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Abstract: The liver is the primary organ regulating glucose metabolism. In our recent study, cinnamon
improved liver function in diabetic mice. However, it is not clear whether cinnamon can reduce
the glycemia of diabetic animals by regulating liver glucose metabolism. The purpose of this study
was to investigate the hypoglycemic mechanism of cinnamon powder (CP) from the perspective of
regulating liver glucose metabolism. To achieve this, different doses of CP (200, 400, or 800 mg/kg
body weight) were given to diabetic mice by gavage once per day for 8 weeks. These mice were
compared with healthy controls, untreated diabetic mice, and diabetic mice treated with metformin
(the main first-line drug for type 2 diabetes). CP treatment effectively reduced fasting blood glucose
levels and food intake, improved glucose tolerance and fasting serum insulin levels, and decreased
glycated serum protein levels in diabetic mice. Furthermore, treatment with CP increased liver
glycogen content and reduced the level of the gluconeogenesis precursor pyruvate in the liver. Data
obtained by qPCR and western blotting suggested that CP improved glucose metabolism disorders
by regulating AMPKα/PGC1α-mediated hepatic gluconeogenesis and PI3K/AKT-mediated hepatic
glycogen synthesis. CP exhibits good hypoglycemic effects by improving hepatic glycogen synthesis
and controlling hepatic gluconeogenesis. Therefore, CP may be applied as a functional food to
decrease blood glucose.

Keywords: cinnamon powder; hypoglycemia; glycogen synthesis; gluconeogenesis

1. Introduction

Cinnamon (Cinnamomum cassia Presl) is obtained from tropical evergreen trees be-
longing to the family Lauraceae. It is widely distributed in Sri Lanka, China, India, and
Australia [1,2]. It has long been used as a spice and in traditional herbal medicines. Avail-
able evidence suggests that cinnamon has beneficial effects on diabetes management [3].
Multiple mechanisms have been proposed by which cinnamon improves diabetes, in-
cluding enhancing insulin sensitivity through insulin receptor signaling, inhibiting the
activity of carbohydrate-digesting enzymes, inhibiting glucose transport, delaying gastric
emptying, and blocking glucose absorption [4–6]. The liver plays a crucial role in glucose
metabolism. However, the effects of cinnamon powder (CP) on hepatic gluconeogenesis
and glycogen synthesis have not been fully illustrated yet. Our recent study suggests that
cinnamon improves liver function in diabetic mice by attenuating oxidative stress in liver
tissue (Figure S1). Restoring liver function may further improve the regulation of genes and
proteins involved in liver glucose metabolism signaling pathways and partially alleviate
glucose metabolism disorders [7,8].
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In this study, the hypoglycemic activity of CP was determined in vivo. Furthermore,
the impact of CP on hepatic glucose metabolism was investigated. Additionally, the
possible mechanisms of action involved in hepatic gluconeogenesis and hepatic glycogen
synthesis of CP were explored.

2. Materials and Methods
2.1. Materials

STZ was supplied by Guangzhou Qiyun Biological Products Co., Ltd. (Guangzhou,
Guangdong, China). Metformin was purchased from Sino-US Shanghai Bristol-Myers
Squibb Pharma-Ceutical Co., Ltd. (Shanghai, China). Primary antibodies against per-
oxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1a, cat. no.
ab188102), glycogen synthase kinase 3 beta (GSK3β, cat. no. ab32391), glycogen syn-
thase (GS, cat. no. ab40810), phosphorylated-AKT (p-AKT, cat. no. ab38449), and silent
information regulator factor 2-related enzyme 1 (SIRT1, cat. no. ab189494) were supplied
by Abcam (Cambridge, MA, USA). Antibodies against AMP-activated protein kinase alpha
(AMPKα, cat. no. cst#5831), serine-threonine protein kinase (AKT, cat. no. cst#4691), and
phosphorylated-AMPKα (p-AMPKα, cat. no. cst#2535) were supplied by Cell Signaling
Technology (Danvers, MA, USA). Anti-GAPDH was acquired from Proteintech Group Inc.
(Wuhan, Hubei, China). The other chemicals used in the experiment were all reagent-grade.

2.2. Sample Collection and Preparation

Fresh, matured bark of cinnamon was collected by the Guangxi Forestry Research
Institute (Nanning, Guangxi, China). The bark of the plant was washed, air-dried, and
ground into dry CP, which was stored at −20 ◦C until use.

2.3. Animals

Male BALB/c mice (4–6 weeks old) were obtained from the Laboratory Animal Center,
Southern Medical University, Guangzhou, Guangdong Province, China (quality certifi-
cation number: SYXK (Yue) 2020-0149). The animal experiments were approved by the
Experimental Animal Ethics Committee of Sericulture and Agri-Food Research Institute,
Guangdong Academy of Agricultural Sciences (29 January 2021, approval number: 2021-
SC-03). Animals were acclimated to plastic-caged housing in a controlled environment
(22 ± 2 ◦C and 12 h light/dark). Water and food were given ad libitum.

2.4. Induction of Experimental Diabetes

Diabetes was induced by the HFD/STZ method [9]. After the adaptation time, except
in the blank control (normal) group, the mice were fed a HFD (60% energy as fat) for 4 weeks.
The mice were fasted overnight before induction of diabetes and then intraperitoneally
injected with STZ (80 mg/kg body weight (b.w.)) dissolved in citrate buffer (0.1 mol/L,
pH 4.5). After 7 days, fasting blood glucose (FBG) levels were estimated with a glucometer
(ACCU-CHEK Active Blood Glucose Meter, Roche) by drawing blood from the tail vein.
The diabetic model that produces FBG > 11.1 mmol/L is considered successful [10].

2.5. Experimental Design

Diabetic mice were randomized into five groups (10 mice per group): Model group
(diabetic mice not treated with a drug): orally administered vehicle (saline) once per day;
metformin group: diabetic mice orally administered metformin at 200 mg/kg b.w. once
per day; CP-200 group: diabetic mice orally administered CP at 200 mg/kg b.w. once
per day; CP-400 group: diabetic mice orally administered CP at 400 mg/kg b.w. once
per day; CP-800 group: diabetic mice orally administered CP at 800 mg/kg b.w. once
per day; normal group (healthy mice): orally administered vehicle (saline) once per day
(10 mice in this group). Body weight, food intake, and FBG were monitored each week.
After 8 weeks of gavage, all of the mice were euthanized by carbon dioxide inhalation.
Blood was centrifuged, collected, and stored at −80 ◦C. The livers were rapidly collected,
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weighed, and separated into three specimens. Liver tissues were immediately frozen at
−80 ◦C until analysis.

2.6. Oral Glucose Tolerance Test (OGTT)

An OGTT was carried out following the method described by Xiao et al. [11]. The test
was performed in week 8, after the mice had fasted overnight for 12 h. Subsequently, a
glucose load of 1 g/kg body weight was administered. Blood glucose levels were monitored
at 0, 30, 60, and 120 min by tail puncturing. The area under the glycemic curve (AUC) was
measured using the following formula:

AUC =
0.5A + B + C + 0.5D

2

where A, B, C, and D represent the blood glucose values at 0 min, 30 min, 60 min, and
120 min, respectively, after oral administration of the glucose solution.

2.7. Biochemical Assays in Serum and Liver

All liver and serum biochemical indicators were determined using kits (Nanjing
Jiancheng Bioengineering Institute, Nanjing, Jiangsu, China). Serum insulin concentration
was detected by enzyme-linked immunosorbent assay (Qiaoyi Biological Technology Co.,
Ltd., Hefei, Anhui, China).

2.8. RNA Preparation and Quantitative Real-Time RT-PCR (qPCR)

For the qPCR analysis, the methods described by Chen et al. were followed with slight
modifications [12]. Total RNA was extracted from liver tissue using the Trizol reagent
(Gibco, Rockville, MD, USA), followed by reverse transcription into cDNA using a HiScript
1st Strand cDNA Synthesis Kit. Real-time PCR assays were conducted using a SYBR FAST
qPCR Master Kit (KAPA, cat. no. KK4610) according to the provided instructions. Relative
mRNA expression levels were normalized using GAPDH as the housekeeping gene. The
data were analyzed using the 2−∆∆Ct method. The primer sequences used in qPCR are
listed in Table 1.

Table 1. Primer sequences used in RT-qPCR.

Gene Forward Primer (5′-3′) Reverse Primer (5′-3′)

gapdh GGAGAAACCTGCCAAGTATGATGAC GAGACAACCTGGTCCTCAGTGTA
pi3k TATGCCTGCTCCGTAGTGGTAGAC GGTGGCTTGAAGGTGAGGAACTG
akt CACCGTGTGACCATGAACGAGTT TGGCGACGATGACCTCCTTCTT

gsk3β TAATGCTGGAGACCGTGGACAG CGTGACCAGTGTTGCTGAGTG
gs GAACAGACGGCCACCCATT CACTGGGCAGGCATAACCT

ampkα CGTCGCCTACCACCTCATCATAGA TCGGCAACCAAGAACGGTACTCT
sirt-1 GTGGCAGTAACAGTGACAGTGGC TCCAGATCCTCCAGCACATTCGG
pgc1α ATGTGTCGCCTTCTTGCTCTTCC CGGTGTCTGTAGTGGCTTGATTCAT

2.9. Western Blotting

Western blotting was carried out as detailed previously [12]. Briefly, protein lysates
obtained from liver homogenate were electrophoresed, blotted, and then incubated with
antibodies against PI3K, AKT, GSK3β, GS, AMPKα, SIRT-1, and PGC1α, with appropriate
secondary antibodies. GAPDH was used as an internal control.

2.10. Data Analysis

Data are presented as the mean± SD. SPSS Statistics software v21.0 (SPSS Inc., Chicago,
IL, USA) was used to conduct one-way analysis of variance and Duncan’s multiple range
test. A calculated p-value < 0.05 was considered statistically significant.
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3. Results
3.1. Effects of CP on Body Weight and Food Intake in Diabetic Mice

The effects of CP on b.w. and food intake in mice are shown in Figure 1. Before
drug administration, there was no statistical difference in b.w. between the mice in dif-
ferent groups. After 8 weeks of drug administration, CP-400 (29.11 ± 2.49 g), CP-800
(28.88 ± 1.97g), or metformin (30.59 ± 0.64 g) treatment significantly suppressed the drop
in b.w. seen in the model group (25.81 ± 2.23 g) (Figure 1A). At the start of the treat-
ment, all diabetic mice consumed more food than normal mice (p < 0.05, Figure 1B). After
being treated with CP for 8 weeks, the food intake of mice in the CP-200, CP-400, and
CP-800 groups was 7.09 ± 0.68 g/day, 6.75 ± 0.31 g/day, and 5.14 ± 0.53 g/day, respec-
tively. This represents a reduction of 21.4%, 25.1%, and 43.0% compared to the model group.
These results suggest that treatment with CP significantly affected the b.w. and food intake
of diabetic mice.
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Figure 1. Effects of cinnamon powder (CP) treatment on the body weight (A) and food intake (B) of
experimental mice. The data are the mean ± SD (n = 10). Bars marked with different letters of the
same case are significantly different (p < 0.05).

3.2. Effects of CP on FBG, Glycosylated Serum Protein (GSP), and Fasting Serum Insulin (FINS)
Levels in Diabetic Mice

After administration of CP for 8 weeks, FBG levels prominently increased in the
model group (27.35 ± 3.87 mmol/L) compared to the normal group (4.00 ± 0.57 mmol/L,
p < 0.05), suggesting that diabetes was successfully induced. The FBG of mice in the
CP-200, CP-400, and CP-800 groups was 23.06 ± 1.65 mmol/L, 23.20 ± 3.45 mmol/L, and
17.83 ± 3.67 mmol/L, respectively. This shows a decrease of 15.7%, 15.2%, and 34.8%
compared to the model group. These findings indicate that CP-800 had a relatively high
hypoglycemic effect (Figure 2A). In Figure 2B, it can be observed that the mice in the
normal group had the highest serum GSP levels, approximately 6.78 ± 0.50 mmol/L. The
serum GSP levels of the model group were the lowest, only 3.90 ± 0.74 mmol/L, which
was significantly different from the normal group (p < 0.05). The groups receiving CP-
800 intervention showed significantly reduced serum levels of GSP compared to the model
group (p < 0.05; Figure 2B). Compared to the normal mice (0.16 ± 0.06 ng/mL), the FINS
levels decreased significantly in the model group (0.06 ± 0.02 ng/mL, p < 0.05, Figure 2C).
However, the groups receiving CP-800 intervention showed a marked improvement in
FINS levels compared to the model group (p < 0.05).
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3.3. Effects of CP on OGTT and AUC

The OGTT is an important index for evaluating bodily regulation and tolerance of
glucose [10]. To confirm the hypoglycemic effects of CP, glucose tolerance experiments
were performed on mice in different groups. The blood glucose levels of mice in all treat-
ments first increased and subsequently dropped during the 120 min detection period
(Figure 3A). Groups receiving CP or metformin interventions showed an obviously in-
hibited rise in blood glucose levels after oral glucose administration compared with the
model group. The glucose excursion was quantified as the AUC during the 120 min test
(Figure 3B). The AUC was significantly lower in the CP-200 (53.98 ± 4.66 mmol/(L·h)),
CP-400 (50.84 ± 3.84 mmol/(L·h)), and CP-800 (49.68±4.34 mmol/(L·h)) groups than in
the model group (58.63 ± 3.92 mmol/(L·h)) (p < 0.05), and the reduction rates were 7.9%,
13.3%, and 15.3%, respectively. Thus, medium and high doses of CP had a marked effect
on oral glucose tolerance, although no significant differences were observed. To summa-
rize, we demonstrate that CP can lower blood sugar and improve glucose intolerance in
diabetic mice.
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3.4. Effects of CP on the Glycogen and Pyruvate Levels in the Liver of Diabetic Mice

The liver is the primary organ regulating glucose metabolism [13]. Recently, a study in
our laboratory demonstrated that cinnamon could improve liver function in diabetic mice
by attenuating oxidative stress in liver tissue. However, it is not clear whether cinnamon
can moderate glucose metabolism in liver tissue. Therefore, we determined the glycogen
and pyruvate levels in the livers of diabetic mice in the various experimental groups. As
indicated in Figure 4A, the content of hepatic glycogen in the model and normal groups
was 0.05 ± 0.01 mg/g and 0.13 ± 0.01 mg/g, respectively. Compared to that in normal
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mice, the content of hepatic glycogen in model mice was reduced significantly by 58.2%
(p < 0.05). This demonstrates that liver glycogen synthesis or storage may be lessened in
diabetic mice. After administration of CP for 8 weeks, the hepatic glycogen content in the
CP-200, CP-400, and CP-800 groups was 0.068 ± 0.005 mg/g, 0.089 ± 0.016 mg/g, and
0.111 ± 0.007 mg/g, respectively. The CP-800 and CP-400 groups had higher liver glycogen
content than the model group (p < 0.05). This result demonstrates that CP can enhance liver
glycogen synthesis and/or storage in diabetic mice.
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After administration of CP for 8 weeks, the level of pyruvate in the normal and
model groups was 0.012 ± 0.001 µmol/mL and 0.132 ± 0.022 µmol/mL, respectively.
Compared with that in normal mice, the level of pyruvate in the model group increased
7.4-fold (p < 0.05, Figure 4B), suggesting exaggerated gluconeogenesis in diabetic mice.
CP treatment significantly reduced hepatic pyruvate content in a dose-dependent manner
when compared with the model group. The hepatic pyruvate content in the high-dose
(CP-800) group decreased by 74.7%. These results indicate that CP intervention reduces
levels of pyruvate, a precursor of liver gluconeogenesis.

3.5. Effects of CP on Relative Hepatic Expression of Genes Involved in Glycogenesis
and Gluconeogenesis

To explore the mechanism(s) by which CP affects glycogen synthesis and gluconeogen-
esis in the liver, the expression of mRNAs related to glycogen synthesis and gluconeogenesis
was analyzed by qPCR experiments. The diabetic control (model) group showed signifi-
cantly impaired insulin signaling, including decreases in pi3k and gs transcript levels, as
well as increases in the transcript levels of gsk3β, compared with the normal group. In com-
parison with the model group, CP-800 intervention significantly improved the transcript
levels of pi3k and gs and suppressed the transcript levels of gsk3β (p < 0.05; Figure 5A).
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Figure 5. Effects of CP on the relative expression of genes related to liver glycogen synthesis and
gluconeogenesis in diabetic mice. Gene expression related to the PI3K/AKT pathway (A); gene
expression related to the AMPK/PGC1-α pathway (B). The data are the mean ± SD (n = 10). Bars
marked with different letters are significantly different (p < 0.05).

As shown in Figure 5B, the transcript levels of sirt-1 and pgc1-α significantly decreased
in model mice compared to normal mice (p < 0.05). Compared with the model group, the
groups receiving CP-400 and CP-800 intervention showed markedly increased transcript
levels of sirt-1 and pgc1-α; in the CP-800 group, the transcript levels of sirt-1 and pgc1-α were
increased 57.7-fold and 7.0-fold, respectively. These results suggest that CP may increase
the transcript levels of genes encoding proteins involved in hepatic gluconeogenesis.

3.6. Effects of CP on Relative Hepatic Expression of Proteins Involved in Glycogenesis
and Gluconeogenesis

To confirm the results obtained from the analysis of mRNA (i.e., gene expression) lev-
els, western blotting was used to detect and quantify PI3K/AKT and AMPK/PGC1α
pathway-related protein levels in liver tissue. In comparison with the model group,
both CP-400 and CP-800 interventions significantly increased p-AKT protein expression
(p < 0.05, Figure 6A). In comparison with the normal group, the diabetic control (model)
group showed significantly increased GSK3β protein levels and decreased GS-protein
levels (p < 0.05, Figure 6B,C). After CP-800 intervention, the GSK3β protein expression
level significantly decreased, while the GS-protein expression level significantly increased
compared with the model group (p < 0.05). The above results indicate that CP regulated the
relative protein expression levels of PI3K/AKT/GSK3β/GS in the liver of diabetic mice,
resulting in an increase in hepatic glycogen synthesis.
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Figure 6. Effects of CP on protein expression in the PI3K/AKT and AMPK/PGC-1α pathways in the
livers of diabetic mice. (A) p-AKT/AKT; (B) GSK-3β; (C) glycogen synthase (GS); (D) p-AMPK/AMPK;
(E) SIRT-1; (F) PGC-1α. The data are the mean ± SD (n = 10). Bars marked with different letters are
significantly different (p < 0.05).

In comparison with the normal group, the diabetic control (model) group showed
significant reductions in AMPKα, SIRT-1, and PGC1-α proteins. When compared with
the model group, CP markedly increased the relative expression of p-AMPK, SIRT-1, and
PGC1-α; the SIRT-1 and PGC1-α protein levels in the CP-800 group increased 8.6-fold
and 0.4-fold, respectively. The p-AMPK/AMPK ratio in the CP-800 group increased
1.9-fold. Thus, CP may moderate gluconeogenesis in diabetic mice by modulating the
relative expression levels of proteins that are involved in hepatic gluconeogenesis.

4. Discussion

The results of the previous study indicate that cinnamon is a potential food raw
material that can be consumed to improve glucose metabolism [14]. This effect may
be due in part to its polyphenol composition [15]. We previously analyzed cinnamon
polyphenol compounds using ultra-high-performance liquid chromatography-tandem
mass spectrometry. A total of 145 phenolic compounds were identified in CP, with the main
components being procyanidin B3 (3262.66 ± 176.82 µg/mL dry weight), procyanidin B2
(2592.68 ± 33.84 µg/mL dry weight), procyanidin A2 (417.47 ± 17.80 µg/mL dry weight),
B1 (282.26 ± 12.44 µg/mL dry weight), procyanidin C1 (112.59 ± 10.78 µg/mL dry weight),
(−)-epicatechin (795.53 ± 68.80 µg/mL dry weight), (−)-catechin (339.29 ± 35.01 µg/mL
dry weight), quercitrin (182.81 ± 5.69 µg/mL dry weight), theaflavin (124.87 ± 4.97 µg/mL
dry weight), kaempferitrin (106.45 ± 1.35 µg/mL dry weight), and avicularin (100.96 ±
5.84 µg/mL dry weight). The highest concentration was procyanidin B3, followed by
procyanidin B2 and (−)-epicatechin [16]. Previous animal studies have suggested that
procyanidin oligomers may be responsible for the antidiabetic activity of cinnamon [17].
Cinnamon-derived A- and B-type procyanidin oligomers have hypoglycemic activity and
may improve liver glucose metabolism in type 2 diabetes [18]. Furthermore, cinnamon may
have hypoglycemic effects in part because of the presence of dietary fiber. Dietary fiber
can control the release of glucose in the blood over time, thus contributing to the control
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and management of diabetes [19]. However, the health benefits of foods are likely to result
from the additive and synergistic effects of different kinds of phytochemicals rather than
a single component [20]. Previous studies have also suggested that there are synergistic
effects of dietary fiber and polyphenols on antidiabetes [21–23]. These findings suggest
that the additive and synergistic effects of these phytochemicals in CP may be the major
reason for its antidiabetic effect.

Pharmacologically targeting signaling molecules to mediate gene or protein expression
is an attractive concept to prevent diabetes. AKT, a serine/threonine protein kinase, is
a major downstream effector of PI3K [24]. Activated AKT promotes glycogen synthesis
and glycolysis through a variety of downstream targets [25]. When the blood sugar level
increases, insulin stimulates the activation and phosphorylation of PI3K and AKT, thereby
regulating downstream GSK3β and GS, which are the main regulatory factors for glycogen
synthesis [26]. This is consistent with the changes in CP regulation-related gene expression
in the PI3K/AKT pathway observed in this study. The changes in gene expression were
essentially consistent with the changes we observed in protein expression levels. CP
regulates the phosphorylation of AKT by activating PI3K, thereby inhibiting GSK3β and
GS downstream signaling and ultimately increasing liver glycogen synthesis (Figure 7).

PGC-1-α is a multifunctional protein and a key regulator of the gluconeogenesis
pathway. It is activated via phosphorylation by AMPK and subsequent deacetylation by
SIRT-1 for activation of gluconeogenesis [27]. Our data suggest that CP can regulate the
transcriptional and translational levels related to gluconeogenesis via the AMPKα/PGC1-α
pathway in diabetic mice. CP activates AMPKα phosphorylation to promote the expression
of SIRT-1 and PGC-1α, thereby reducing liver gluconeogenesis (Figure 7). In addition,
higher pyruvate levels can drive hepatic gluconeogenesis [28]. CP intervention decreased
liver pyruvate levels, consistent with results suggested by analysis of signal transduction
processes. Taken together, these results indicate that CP exhibits good hypoglycemic effects
by controlling hepatic gluconeogenesis.

The changes observed in glucose metabolism-related targets at the transcription level
are consistent with those at the translation level. However, the regulatory effect on gene
expressions of CP is more obvious than that of protein expressions. These results may be
attributed to the regulation of mRNA by RNA interference, such as endogenous microR-
NAs (miRNAs) [29–31]. Research has shown that hepatic miRNAs play important roles in
regulating the signaling pathways of liver glycogen synthesis and hepatic gluconeogene-
sis [32]. miR-378, miR-107, miR-103, miR-143, and miR-19a, miR-153, among others, may be
involved in the regulation of the PI3K/AKT pathway [29,33]. miR-34a-5p and miR-696 may
be involved in the regulation of the AMPKα/PGC1α pathway [34,35]. These mRNAs may
affect the signaling processes of liver gluconeogenesis and liver glycogen synthesis.
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Figure 7. Possible mechanisms of the effect of CP on hepatic glucose metabolism in diabetic mice.

A previous study reported that cinnamon extract exhibits a hypoglycemic effect in
HFD-fed rats by upregulating the IRS1/PI3K/AKT2 signaling pathway [36]. This result
suggests that cinnamon extract regulates the signaling pathway of liver glycogen synthesis,
which is consistent with our study. Additionally, GLUT4 is the main transporter responsible
for removing most of the glucose from the circulation after insulin stimulation. Previous
studies have demonstrated that cinnamon extract upregulates the expression of GLUT4 in
the cytoplasmic membrane [37–39]. However, our research yielded different results. These
differences may be attributed to the different active ingredients in cinnamon extract and
CP. In this study, CP, at a dose of 800 mg/kg bw, exhibited significant hypoglycemic
activity comparable to that of metformin. A previous study suggested that the effective
hypoglycemic dose for CP in mice is approximately 300 mg/kg b.w. [40]. The effective
dosage of cinnamon can vary depending on factors such as the variety of cinnamon,
which can influence the bioactive contents of the plant material and consequently affect its
bioactivity [6]. Additionally, the effective dosage and intervention duration may also be
influenced by the duration of treatment and the route of administration.

5. Conclusions

CP has shown potential for reducing hyperglycemia in diabetic mice. The mecha-
nism by which CP regulates hepatic glucose metabolism is through control of liver glu-
coneogenesis and improvement of liver glycogen synthesis by activating P13K/AKT and
AMPKα/PGC1α signaling pathways, resulting in a significant hypoglycemic effect. Fur-
ther studies on the action mechanism of CP have confirmed that cinnamon exerts its
glucose-lowering effect partly by promoting the conversion of glucose to glycogen and
other non-sugar substances. Overall, CP may be an effective and cost-efficient dietary or
therapeutic agent for the treatment of type 2 diabetes. Future studies should investigate
the potential additive or synergistic effect of different components in CP and further eval-
uate the RNA interference effect of small RNA in regulating the signal pathways of liver
gluconeogenesis and liver glycogen synthesis after the administration of CP.
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Abbreviations

AUC Area under the glycemic curve
AKT Serine-threonine protein kinase
AMPKα AMP-activated protein kinase alpha
CP Cinnamon powder
FBG Fasting blood glucose
FINS Fasting serum insulin
GSK3β Glycogen synthase kinase 3 beta
GSP Glycosylated serum protein
GS Glycogen synthase
HFD High-fat diet
miRNA microRNA
PGC-1α Peroxisome proliferator-activated receptor gamma coactivator 1-alpha
PI3K Phosphatidylinositol 3-kinase
p-AMPKα Phosphorylated-AMPKα

p-AKT Phosphorylated-AKT
SIRT1 Silent information regulator factor 2-related enzyme 1
STZ Streptozotocin
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