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Abstract: The effects of ultrasonic treatment for the culture medium of solid black soybean okara
with choline chloride (ChCl) on the survival and β-glucosidase activity of Lactiplantibacillus plantarum
BCRC 10357 (Lp-BCRC10357) were investigated. A mixture of 3% dried black soybean okara in de
Man–Rogosa–Sharpe (w/v) was used as the Oka medium. With ultrasonic treatment (40 kHz/300 W)
of the Oka medium at 60 ◦C for 3 h before inoculation, the β-glucosidase activity of Lp-BCRC10357 at
12 h and 24 h of incubation amounted to 13.35 and 15.50 U/mL, respectively, which was significantly
larger than that (12.58 U/mL at 12 h and 2.86 U/mL at 24 h) without ultrasonic treatment of
the medium. This indicated that ultrasonic treatment could cause the microstructure of the solid
black soybean okara to be broken, facilitating the transport of ingredients and Lp-BCRC10357 into
the internal structure of the okara for utilization. For the effect of ChCl (1, 3, or 5%) added to
the Oka medium (w/v) with ultrasonic treatment before inoculation, using 1% ChCl in the Oka
medium could stimulate the best response of Lp-BCRC10357 with the highest β-glucosidase activity
of 19.47 U/mL in 12 h of incubation, showing that Lp-BCRC10357 had a positive response when
confronting the extra ChCl that acted as an osmoprotectant and nano-crowder in the extracellular
environment. Furthermore, the Oka medium containing 1% ChCl with ultrasonic treatment led to
higher β-glucosidase activity of Lp-BCRC10357 than that without ultrasonic treatment, demonstrating
that the ultrasonic treatment could enhance the contact of ChCl and Lp-BCRC10357 to regulate the
physiological behavior for the release of enzymes. In addition, the analysis of the isoflavone content
and antioxidant activity of the fermented product revealed that the addition of 1% ChCl in the
Oka medium with ultrasonic treatment before inoculation allowed a higher enhancement ratio for
the biotransformation of isoflavone glycosides to their aglycones, with a slight enhancement in the
antioxidant activity at 24 h of fermentation. This study developed a methodology by combining
ultrasonic treatment with a limited amount of ChCl to allow the culture medium to acclimate Lp-
BCRC10357 and release high levels of β-glucosidase, and this approach has the potential to be used
in the fermentation of okara-related products as nutritional supplements in foods.

Keywords: ultrasound; choline chloride; lactic acid bacteria; fermentation; β-glucosidase; black
soybean okara

1. Introduction

Soybean okara (residue), as an insoluble by-product in the production of soy-derived
products in the food industry, is rich in dietary fiber and nutritional compounds beneficial
to human health, and it is worth reusing in foods for valorization or as a nutritional
supplement in feed [1–4]. Black soybean okara is the residue derived from producing black
soymilk from black soybean (Glycine max (L.) Merr.), which contains functional compounds

Foods 2023, 12, 3781. https://doi.org/10.3390/foods12203781 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods12203781
https://doi.org/10.3390/foods12203781
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0002-4232-6370
https://doi.org/10.3390/foods12203781
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods12203781?type=check_update&version=2


Foods 2023, 12, 3781 2 of 15

such as carotenoids, saponins, and isoflavones, with benefits such as anti-aging, anti-
inflammatory, and detoxification activity and relieving kidney disease [5,6]. During the
processing of soymilk, about 12–30% of the isoflavones in soybeans can be retained in the
okara [7], within which the content of bioactive isoflavone aglycones can be increased via
the biotransformation of their glycosides for use in foods [8]. Such biotransformation can be
achieved using the enzyme β-glucosidase, released from lactic acid bacteria (LAB), which
has benefits for the host, such as preventing cancer and inhibiting intestinal pathogens, and
it can be used in the fermentation of okara [9–11]. Wang et al. (2022) reported that the use
of enzymatic hydrolysis and fermentation had a positive influence on the nutritional and
functional profile of the okara, and a greater extent of hydrolysis facilitated the growth of
Lactiplantibacillus plantarum during the fermentation of okara [12].

However, when using LAB to ferment the solid okara, the much easier transport
of the ingredients and enzyme, as well as the bacteria, into the internal structure of the
solid okara would be more advantageous in the extraction and biotransformation of the
isoflavones and other functional ingredients. Modifying the surface structure of the okara
helps to increase the portions exposed to the bacteria for utilization. Lin et al. (2020)
investigated the effects of fermentation and microwave treatment on the structure and
functional properties of okara dietary fiber, showing that the honeycomb structure of the
okara dietary fiber was more obvious and the crystal structures were slightly damaged after
fermentation and microwave treatment [13]. Besides microwave treatment, ultrasound
can be an effective method to modify the structure of the okara. Ultrasound, as a non-
thermal green technology, can induce a cavitation effect in the liquid medium to generate
microstreaming and local hotspots to enhance the chemical reaction and facilitate the mass
transfer of components [14]. Using ultrasound at different temperatures to extract the
residual proteins from the okara by-product was reported to modify the secondary and
tertiary protein structures in a significant way [15]. Ultrasonic treatment of solid okara
could be beneficial to enhance the openness of the microstructure for fermentation with
LAB [16].

Among the LAB groups, L. plantarumshows physiological behavior with a highly
adaptive response when encountering various kinds of environmental stress, such as the
stress from ultrasound and different nutrients [17,18], and is widely applied in the food
industry [19–21]. During fermentation or in food production, LAB may experience abiotic
and biotic stresses, including osmotic stress [22]. The increase in osmolarity presents a
challenge in the production of fermented foods, and the positive turgor of bacterial cells
is decreased due to dehydration from the effect of osmotic stress [22]. Some molecules
that can act as osmoprotectants (e.g., glycine betaine, choline, and proline) could be em-
ployed to balance the difference between intracellular and extracellular osmolarity for
rehydration [22–24].

Choline is essential in the synthesis of phospholipids in cell membranes, and it is
converted to betaine and used as an osmolyte as well as a methyl donor [25]. Kets et al.
(1997) investigated the physiological response of L. plantarum subjected to osmotic stress
from NaCl by adding betaine, choline, or acetylcholine in the growth medium; they found
that the three compounds were able to counterbalance the negative effects of NaCl on
the growth rate, and it was not vital for the anionic compounds sulfate, chloride, and
phosphate in balancing the intracellular charge in L. plantarum [26]. Choline chloride
((2-hydroxyethyl) trimethylammonium chloride), a compound with a choline cation and
chloride anion, is often used as a nutritional supplement in animal feeds [27]. The aqueous
choline chloride solution has been reported to be an alternative to deep eutectic solvents in
some industrial applications, and choline chloride can serve as a protecting co-solvent for
proteins to restrict urea in approaching the protein surface and maintain the water structure
around the protein [28]. For the fermentation of solid okara with L. plantarum, the presence
of choline chloride in the culture medium under different intensities of ultrasonic irradiation
could be utilized to influence the survival of L. plantarum because of the change in the
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environment, such that L. plantarum might be induced to regulate its physiological behavior
to adapt to the new environment, thus releasing different levels of β-glucosidase enzyme.

Therefore, various environmental niches could be suitably applied to acclimate L.
plantarum with a positive stress response, so as to be used in the fermentation of foods. In
this study, the aim was to investigate the effects of ultrasonic treatment for the black soybean
okara culture medium with the addition of choline chloride on the β-glucosidase activity
of L. plantarum BCRC 10357. Various conditions of ultrasonic treatment of the medium of
de Man–Rogosa–Sharpe (MRS) with dried black soybean okara were performed to find
the most favorable conditions for the growth of L. plantarum BCRC 10357. The influences
of different amounts of choline chloride in the medium with ultrasonic treatment on the
stress response of L. plantarum BCRC 10357 and various modes of ultrasonic treatment on
the culture system were also assessed. The antioxidant activity and the biotransformation
of isoflavone glycosides into their aglycones in the fermented product of black soybean
okara were analyzed. In addition, the surface morphologies of the solid parts separated
from the fermented medium for different conditions of ultrasonic treatment and choline
chloride were analyzed.

2. Materials and Methods
2.1. Materials

The chemical reagents, p-nitrophenyl β-D-glucopyranoside (p-NPG), p-nitrophenol
(p-NP), Folin–Ciocalteu phenol reagent (2N), (±)-6-hydroxy-2,5,7,8-tetramethylchromane-
2-carboxylic acid (Trolox), choline chloride (ChCl), ferric chloride, 2,4,6-tris(2-pyridyl)-s-
triazine (TPTZ), daidzein, daidzin, genistein, and genistin were purchased from Sigma-
Aldrich, Merck KGaA (Darmstadt, Germany). The de Man–Rogosa–Sharpe (MRS) was
purchased from Becton, Dickinson, and Company (Franklin Lakes, NJ, USA). Other reagents
were purchased from Alfa Aesar, Thermo Fisher Scientific (Waltham, MA, USA), Taiwan
Sugar Corporation (Tainan City, Taiwan), Bionovas Biotechnology Co., Ltd. (Toronto, ON,
Canada), Biomate (Taipei, Taiwan), Sigma-Aldrich, Merck KGaA (Darmstadt, Germany),
and Merck (Darmstadt, Germany).

The black soybean (G. max (L.) Merr.) (Tainan No. 3, place of origin being Tainan,
Taiwan), which was harvested at the end of 2019 and subjected to vacuum packaging for
storage, was purchased from Shia Ying Farmers’ Association (Tainan, Taiwan) and used to
prepare black soymilk under the conditions of soaking and homogenization, as described
in Tseng and Yang (2022) [6]. The residue (black soybean okara) was separated from the
black soymilk using filtration and was then freeze-dried and screened with a 60-mesh sieve
to obtain the dried black soybean okara for the experiments.

2.2. Culture of L. plantarum BCRC 10357

L. plantarum BCRC 10357 (abbreviated as Lp-BCRC10357) (other collection no.: ATCC
8014), obtained from the Food Industry Research and Development Institute (Hsinchu,
Taiwan), was selected to evaluate the physiological responses under the stresses from
ultrasonic treatment and in the presence of ChCl in the medium of MRS broth with solid
black soybean okara. The Lp-BCRC10357 culture was preserved at −80 ◦C and activated
by inoculation in sterilized MRS broth at the ratio of 1% (v/v) at 37 ◦C for 24 h two times.
The viable cell counts of Lp-BCRC10357 were determined with the pour plate method
and 10-fold serial dilution method using sterilized 0.1% (w/v) peptone water to dilute the
fermented liquid, and they were expressed as log CFU/mL.

2.3. Ultrasonic Treatment and Fermentation of Black Soybean Okara with Lp-BCRC10357

The culture medium of 3% dried black soybean okara in MRS broth (w/v) was used as
the Oka medium. The Oka medium without ultrasonic treatment was prepared (denoted
as Oka (no US)) to evaluate the effect of ultrasonic treatment on the viable cell counts and
β-glucosidase activity of Lp-BCRC10357. An ultrasonic bath of 40 kHz/300 W (LEO-3002S,
Leo Ultrasonic Co., New Taipei City, Taiwan) with a power density of 0.028 W/mL was
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employed to pretreat the medium. The ultrasonic treatment (40 kHz/300 W) of the Oka
medium was carried out at 60 ◦C for 3 h (denoted as Oka-US) or at 30 ◦C for 20 min (denoted
as Oka-US-L) before inoculation to find the most suitable conditions for the growth of
Lp-BCRC10357.

To explore the influence of the amount of ChCl in the Oka medium on the survival of
Lp-BCRC10357, the ultrasonic treatment (40 kHz/300 W) of the medium with x% ChCl in
the Oka (w/v) was performed at 60 ◦C for 3 h before inoculation and denoted as x%ChCl-US
(x = 1, 3, or 5). The medium with 1% ChCl in the Oka without ultrasonic treatment before
inoculation was denoted as 1%ChCl (no US) for comparison.

The test medium was sterilized at 121 ◦C for 20 min. Then, Lp-BCRC10357 was inocu-
lated at 1% (v/v) (about 7 log CFU/mL) into the sterilized medium, and the fermentation
was started at 37 ◦C for 0–48 h. The viable cell counts and β-glucosidase activity were deter-
mined. Moreover, fermentation using 1%ChCl-US medium inoculated with the pretreated
Lp-BCRC10357, which had been treated with an ultrasound probe (SONOPULS HD 4200,
BANDELIN Electronic GmbH & Co. KG, Germany) set at 60% amplitude (20 kHz/200 W)
and 25 ◦C for 2 min, was also performed and denoted as 1%ChCl-USP.

At the selected fermentation time, the fermented broth was separated as the super-
natant from the medium by centrifugation and then freeze-dried to obtain the dried fer-
mented product (denoted as FP). The FP was further extracted with 80% aqueous methanol
at 30 ◦C for 4 h under 40 kHz/300 W of ultrasound. Then, the mixture was centrifuged
at 4 ◦C using 4000 rpm for 10 min, and the supernatant was freeze-dried to obtain the FP
extract (denoted as FPE).

2.4. Determination of β-Glucosidase Activity

According to the method of Tseng and Yang (2022), the determination of the β-
glucosidase activity of Lp-BCRC10357 was based on the measurement of the quantity
of p-NP released from the hydrolysis rate of p-NPG [6], and it is briefly described in the
following. The p-NPG was added into the fermented liquid to react at 37 ◦C for 30 min, and
the reaction was stopped by adding Na2CO3 into the mixture. After centrifugation, the su-
pernatant was separated from the mixture and then filtered and analyzed for β-glucosidase
activity using a spectrophotometer at 405 nm (Hitachi, Ratio Beam Spectrophotometer
U-5100, Tokyo, Japan).

2.5. Determination of Ferric-Reducing Antioxidant Power

The determination of the ferric-reducing antioxidant power (FRAP) of the FPE fol-
lowed the method of Tsui and Yang (2021) using Trolox equivalent (TRE) [10], and it is
briefly described in the following [10]. The liquid sample of FPE was first prepared by
dissolving it in 80% aqueous methanol at a ratio of 1:10 (w/v). Then, the FRAP reagent was
mixed with the liquid sample of FPE and deionized water to react at 37 ◦C for 4 min. The
FRAP was determined by measuring the absorbance of the mixture using a spectropho-
tometer at 593 nm, and it was expressed as µg-TRE/g-FPE or further µg-TRE/g-FP.

2.6. HPLC Analysis of Isoflavones

High-performance liquid chromatography (HPLC) was employed to determine the
isoflavone content in the FPE using daidzin, daidzein, genistin, and genistein (Sigma-
Aldrich) as the standards for quantification. The liquid sample of FPE for analysis was
prepared as stated in Section 2.5. The HPLC system was equipped with a UV–VIS detector
(Hitachi Chromaster 5420 UV–VIS detector, Hitachi, Ltd., Tokyo, Japan) at 260 nm and a
Mightysil RP-18 column (5 µm, 250 mm × 4.6 mm, Kanto Chemical Co., Tokyo, Japan). The
HPLC conditions followed the method of Yu and Yang (2019) with a slight modification [16].
The mobile phase of 0.1% (v/v) trifluoroacetic acid (solvent A) and acetonitrile (solvent B)
(Merck, Darmstadt, Germany) was set at a flow rate of 0.8 mL/min with the gradient of
solvent A as follows: 90% at 0–10 min, 90–45% at 10–35 min, 45–90% at 35–45 min, and 90%
at 45–55 min.
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2.7. FE-SEM Analysis

The surface morphology of the solid parts that were separated from the fermented
medium after fermentation was analyzed using a field emission scanning electron micro-
scope (FE-SEM) (JEOL, JSM-7800F, Tokyo, Japan).

2.8. Statistical Analysis

Each experiment was performed three times using three independent samples for each
condition, and the experimental data were expressed as the mean ± standard deviation
(n = 3). The statistical analysis was performed by applying one-way ANOVA with Duncan’s
multiple range test using IBM SPSS Statistics 20 (IBM SPSS Statistics for Windows v. 20.0,
IBM Corp, Armonk, NY, USA). A significant difference was determined at p < 0.05.

3. Results and Discussion
3.1. Ultrasonic Treatment of the Medium of MRS with Black Soybean Okara

The viable cell counts and β-glucosidase activity of Lp-BCRC10357 incubated at 37 ◦C
for 48 h under different conditions of ultrasonic treatment (40 kHz/300 W) of the Oka
medium are shown in Table 1 and Figure 1, respectively. The viable cell counts of Lp-
BCRC10357 were greater than 9.4 log CFU/mL in 12–24 h of incubation under different
conditions of ultrasonic treatment for the Oka medium (Table 1). Among them, the Oka
medium with ultrasonic treatment at 60 ◦C for 3 h before inoculation (Oka-US) obtained
the highest viable cell counts (9.89 log CFU/mL) in 24 h of incubation, and it was able to
maintain higher viable cell counts for a longer period of incubation.

Table 1. Effect of different conditions of ultrasonic treatment (40 kHz/300 W) for the medium of MRS
combined with 3% black soybean okara (Oka) on viable cell counts of L. plantarum BCRC 10357.

Ultrasonic Treatment
Viable Cell Count (log CFU/mL) at Incubation Time (h) *

0 12 24 36 48

Oka (no US) 7.62 ± 0.04 aC 9.59 ± 0.01 bA 9.41 ± 0.01 cB 6.99 ± 0.02 bD 6.60 ± 0.06 bE

Oka-US-L 7.61 ± 0.02 aB 9.58 ± 0.01 bA 9.68 ± 0.03 bA 7.07 ± 0.08 abC 6.11 ± 0.12 cD

Oka-US 7.53 ± 0.04 bD 9.74 ± 0.04 aB 9.89 ± 0.03 aA 7.17 ± 0.03 aE 8.01 ± 0.09 aC

* Conditions: incubation at 37 ◦C for 48 h. Oka (no US): the Oka medium without ultrasonic treatment; Oka-US-L:
the Oka medium with ultrasonic treatment at 30 ◦C for 20 min before inoculation; Oka-US: the Oka medium with
ultrasonic treatment at 60 ◦C for 3 h before inoculation. Data were expressed as mean ± standard deviation with
triplicate experiments (n = 3). Different superscript lowercase letters in the same columns and different superscript
uppercase letters in the same rows were significantly different (p < 0.05) by Duncan’s multiple range test.

As shown in Figure 1, it was found that with ultrasonic treatment at 60 ◦C for 3 h on
the Oka medium before inoculation, the β-glucosidase activity of Lp-BCRC10357 at 12 h
and 24 h of incubation amounted to 13.35 and 15.50 U/mL, respectively, which was higher
and more stable than that (12.58 U/mL at 12 h and 2.86 U/mL at 24 h) without ultrasonic
treatment of the medium. This implied that the use of different conditions of ultrasonic
treatment (40 kHz/300 W) on the Oka medium could cause changes in the structure of the
okara, which could lead to differences in the growth behaviors of Lp-BCRC10357 due to
the utilization of nutrients from the okara. Yu and Yang (2019) reported that ultrasonic
treatment helps to enhance the openness of the microstructure of the okara [16].

Su et al. (2023) indicated that the survivability of LAB can be enhanced by the limited
strength of nutrients and ultrasonic stresses [18]. Aiello et al. (2021) reported that ultra-
sound could be applied to effectively extract residual proteins with conformational changes
from okara by-products [15], and such extracted proteins might be utilized by bacteria as
nutrients during fermentation. In this study, the ultrasonic treatment at 40 kHz/300 W
allowed us to modify the okara structure to facilitate the transport of ingredients and
bacteria. A more severe condition of ultrasonic treatment at 60 ◦C for 3 h on the medium
(Oka-US) was more favorable for the survival and β-glucosidase activity of Lp-BCRC10357.
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Figure 1. Variations in β-glucosidase activity of L. plantarum BCRC 10357 incubated at 37 ◦C for
48 h using different conditions of ultrasonic treatment (40 kHz/300 W) for the medium of MRS
with 3% black soybean okara (Oka). Oka (no US): the Oka medium without ultrasonic treatment;
Oka-US-L: the Oka medium with ultrasonic treatment at 30 ◦C for 20 min before inoculation; Oka-US:
the Oka medium with ultrasonic treatment at 60 ◦C for 3 h before inoculation. Data were expressed
as mean ± standard deviation with triplicate experiments (n = 3). Different superscript lowercase
letters at the same incubation time and different superscript uppercase letters at the same conditions
with or without ultrasonic treatment were significantly different (p < 0.05) by Duncan’s multiple
range test.

3.2. Effect of the Amount of ChCl Added to Black Soybean Okara Medium

For the Oka medium with various amounts of ChCl (1, 3, or 5%) under ultrasonic
treatment at 60 ◦C for 3 h, the viable cell counts of Lp-BCRC10357 during 48 h of incubation
at 37 ◦C are shown in Table 2. It was found that during 48 h of incubation, the viable
cell counts for 1%ChCl-US remained at a higher level compared with those for other
cases. In 12 h of incubation, the viable cell count for 1%ChCl-US quickly rose to 9.81 log
CFU/mL, and it was significantly higher than those for 3%ChCl-US (9.54 log CFU/mL)
and 5%ChCl-US (9.57 log CFU/mL). Different amounts of ChCl present in the growth
medium led to different extracellular environments, resulting in various degrees of stress
on Lp-BCRC10357. Such stress induced Lp-BCRC10357 to regulate its physiological status
to adapt to the new environment. The results showed that a limited quantity of ChCl added
to the Oka medium could elicit a significant positive response of Lp-BCRC10357.

Table 2. Effect of different amounts of choline chloride (ChCl) added to the medium of MRS with
3% black soybean okara (Oka) under ultrasonic treatment (40 kHz/300 W) on viable cell counts of L.
plantarum BCRC 10357.

Type of Medium
Viable Cell Count (log CFU/mL) at Incubation Time (h) *

0 12 24 36 48

1%ChCl-US 7.65 ± 0.02 abD 9.81 ± 0.05 aA 9.66 ± 0.13 aB 8.18 ± 0.06 aC 7.76 ± 0.03 aD

3%ChCl-US 7.71 ± 0.04 aB 9.54 ± 0.03 bA 9.56 ± 0.12 aA 7.46 ± 0.05 bC 6.86 ± 0.09 bD

5%ChCl-US 7.60 ± 0.05 bC 9.57 ± 0.09 bA 9.69 ± 0.02 aA 8.18 ± 0.08 aB 6.54 ± 0.09 cD

* Conditions: incubation at 37 ◦C for 48 h. x%ChCl-US: the Oka medium combined with x% ChCl using ultrasonic
treatment at 60 ◦C for 3 h before inoculation. Data were expressed as mean ± standard deviation with triplicate
experiments (n = 3). Different superscript lowercase letters in the same columns and different superscript
uppercase letters in the same rows were significantly different (p < 0.05) by Duncan’s multiple range test.
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Figure 2 shows the results of the β-glucosidase activity of Lp-BCRC10357 for the Oka
medium combined with different amounts of ChCl under ultrasonic treatment
(40 kHz/300 W) at 60 ◦C for 3 h, and the results for Oka-US (without adding ChCl) are also
displayed for comparison. It shows that in 12 h of incubation, the β-glucosidase activity
for 1%ChCl-US quickly rose to 19.47 U/mL, being significantly larger than those for other
cases with the order of 1%ChCl-US > Oka-US > 3%ChCl-US > 5%ChCl-US. This showed
that the addition of 1% ChCl to the Oka medium with ultrasonic treatment could stimulate
the bacteria to further release β-glucosidase in a short incubation time, compared with
the case of Oka-US (no ChCl), for which the largest β-glucosidase activity (15.50 U/mL)
occurred at 24 h of incubation.
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Figure 2. Effect of different amounts of choline chloride (ChCl) added to the medium of MRS with
3% black soybean okara (Oka) on the β-glucosidase activity of L. plantarum BCRC10357 incubated at
37 ◦C for 48 h. Oka-US: the Oka medium with ultrasonic treatment (40 kHz/300 W) at 60 ◦C for 3 h
before inoculation; x%ChCl-US: the Oka medium combined with x% ChCl using ultrasonic treatment
(40 kHz/300 W) at 60 ◦C for 3 h before inoculation. Data were expressed as mean ± standard
deviation (n = 3). Different superscript lowercase letters at the same incubation time and different
superscript uppercase letters at the same amounts of ChCl were significantly different (p < 0.05) by
Duncan’s multiple range test.

Furthermore, for the case of 5%ChCl-US, the largest β-glucosidase activity (10.44 U/mL)
of Lp-BCRC10357 occurred at 24 h of incubation, revealing that the reduction in β-glucosidase
activity could be delayed by adding a suitable amount of ChCl to the medium. However, the
results shown in Figure 2 demonstrate that a large amount of ChCl added to the medium
was not essential for the positive response of Lp-BCRC10357. The reason might be related to
the role of the ChCl structure in the solution environment. Nanavare et al. (2022) reported
that an increase in the amount of ChCl could lead to a disruption in the tetrahedrality
for water molecules, with a reduction in hydrogen bonds between water pairs in the
solution [28]. Maity et al. (2020) concluded that the bulky choline ion can be considered to
act as a nano-crowder that could suppress the dynamics of the proteins as well as other
co-solvents to prevent the unfolding of proteins [29]. Therefore, a limited amount of ChCl
in the medium was sufficient to induce a favorable response regarding the release of β-
glucosidase for fermentation. Furthermore, the β-glucosidase activity of Lp-BCRC10357
for 1%ChCl-US at 12 and 24 h was much greater than that for the Oka (no US), showing
that the combination of 1% ChCl with ultrasonic treatment could obtain the best positive
response of Lp-BCRC10357 in the fermentation of black soybean okara.
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3.3. Effect of Different Modes of Ultrasonic Treatment for the Medium System Using 1% ChCl

The effect of different modes of ultrasonic treatment for the Oka medium containing 1%
ChCl on the survivability of Lp-BCRC10357 was explored, and three cases were compared,
i.e., (1) the medium without ultrasonic treatment (1%ChCl (no US)), (2) the medium
with ultrasonic treatment (1%ChCl-US), and (3) the medium with ultrasonic treatment
and using the Lp-BCRC10357 pretreated with an ultrasound probe before its inoculation
(1%ChCl-USP). The results for the viable cell counts and β-glucosidase activity are shown
in Figure 3a,b, respectively. It was found that, in a short incubation time of 12 h, the viable
cell counts for 1%ChCl-US (9.81 log CFU/mL) were significantly higher than those for
1%ChCl (no US) (9.71 log CFU/mL) and 1%ChCl-USP (9.62 log CFU/mL) (Figure 3a),
and the order of β-glucosidase activity was 1%ChCl-US (19.47 U/mL) > 1%ChCl-USP
(11.11 U/mL) > 1%ChCl (no US) (8.18 U/mL).
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Figure 3. Effect of various modes of ultrasonic treatment on (a) viable cell counts; (b) β-glucosidase ac-
tivity of L. plantarum BCRC 10357 incubated at 37 ◦C for 48 h. Oka: the medium of MRS with 3% black
soybean okara; 1%ChCl (no US): the Oka medium combined with 1% choline chloride (ChCl) without
ultrasonic treatment; 1%ChCl-US: the Oka medium with ultrasonic treatment (40 kHz/300 W) at
60 ◦C for 3 h before inoculation. 1%ChCl-USP: the medium of 1%ChCl-US using L. plantarum BCRC
10357 that had been pretreated with an ultrasound probe (20 kHz/200 W) at 60% amplitude and
25 ◦C for 2 min. Data were expressed as mean ± standard deviation with triplicate experiments
(n = 3). Different superscript lowercase letters at the same incubation time and different superscript
uppercase letters at the same modes of ultrasonic treatment were significantly different (p < 0.05) by
Duncan’s multiple range test.

Although the β-glucosidase activity for 1%ChCl (no US) could increase to a value of
12.57 U/mL in 24 h of incubation, it quickly diminished to 0.42 U/mL in 36 h of incubation.
In contrast, with 1% ChCl in the Oka medium using ultrasonic treatment, either with or
without bacteria to be pretreated, the β-glucosidase activity quickly rose to a higher value
in 12 h of incubation, delaying any reduction, compared to that for 1%ChCl (no US). This
demonstrates that the use of 1%ChCl-US could provide a more beneficial environment for
the growth and physiological adaptation of Lp-BCRC10357 than the use of 1%ChCl-USP.
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3.4. Antioxidant Activity of the Fermented Product

The effects of ultrasonic treatment and ChCl addition on the antioxidant activity of the
fermented product in the fermentation of black soybean okara using Lp-BCRC10357 were
evaluated. Figure 4a displays the comparison of the ferric-reducing antioxidant power
(FRAP) of the dried fermented product for different amounts of ChCl in the Oka medium
with ultrasonic treatment. In 24 h of fermentation, the FRAP for 1%ChCl-US was signifi-
cantly higher than that for other cases in the order of 1%ChCl-US (4749.03 µg-TRE/g-FP)
> Oka-US (4195.68 µg-TRE/g-FP) > 3%ChCl-US (3951.05 µg-TRE/g-FP) > 5%ChCl-US
(3256.13 µg-TRE/g-FP). For the case of 1%ChCl-US, the FRAP in the fermented product
increased from 4479.11 µg-TRE/g-FP at 0 h to 4749.03 µg-TRE/g-FP at 24 h, and then
slightly decreased to 4368.27 µg-TRE/g-FP at 48 h of fermentation. Meanwhile, for both the
3%ChCl-US and 5%ChCl-US cases, the FRAP values first decreased in 24 h of fermentation
and further slightly decreased with 48 h of fermentation.
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Figure 4. Variations in ferric-reducing antioxidant power (FRAP) in the dried fermented product (FP)
at 0, 24, and 48 h of fermentation time for the effects of (a) amount of choline chloride (ChCl) added to
the Oka medium and (b) mode of ultrasonic treatment on the medium or on L. plantarum BCRC 10357.
Oka: the medium of MRS with 3% black soybean okara; Oka-US: the Oka medium with ultrasonic
treatment (40 kHz/300 W) at 60 ◦C for 3 h before inoculation; 1%ChCl (no US): the Oka medium
combined with 1% ChCl without ultrasonic treatment; x%ChCl-US: the Oka medium combined with
x% ChCl using ultrasonic treatment (40 kHz/300 W) at 60 ◦C for 3 h before inoculation; 1%ChCl-USP:
the medium of 1%ChCl-US inoculated with L. plantarum BCRC 10357 pretreated with ultrasound
probe (20 kHz/200 W) at 25 ◦C for 2 min. Data were expressed as mean ± standard deviation
(n = 3). Different superscript lowercase letters at the same fermentation time and different superscript
uppercase letters at the same amounts of ChCl for (a) or at the same modes of ultrasonic treatment
for (b) were significantly different (p < 0.05) by Duncan’s multiple range test.

This trend of a decrease in FRAP during fermentation was also observed for Oka-US
but with a smaller rate of decrease. The changes in antioxidant activity might have resulted
from the changes in the content of functional ingredients after fermentation, such as the
content of isoflavones and phenolic compounds, because the responses of Lp-BCRC10357
might vary when experiencing different environmental stresses. Chen et al. (2022) reported
that the antioxidant activity was substantially related to the contribution of the phenolic
compounds [30]. Gupta et al. (2018) indicated that the increase in antioxidant activity in
okara after fermentation might be attributed to an increase in the content of phenolics [31].
Wang et al. (2022) reported that the antioxidant activity of the okara samples decreased
after 24 h of fermentation using L. plantarum UFG169, and this was related to the decrease



Foods 2023, 12, 3781 10 of 15

in isoflavone and B2 content [12]. In this study, the limited presence of 1% ChCl in the Oka
medium was sufficient to enhance the antioxidant activity of the fermented product in 24 h
of fermentation.

Figure 4b displays the comparison of the antioxidant activity (in FRAP) between
different ultrasonic modes using 1% ChCl in the Oka medium for the cases of 1%ChCl (no
US), 1%ChCl-US, and 1%ChCl-USP. As shown in Figure 4b, in 24 h of fermentation, the
order of FRAP was 1%ChCl-USP > 1%ChCl-US > 1%ChCl (no US), but with an insignificant
difference; meanwhile, in 48 h of fermentation, the order of FRAP was reversed as 1%ChCl
(no US) > 1%ChCl-US > 1%ChCl-USP, still with an insignificant difference. However, the
case of 1%ChCl-USP exhibited a larger reduction in antioxidant activity after fermentation,
and a more stable profile of antioxidant activity was obtained for 1%ChCl-US.

3.5. Biotransformation of Isoflavones in the Fermentation of Black Soybean Okara Containing
Choline Chloride

The cases without/with ultrasonic treatment (40 kHz/300 W) at 60 ◦C for 3 h and
the effects of different amounts of ChCl (1%, 3%, and 5%) in the Oka medium on the
biotransformation of isoflavones in the fermentation of black soybean okara using Lp-
BCRC10357 were evaluated. The results are shown in Table 3.

Table 3. Effects of ultrasonic treatment in the presence of various amounts of choline chloride (ChCl)
on the biotransformation of isoflavones in the dried fermented product (FP) for the fermentation of
black soybean okara using L. plantarum BCRC 10357 at 37 ◦C *.

Medium Type
Fermentation
Time (h)

Isoflavones (µg/g-FP) AI/TI
(%)

Enhancement
RatioDaidzin Genistin Daidzein Genistein

1%ChCl (no US) 0 86.73 ± 2.53 A 104.98 ± 6.21 A 15.71 ± 0.97 B 18.34 ± 1.33 B 15.08 --

1%ChCl (no US) 24 43.12 ± 31.00 B 59.73 ± 28.77 B 28.47 ± 9.82 A 29.77 ± 6.88 A 36.15 2.40

1%ChCl (no US) 48 27.75 ± 2.05 B 54.50 ± 0.86 B 33.16 ± 1.43 A 29.45 ± 0.88 A 43.22 2.87

1%ChCl-US 0 108.12 ± 4.48 A 152.23 ± 2.31 A 9.51 ± 0.62 B 9.75 ± 1.44 C 6.89 --

1%ChCl-US 24 31.22 ± 2.89 B 65.57 ± 1.25 B 33.45 ± 1.26 A 26.25 ± 1.34 A 38.15 5.54

1%ChCl-US 48 28.01 ± 3.54 B 74.15 ± 20.84 B 30.48 ± 2.73 A 21.97 ± 2.32 B 33.92 4.92

3%ChCl-US 0 89.21 ± 10.30 A 132.59 ± 18.44 A 9.56 ± 1.49 B 10.08 ± 1.22 C 8.13 --

3%ChCl-US 24 27.13 ± 0.22 B 66.95 ± 12.90 B 25.47 ± 1.66 A 20.32 ± 1.86 A 32.74 4.03

3%ChCl-US 48 28.06 ± 0.51 B 54.46 ± 2.91 B 23.97 ± 1.40 A 17.15 ± 1.57 B 33.26 4.09

5%ChCl-US 0 58.51 ± 0.48 A 69.72 ± 1.72 A 10.09 ± 0.36 C 11.92 ± 0.13 C 14.65 --

5%ChCl-US 24 29.82 ± 0.19 B 41.70 ± 0.35 B 18.60 ± 0.10 B 18.38 ± 0.79 B 34.09 2.33

5%ChCl-US 48 21.89 ± 2.03 C 30.30 ± 0.75 C 21.51 ± 0.13 A 20.11 ± 0.78 A 44.36 3.03

* Data were expressed as mean ± standard deviation (n = 3). AI = daidzein + genistein, TI = daidzin + genistin +
daidzein + genistein. (AI/TI)(%) = (AI/TI) × 100%. Enhancement ratio = (AI/TI at time 24 h or 48 h)/(AI/TI
at time 0 h). Oka: the medium of MRS with 3% black soybean okara; 1%ChCl (no US): the Oka medium
combined with 1% ChCl without ultrasonic treatment; x%ChCl-US: the Oka medium combined with x% ChCl
using ultrasonic treatment (40 kHz/300 W) at 60 ◦C for 3 h before inoculation. Different superscript uppercase
letters in the same columns in the same medium type were significantly different (p < 0.05) by Duncan’s multiple
range test.

The enhancement ratio was used to assess the efficiency of the biotransformation of
isoflavone glycosides to their aglycones, and it was defined as (AI/TI) at a fermentation
time of 24 h or 48 h divided by (AI/TI) at a fermentation time of 0 h, where AI was the
sum of daidzein and genistein and TI was the sum of daidzin, genistin, daidzein, and
genistein. The enhancement ratio decreased with the increase in %ChCl in the Oka medium
under ultrasonic treatment, and the order of the enhancement ratio was 1%ChCl-US
(5.54) > 3%ChCl-US (4.03) > 5%ChCl-US (2.33) at 24 h of fermentation. The same trend was
observed at 48 h of fermentation. This demonstrated that the excessive addition of ChCl
would lead to changes in the medium environment, not only inducing different responses
of Lp-BCRC10357 in releasing β-glucosidase but also affecting the biotransformation of the
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ingredients by the enzymes, due to ChCl acting as an osmoprotectant and nano-crowder
that could suppress the dynamics of the protein [29]. When using 1% ChCl in the Oka
medium, the enhancement ratios with ultrasonic treatment (1%ChCl-US) were much
higher than those without ultrasonic treatment (1%ChCl (no US)) at both 24 h and 48 h of
fermentation, indicating that the modification of the surface structure of solid black soybean
okara using ultrasound could facilitate the transport of the components and bacteria into
the network structure for fermentation.

3.6. Morphological Structures of the Solid Substrate with L. plantarum BCRC 10357

Figure 5 shows the FE-SEM images of the solid substrate separated from the medium
in 12 h with Lp-BCRC10357. As shown in Figure 5a, for Oka-US, after ultrasonic treatment,
the structure of the okara was destroyed to some extent, leading to an enhancement in the
transport of ingredients and bacteria, approaching the internal surface more easily.

Figure 5b displays the surface morphology for 1%ChCl (no US). Without ultrasonic
treatment but with 1% ChCl in the Oka medium, the surface of the okara was more flat
and less broken, showing that the bacteria were very crowded, gathering on the surface of
the okara. In Figure 5c, for the microstructure of 1%ChCl-US, with ultrasonic treatment
of the okara and 1% ChCl, the surface of the okara was much destroyed and broken to
expose the internal sites, and the bacteria were able to easily enter the internal structure for
fermentation. In Figure 5d, for 1%ChCl-USP, it is shown that the structure of the okara was
broken but still had some flat surfaces, and the pretreated bacteria were clearly gathered on
the surface.
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combined with 3% black soybean okara; Oka-US: the Oka medium with ultrasonic treatment (40 
kHz/300 W) at 60 °C for 3 h before inoculation; 1%ChCl (no US): the Oka medium combined with 
1% choline chloride (ChCl) without ultrasonic treatment; 1%ChCl-US: the Oka medium combined 
with 1% ChCl using ultrasonic treatment (40 kHz/300 W) at 60 °C for 3 h before inoculation; 
1%ChCl-USP: the medium of 1%ChCl-US using L. plantarum BCRC 10357 that had been pretreated 
with an ultrasound probe (20 kHz/200 W) at 25 °C for 2 min. 
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BCRC10357 were assessed. The presence of 1% ChCl in the Oka medium with ultrasonic 
treatment could stimulate the best response of Lp-BCRC10357 to release the most β-glu-
cosidase at 12 h of incubation. The intense ultrasonic treatment caused the surface struc-
ture of the solid black soybean okara to be severely destroyed, so as to facilitate the 
transport of ingredients and Lp-BCRC10357 into the internal structure of the okara for the 
fermentation. Moreover, the positive response of Lp-BCRC10357 was induced by regulat-
ing its physiological behavior when confronting the extra added ChCl, which acted as an 
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Figure 5. FE-SEM images of the solids separated from the medium in 12 h with L. plantarum BCRC
10357: (a) Oka-US; (b) 1%ChCl (no US); (c) 1%ChCl-US; (d) 1%ChCl-USP. Oka: the medium of
MRS combined with 3% black soybean okara; Oka-US: the Oka medium with ultrasonic treatment
(40 kHz/300 W) at 60 ◦C for 3 h before inoculation; 1%ChCl (no US): the Oka medium combined with
1% choline chloride (ChCl) without ultrasonic treatment; 1%ChCl-US: the Oka medium combined
with 1% ChCl using ultrasonic treatment (40 kHz/300 W) at 60 ◦C for 3 h before inoculation; 1%ChCl-
USP: the medium of 1%ChCl-US using L. plantarum BCRC 10357 that had been pretreated with an
ultrasound probe (20 kHz/200 W) at 25 ◦C for 2 min.

4. Conclusions

In this study, the impacts of ultrasonic treatment for the culture medium contain-
ing solid black soybean okara and ChCl on the survival and β-glucosidase activity of
Lp-BCRC10357 were assessed. The presence of 1% ChCl in the Oka medium with ultra-
sonic treatment could stimulate the best response of Lp-BCRC10357 to release the most
β-glucosidase at 12 h of incubation. The intense ultrasonic treatment caused the surface
structure of the solid black soybean okara to be severely destroyed, so as to facilitate the
transport of ingredients and Lp-BCRC10357 into the internal structure of the okara for the
fermentation. Moreover, the positive response of Lp-BCRC10357 was induced by regulating
its physiological behavior when confronting the extra added ChCl, which acted as an
osmoprotectant and nano-crowder in the extracellular environment. This study developed
a methodology by combining ultrasonic treatment with a limited amount of ChCl in the
culture medium of black soybean okara to acclimate Lp-BCRC10357 to release a high level
of β-glucosidase, and this approach has the potential to be used in the fermentation of
okara-related products as a nutritional supplement in foods, for the valorization of okara.
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