aeromonas hydrophila

[208]

Bacterial cellulose Cellulose was used to transport
plant extracts and ensure their
delayed release.

Prolonged shelf life and decreased
post-harvest microbial storage

[209]

Cellulose/polylactide Provide coatings with enhanced
antioxidant characteristics.

Add enhances the flavor and freshness
of tomatoes.

[210]

Cellulose and chitosan Enhanced thermal and
anti-bacterial attributes.

Prolonged shelf life for ground meat. [211]

Carboxymethyl cellulose
and chitosan

Increase chitosan solubility. Enhance antimicrobial effect by adjusting
chitosan concentrations.

[212]

Cellulose Adhesive derived from cellulose
for active packaging.

Increased cheese freshness and shelf life. [213]

Nanocellulose Nanocellulose has gas barrier
qualities that limit leaf respiration.

A longer storage life and larger capacity for
storing the product were achieved.

[214]

Cellulose nanocrystals/chitosan Enhancement of mechanical and
barrier characteristics.

Increased shelf life to 20 days. [215]

Cellulose based on ethylene Enhanced water vapor
transmission and
moisture absorption.

The trigger was the manufacture
of ethylene.

[216]

7. Conclusions

The hydrogel obtained from cellulose is inexpensive, readily accessible, simple to
prepare, biodegradable, and possesses excellent functional characteristics. CBHs are widely
used in wastewater treatment as adsorbents for toxic metals, dyes, and other substances.
CBHs have also been proposed as biosensors for detecting adulterants and toxins in foods.
CBHs are also used as functional foods, transporting nutrients and bioactive compounds
that can help treat a variety of diseases. Due to their great degree of adaptability, simplicity
of preparation, and biodegradability, CBHs are heavily researched in packaging solutions.
Due to their flexibility, capacity to hold water, and response to stimuli, CBHs are utilized in
packaged meals as smart packaging to observe the nutritional content of foods. However,
the entire process and digestibility of hydrogels in vivo is still unknown and will require
further research. The study revealed that the least expensive bioavailable CBHs can be
used efficiently and successfully for a variety of food industry applications in this regard.
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