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Abstract: Strawberry is the most consumed berry fruit worldwide due to its unique aroma and
high nutritive value. This fruit is also an important source of phenolic compounds. Changping
strawberries are recognized as a national agricultural product of geographical indication (GI) due
to their unique flavor. Widely accepted standards for identifying GI strawberries from non-GI
strawberries are currently unavailable. This study compared the aroma and phenolic acid composition
of GI and non-GI strawberries. Furthermore, the characteristic aroma and phenolic acid markers of
GI strawberries were determined. A classification model based on the markers was established using
Fisher discriminant analysis (FDA). In this study, six groups of strawberries with variety name of
“Hongyan”, including GI strawberries from Changping and non-GI strawberries from Changping,
Miyun, Pinggu, Shunyi, and Tongzhou, were collected. A total of 147 volatile substances were
discovered using gas chromatography–tandem mass spectrometry. The contents of a few compounds
principally responsible for the distinctive aroma in GI strawberries were in the top three of the
six groups, providing GI strawberries with a generally pleasant fragrance. OPLS–DA identified
isoamyl butyrate and trans-2-octen-1-ol as characteristic markers. Enrichment analysis indicated that
beta-oxidation of very long-chain fatty acids, mitochondrial beta-oxidation of very long-chain fatty
acids, fatty acid biosynthesis, and butyrate metabolism played critical roles in volatile compound
biosynthesis. The total phenolic content was 24.41–36.46 mg/kg of fresh weight. OPLS–DA results
revealed that cinnamic acid could be used as a characteristic phenolic acid marker of GI strawberries.
Based on the three characteristic markers, FDA was performed on the different groups, which
were then divided. The separation of strawberry samples from different origins using the three
characteristic markers was found to be feasible. These findings help effectively understand the aroma
and phenolic acid composition of strawberries and contribute to the development of strawberries
with a pleasant fragrance and health benefits.

Keywords: aroma; characteristic markers; geographical indication; phenolicacids; strawberry

1. Introduction

Agricultural products of geographical indication (GI) refers to agricultural products
that originate from a specific region. Historical, cultural, and environmental variables
primarily influence the quality and characteristics of these products [1]. Changping straw-
berries, a specialty of Changping District, Beijing, was recognized as a GI national agricul-
tural product by the former Ministry of Agriculture in January 2010. Changping District
is located in an internationally recognized high-quality strawberry production zone. The
unique climatic conditions and contamination-free natural environment contribute to the
unique flavor of the strawberries. This fruit also enjoys a high reputation in the surround-
ing provinces and regions and is exported to Hong Kong, Singapore, and other places [2].
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Variety and origin are important factors that influence the quality of strawberries. However,
studies on the reasons for the high quality of GI strawberries and the differences between
GI and non-GI strawberries are limited.

Strawberries (Fragaria × ananassa [Duchesne ex Weston] Duchesne ex Rozier) are
widely grown hybrid species of the genus Fragaria belonging to the family Rosaceae [3].
This berry fruit is popular worldwide due to its high nutritive value, attractive appear-
ance, strong fragrance, and delicious taste; strawberries are also known as the “queen of
fruits” [4]. Strawberry fruits currently have more than 350 related volatile components,
making them one of the most complex and aroma-rich fruits [5]. Despite accounting for
only 0.001–0.01% of the fruit weight, volatile chemicals are crucial in the development
of strawberry fruit flavor [6]. Wang et al. [7] conducted comparative research on the fra-
grance components found in eight strawberry varieties (strains) and detected 46 types of
substances, including 23 esters, seven alcohols, six ketones, six aldehydes, and four acids.
Parra-Palma et al. [8] identified 48 volatile compounds from four strawberry cultivars,
with esters, acids, terpenes, and lactones being the most abundant compounds. Al-Taher
and Nemzer [9] identified 29 volatile compounds from the strawberry samples, including
terpenes, aldehydes, esters, acids, and alcohols. Similarly, Sheng et al. [10] studied the
volatile components in strawberry fruit of 16 varieties and found that their characteristic
aroma compounds contained nine esters, six aldehydes, and one alcohol. Chang et al. [11]
analyzed the volatile components in three strawberry cultivars with white flesh. The
36 most abundant components were identified. Nogay et al. [12] identified 56 volatile
compounds in three strawberry cultivars. Esters, aldehydes, furan derivatives, alcohols,
terpenes, acids, and ketones were detected. Fan et al. [13] conducted sensory analyses of
strawberry samples grown and harvested over seven years and quantified 113 volatile
compounds. Dubrow et al. [14] studied the aroma profiles of strawberries with different lik-
ing scores to clarify the relationship between aromas and acceptability and identified nine
compounds as predictive compounds. Despite substantial research on the identification of
aroma components in strawberries, systematic investigations on the aromatic properties
of GI strawberries are scarce. Therefore, widely accepted standards for distinguishing GI
strawberries from non-GI strawberries are not available.

In addition to the special aroma, the phenolic chemicals ferulic, p-coumaric, vanillic,
caffeic, syringic, and sinapic acids, as well as flavonoids, are abundant in strawberries [15].
Phenolic compounds typically exist in free, conjugated, and bound forms in plant cells,
and phenolic compounds in strawberries play a crucial role in their variety of health bene-
fits, including anti-inflammation, anti-cancer, antioxidant, and anti-diabetic properties [4].
Previous research mostly evaluated the differences in the phenolic fingerprint and antioxi-
dant activity of strawberries, raspberries, and blueberries [16], strawberry tree leaves and
fruits [17], and different analysis methods [18]. However, limited attention has been paid
to the phenolic acid profiles of strawberries with different quality levels.

Clarifying the reasons for the unique flavor of high-quality products (GI strawberries)
to a certain extent facilitates the easy identification of products with different qualities in un-
known situations. However, there are relatively few well-known characteristic biomarkers
to discriminate GI strawberries from non-GI strawberries. Numerous types of biomarkers
remain unknown. Therefore, this study intended to introduce the unique characteristics
of GI strawberries in terms of aroma and phenolic compounds. High-quality products
can be protected by identifying characteristic markers and establishing a discrimination
model. The results will provide basic data for strawberry variety improvement and deep
processing of functional components.

2. Materials and Methods
2.1. Materialsand Chemicals

A total of 18 strawberry samples of “Hongyan” strawberries from different districts of
Beijing, China, were selected and divided into the following six groups: GI strawberries
from Changping (GI) andnon-geographical indication strawberries from Changping (CP),
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Miyun (MY), Pinggu (PG), Shunyi (SY), and Tongzhou (TZ). Each group contained three
samples, which were all kept in ice boxes and brought to the laboratory within 2 h. The
materials were weighed, instantly frozen in liquid nitrogen, and stored at −80 ◦C. Liquid
nitrogen was used to finely grind the samples.

Sodium hydroxide (NaOH) and hydrochloric acid (HCl) (analytical grade) were pur-
chased from Beijing Chemical Reagent Company (Beijing, China). Caffeic acid, catechin
hydrate, chlorogenic acid, cinnamic acid, 4-dicafleoylquinic acid, 2,3-dihydroxybenzoic
acid, 2,5-dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid,
ellagic acid, epicatechin, ferulic acid, gallic acid, 4-hydroxybenzoic acid, isoferulic acid,
kaempherol, myricetin, neochlorogenic acid, p-coumaric acid, procyanidin B1, procyanidin
B2, quercetin, resveratrol, rutin, salicylic acid, sinapic acid, syringic acid, taxifolin, 2,3,4-
trihydroxybenzoic acid, and vanillic acid were purchased from Sigma-Aldrich (St. Louis,
MO, USA). All the standards used for identification and quantification in this study were
of high performance liquid chromatography(HPLC) quality. Methanol, formic acid, and
acetonitrile (MS grade) were obtained from Macklin reagent (Shanghai, China). Ultrapure
water was obtained from a Milli-Q Element water purification system (Millipore, Bedford,
MA, USA).

2.2. Aroma Analysis
2.2.1. Headspace Solid-Phase Microextraction (HS–SPME)

The sample powder (500 mg) was immediately transferred to a 20 mL headspace
vial (Agilent, Palo Alto, CA, USA) to stop any enzyme reactions. A 120 µm divinylben-
zene/carbon wide-range/polydimethylsiloxane-coated fiber was conditioned at 250 ◦C
for 5 min before volatile extraction. The fiber was exposed to the headspace of the vial for
15 min of extraction after a 5 min equilibration in a 60 ◦C water bath [19]. All measurements
were conducted in triplicate.

2.2.2. Gas Chromatography–Tandem Mass Spectrometry Analysis (GC–MS/MS)

Volatile chemicals were analyzed according to the methodology of Yue et al. [20] with
minor modifications. After sampling, the injection port of the GC equipment (Model 8890;
Agilent) was used to desorb the volatile chemicals of the fiber coatings for 5 min in splitless
mode. Volatile compounds were analyzed using an Agilent Model 8890 GC and a 7000D
mass spectrometer. Separation was conducted using a DB-5MS (30 m × 0.25 mm × 0.25 m)
capillary column (5% phenyl-polymethyl siloxane). The helium carrier gas had a linear
velocity of 1.2 mL·min−1. The injector and detector were maintained at temperatures
of 250 ◦C and 280 ◦C, respectively. The oven temperature was set to rise from 40 ◦C
(3.5 min) to 100 ◦C, 180 ◦C, and 280 ◦C with a final holding duration of 5 min, increasing at
10 ◦C·min−1, 7 ◦C·min−1, and 25 ◦C·min−1, respectively. The electron impact ionization
mode was utilized, and the mass spectra were recorded at 70 eV. The temperatures of the
quadrupole mass detector, ion source, and transfer line were programmed at 150 ◦C, 230 ◦C,
and 280 ◦C, respectively. The mass spectra in the m/z 50–500 amu range were scanned at
1 s intervals. Metabolites were analyzed on the basis of the National Institute of Standards
and Technology database. MassHunter was used for integration and calibration.

2.3. Phenolic Acid Analysis
2.3.1. Phenolic Acid Extraction

Plants may have three types of phenolic acids: free, conjugated, and bound. In this
work, the extraction of phenolic acids followed the method explained by Gao, Ma, Wang,
and Feng [21]. Briefly, 20 mL of 80% methanol were used to extract 2 g of strawberry
powder, which was then acidified with 1% ascorbic acid. The supernatant was obtained
following ultrasonication (30 min, room temperature) and centrifugation (10,000× g rpm,
10 min). The supernatant was utilized for free phenolic acids detection. For the analysis
of conjugated phenolics, the extraction was repeated and the supernatant was vacuum-
evaporated and alkaline-hydrolyzed with 20 mL of NaOH (4 M) in nitrogen blanketing
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at 35 ◦C. The hydrolysate was then acidified to pH 2 with HCl (12 M). Hexane (20 mL)
was added, and the mixture was agitated for 20 min at room temperature. The resulting
hydrolysate was extracted three times with 20 mL of ethyl acetate after eliminating the
hexane. At 35 ◦C, the entire mixture of organic phases was condensed to dryness and
then redissolved in 10 mL of 50% methanol/pure water (v/v).The levels of conjugated
phenolic acids were determined by comparing the results of the current and preceding
steps. In order to obtain the bound phenolics, the solid residue obtained after the extraction
of conjugated phenolics underwent alkaline hydrolyzation and acidification. Oil and other
esters were removed after hexane (20 mL) was added and mixed for 20 min. A total of
20 mL of ethyl acetate was used to extract the released phenolics three times. The combined
supernatant was vacuum-evaporated to dryness at 35 ◦C and then redissolved in 10 mL
of 50% methanol. Before analysis, the extract from the preceding three stages was finally
filtered through 0.22 m PTFE membranes (Pall, Ann Arbor, MI, USA).

2.3.2. Ultrahigh-Performance Liquid Chromatography (UPLC)–MS/MS

According to Gao, Ma, Wang, and Feng [21], strawberry extracts were analyzed by
the Waters ACQUITY UPLC system interfaced to a triple quadrupole MS (TQ-S, Waters
Micromass, Manchester, UK) and equipped with a photodiode array detector. The sep-
aration was conducted using an Acquity HSS C18 (2.1 mm × 150 mm, 1.8 µm)capillary
column. A 0.1% formic acid in water (v/v) gradient system and solvent B (v/v) were used
to elute the samples. Using a flow rate of 0.3 mL·min−1, the gradient system was 5% B
in A over 30 s, 5–30% B in A over 4.5 min, 30–90% B in A over 4.5 min, 90% B in A was
maintained continuously for 30 s, and 90–5% B in A over 30 s. This mixture was then kept
for 2.5 min to re-equilibrate. The autosampler was set to 10 ◦C, while the column was
maintained at 45 ◦C. The injection volume was set at 5 µL. Positive and negative ESI modes
were used based on the structural features of phenolic acids. The ESI parameters were
as follows: +2.5 kV/1.0 kV for the capillary voltage, 150 ◦C for the source temperature,
500 ◦C for the desolvation temperature, 150 L·h−1 for the cone gas flow, and 1000 L·h−1 for
the desolvation gas flow. The detection was conducted in the mode of multiple reaction
monitoring. The compounds were quantified in accordance with the calibration curves
developed from different compounds in serial dilutions (1–500 ng·mL−1) [21].

2.4. Statistical Analysis
2.4.1. Principal Component Analysis (PCA)

Unsupervised PCA is a powerful technique to describe significant trends in data. The
principal components are created from a data matrix of samples and variables, representing
the majority of the original variables’ information [22]. Therefore, only a few principal
components could effectively describe a significant variability percentage. In the current
study, PCA was used to examine differences between strawberry samples from various
groups using MetaboAnalyst (http://www.metaboanalyst.ca, accessed on 11 September
2023). The data were log10-transformed and Pareto scaled before PCA.

2.4.2. Hierarchical Cluster Analysis (HCA)

Cluster analysis is a classified multivariate statistical analysis. Samples are catego-
rized according to the features of individuals, objects, or subjects, wherein individuals
in the same and separate categories have the highest homogeneity and heterogeneity, re-
spectively [23]. In the present study, the HCA results of samples and metabolites were
displayed as heatmaps with dendrograms, and the Pearson correlation coefficients between
samples were computed and displayed as only heatmaps. A color spectrum was used
to represent the normalized signal intensities of metabolites (unit variance scaling). The
color scale from blue to red reflects the amount of metabolite expression from low to
high. HCA was conducted on MetaboAnalyst (http://www.metaboanalyst.ca, accessed on
12 September 2023).

http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
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2.4.3. Orthogonal Partial Least Squares Discriminant Analysis (OPLS–DA)

Separating the information from the X matrix into two categories, which are informa-
tion related to Y and uncorrelated information, OPLS–DA can filter the distinct variables
by eliminating the uncorrelated information. To the greatest possible extent, OPLS–DA can
effectively simplify the model, improve its interpretation capacity, and maintain its predic-
tion capacity. After an OPLS–DA model between two groups is established, the sample
grouping and quantitative information matrices are denoted by Y and X, respectively. The
parameters used to evaluate the OPLS–DA model include R2X, R2Y, and Q2Y, wherein R2X
and R2Y indicate the interpretation rate of the model to the X and Y matrices, respectively,
and Q2Y represents the prediction capability of the model. The model is stable and reliable
when the three indicators are close to 1. The model performs better a when Q2Y > 0.5 and
excellently when Q2Y > 0.9.

2.4.4. Differential Metabolite Identification

Variable important in projection (VIP > 1) and absolute log2FC (|log2FC| ≥ 1.0) were
used in the two-group analysis to identify differential metabolites. Utilizing MetaboAnalyst
version 5.0, the VIP values were derived from the OPLS–DA result, which also included
score and permutation plots. A permutation test with 200 permutations was conducted to
prevent overfitting.

2.4.5. KEGG Annotation and Enrichment Analysis

The identified metabolites were annotated using the KEGG compound database
(http://www.kegg.jp/kegg/compound/, accessed on 12 September 2023), and the anno-
tated metabolites were then mapped to the KEGG pathway database (http://www.kegg.
jp/kegg/pathway.html, accessed on 12 September 2023) [24]. Mapped pathways with
significantly regulated metabolites were fed into metabolite set enrichment analysis, and
their significance was determined by the p-values of the hypergeometric test.

2.4.6. Fisher Discriminant Analysis (FDA)

FDA is a commonly used supervised classification method that first establishes a
classification model by samples of known labels and then inputs samples of unknown
labels into the prediction model [25]. The basic principle of FDA is to project samples from
high-dimensional spaces onto low-dimensional spaces; thus, the projected sample data
have the minimum intraclass and maximum interclass distances in the new subspace [26].
In the present study, FDA was implemented on SPSS version 21.0 for Windows (SPSS Inc.,
Chicago, IL, USA).

3. Results
3.1. Volatile Profile of Strawberry Samples
3.1.1. Comparison of Volatile Compounds and Relative Content

The types and content of volatile compounds have an impact on strawberry aroma. A
total of 147 volatile compounds were identified in the analyzed samples (Table S1). In the
analyzed strawberry samples, detected chemical classes included esters (43 compounds),
terpenes (21 compounds), aldehydes (21 compounds), alcohols (19 compounds), ketones
(16 compounds), acids (10 compounds), lactones (six compounds), furanones (five com-
pounds), and others (six compounds). Several compounds detected in the present study,
such as esters (e.g., methyl butyrate, ethyl butyrate, ethyl hexanoate, and methyl hexanoate),
furanones (e.g., 2,5-dimethyl-4-methoxy-3(2H)-furanone [DMMF] and its derivative), ter-
penoids (e.g., linalool and nerolidol), lactones (e.g., γ-decanolactone), acids (e.g., butyric
acid), and aldehydes (e.g., trans-2-hexen-1-al), primarily account for the distinct flavor of
strawberries [6,27–31].

GI strawberries had different volatile compositions from non-GI strawberries. The
variations in abundance of ester, terpenoids, aldehydes, acids, ketones, furanones, lac-
tones, alcohols, and others, are presented in Figure S1. In this study, ester compounds

http://www.kegg.jp/kegg/compound/
http://www.kegg.jp/kegg/pathway.html
http://www.kegg.jp/kegg/pathway.html
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(e.g., methyl isovalerate, isopropyl butyrate, isoamyl butyrate, and methyl-DL-2-methyl
butyrate) were the most abundant secondary-metabolite substances in GI strawberries.
Among the characteristic aroma substances in strawberries, the level of methyl butyrate
was higher in GI strawberries than in non-GI strawberries (p < 0.05). An intermediate
level of γ-decanolactone was observed in GI strawberries. Terpenes have unique sensory
characteristics and are known to have an antibacterial property, which is of particular
interest in strawberries [32]. In the present study, GI strawberries exhibited the highest
levels of (E)-linalool oxide, cis-linalool oxide, and β-citronellol. Higher contents of linalool
and nerolidol were detected in GI strawberries than in non-GI strawberries (p < 0.05). Fewer
alcohols, aldehydes, and acids were found in GI strawberries than in non-GI strawberries.
GI strawberries contained a relatively high level of trans-2-hexen-1-al and caproaldehyde.
Among the characteristic volatile substances that have a significant impact on the aroma
development of strawberries, DMMF was detected in the current study. Overall, the con-
tents of characteristic aroma components of GI strawberries, which play a dominant role
in strawberries, were in the top three of the six groups. For example, the contents of γ-
decanolactone, cis-linalool oxide, and (E)-linalool oxide were the highest in GI strawberries;
DMMF and butyl acetate were the second highest; ethyl butyrate, methyl butyrate, methyl
hexanoate, ethyl hexanoate, trans-2-hexen-1-al, and nerolidol were the third highest. These
contents generally provided the GI strawberry with a pleasant fragrance.

3.1.2. Diversity in Volatile Compound Profiles among Different Groups

Figure 1 displays the PCA score plot in the present study. All samples fell within the
95% confidence ellipse. The aroma metabolite composition of the strawberries from the
six groups can be distinguished on the PCA load plot. The distribution results revealed
considerable differences in the metabolites among the different samples, which could be
effectively separated. HCA demonstrated that the species and abundance of metabolites
from strawberries showed diversity with the change in origins (Figure S2).
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3.1.3. OPLS–DA Models of Volatile Compounds between GI and Other Groups

In the present study, OPLS–DA models were implemented to monitor the variation
degree of volatile compounds and determine the differential metabolites between the
GI group and other groups. In accordance with the content of volatile compounds and
the sample group, the score plot results from the OPLS–DA models between the two
groups are presented in Figure S3. The OPLS–DA score plots demonstrated a signifi-
cant level of discrimination between the GI and non-GI groups. Additionally, excellent
model parameters (GI-CP: R2Y = 0.986, Q2 = 0.943; GI-MY: R2Y = 0.997, Q2 = 0.977;
GI-PG: R2Y = 0.979, Q2 = 0.960; GI-SY: R2Y = 0.997, Q2 = 0.987; GI-TZ: R2Y = 0.991,
Q2 = 0.956) were detected in this study. Thus, the OPLS–DA models were effective and
had strong predictive capacity, indicating that OPLS–DA could be utilized to investigate
the volatile compound differences between GI and non-GI strawberries.

3.1.4. Determination of Volatile Differential Metabolites and Characteristic Markers

Differential metabolites were identified using VIP (VIP > 1) and absolute log2FC
(|log2FC| ≥ 1.0). Overall, 35 differential volatile compounds (32 upregulated and three
downregulated) were identified between GI and CP; 40 differential volatile compounds
(31 upregulated and nine downregulated) between GI and MY; 31 differential volatile
compounds (10 upregulated and 21 downregulated) between GI and PG; 50 differential
volatile compounds (39 upregulated and 11 downregulated) between GI and SY; and
18 differential volatile compounds (four upregulated and 14 downregulated) between
GI and TZ. Furthermore, the differential volatile compounds were ranked to effectively
understand the changes in the major differential volatile compounds between GI and non-
GI strawberries (Figure S4). The major differential volatile compounds in GI strawberries
were esters and ketones. Finally, the Wenn plot (Figure 2) displayed the relationship
between differential volatile compounds in each group. This demonstrated that isoamyl
butyrate and trans-2-octen-1-ol could be used as characteristic markers of GI strawberries.
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3.1.5. Functional Annotation and Enrichment Analysis of KEGG Differential Metabolite

The annotation results of KEGG metabolites with significant differences were catego-
rized in accordance with the channel types in KEGG [24], and the classification diagram
is presented in Figure S5. Except for GI versus CP, no significantly different metabolic
pathway was found between the other groups. This result indicated that beta-oxidation
of very long-chain fatty acids, mitochondrial beta-oxidation of very long-chain fatty acids,
fatty-acid biosynthesis, and butyrate metabolism are crucial in biosynthesis.

3.2. Characterization of Phenolic Acids in Strawberry Samples
3.2.1. Quality Analysis of Phenolic Acids

In this study, 30 phenolic compounds were measured in the extracts of strawberry
fruits. Chromatograms of 30 types of phenolic acids were presented in Figure S6. Consider-
ing the targeted analytes, the total phenolic content was found to be 24.41–36.46 mg/kg
fresh weight (FW) in strawberry fruits, demonstrating the dominance of ellagic acid. By
contrast, cinnamic, salicylic, and 3,4-dihydroxybenzoic acids showed higher levels in GI
strawberries than in non-GI strawberries (p < 0.05). However, samples from MY and PG
had the highest levels of total phenolic acids, followed by GI (Figure S7). These samples
demonstrated that the unique flavor of high-quality GI strawberries might not be attributed
to the total phenolic content.

3.2.2. PCA and HCA Results of Total Samples Based on Phenolic Acids

Figures 3 and S8 display the PCA score plot and cluster heat map results, respectively,
based on phenolic acids. The phenolic acids among the different samples had significant
differences and can be effectively separated. The quality of samples from the same group
was relatively stable, whereas that from different groups significantly differed. The species
and abundance of phenolic acids from strawberries showed diversity with the change
in origins.

Foods 2023, 12, x FOR PEER REVIEW 9 of 15 
 

 

fered. The species and abundance of phenolic acids from strawberries showed diversity 
with the change in origins. 

 
Figure 3. PCA score plot of total samples on the basis of phenolic acids. 

3.2.3. OPLS–DA Models of Phenolic Acids between GI Group and Other Groups 
The OPLS–DA models of phenolic acids between the two groups were established 

in accordance with the content of metabolites and sample groups. Figure S9 displays the 
score plot output of the OPLS–DA models. The OPLS–DA score plots revealed a high 
level of discrimination among the groups of samples, revealing a clear division between 
the GI group and other groups. Excellent model parameters (GI-CP: R2Y = 0.929, Q2 = 
0.766; GI-MY: R2Y = 0.979, Q2 = 0.928; GI-PG: R2Y = 0.979, Q2 = 0.902; GI-SY: R2Y = 0.989, 
Q2 = 0.956; GI-TZ: R2Y = 0.987, Q2 = 0.936) were detected in this study. Thus, the 
OPLS–DA model can be utilized to investigate the differences between GI and non-GI 
strawberries based on phenolic acids. 

3.2.4. Determination of Phenolic Acids and Characteristic Markers 
VIP (VIP > 1) and absolute log2 FC (|log2FC|≥1.0) were used to determine differen-

tial phenolic acids. Overall, 10 differential phenolic acids (seven upregulated and three 
downregulated) between GI and CP; 24 differential phenolic acids (seven up-regulated 
and 17 down-regulated) between GI and MY;13 differential phenolic acids (three 
up-regulated and10down-regulated) between GI and PG;14 differential phenolic acids 
(seven up-regulated and seven down-regulated) between GI and SY; and 16 differential 
phenolic acids (10 up-regulated and six down-regulated) between GI and TZ were iden-
tified. In addition, the relationship between different phenolic acids in each group was 
shown through the Wenn plot (Figure 4). It demonstrated that cinnamic acid can be used 
as a characteristic phenolic acid marker of GI strawberries. It was significantly high in GI 
strawberries. 

Figure 3. PCA score plot of total samples on the basis of phenolic acids.



Foods 2023, 12, 3889 9 of 14

3.2.3. OPLS–DA Models of Phenolic Acids between GI Group and Other Groups

The OPLS–DA models of phenolic acids between the two groups were established
in accordance with the content of metabolites and sample groups. Figure S9 displays the
score plot output of the OPLS–DA models. The OPLS–DA score plots revealed a high level
of discrimination among the groups of samples, revealing a clear division between the
GI group and other groups. Excellent model parameters (GI-CP: R2Y = 0.929, Q2 = 0.766;
GI-MY: R2Y = 0.979, Q2 = 0.928; GI-PG: R2Y = 0.979, Q2 = 0.902; GI-SY: R2Y = 0.989,
Q2 = 0.956; GI-TZ: R2Y = 0.987, Q2 = 0.936) were detected in this study. Thus, the OPLS–
DA model can be utilized to investigate the differences between GI and non-GI strawberries
based on phenolic acids.

3.2.4. Determination of Phenolic Acids and Characteristic Markers

VIP (VIP > 1) and absolute log2 FC (|log2FC|≥ 1.0) were used to determine differ-
ential phenolic acids. Overall, 10 differential phenolic acids (seven upregulated and three
downregulated) between GI and CP; 24 differential phenolic acids (seven up-regulated
and 17 down-regulated) between GI and MY; 13 differential phenolic acids (three up-
regulated and10down-regulated) between GI and PG; 14 differential phenolic acids (seven
up-regulated and seven down-regulated) between GI and SY; and 16 differential phenolic
acids (10 up-regulated and six down-regulated) between GI and TZ were identified. In ad-
dition, the relationship between different phenolic acids in each group was shown through
the Wenn plot (Figure 4). It demonstrated that cinnamic acid can be used as a characteristic
phenolic acid marker of GI strawberries. It was significantly high in GI strawberries.
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3.3. Classification of Strawberry Samples from Six Groups Based on Three Characteristic Markers

FDA was performed on the six groups of samples in the present study based on three
characteristic markers to monitor the degree of variation of the metabolites (Figure 5).
Strawberries were divided into six categories, and GI strawberries were significantly
separated from the other groups.
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4. Discussion

Different types of volatile components present various flavors. Research has shown
that esters and lactones endow strawberries with a fruity and floral aroma, whereas furans
and some alcohols form a caramel flavor [33]. As one of the numerous aroma substances,
γ-decanolactone presents a peach aroma and provides the most contribution to the fruit
aroma of strawberries [5,33–36]. Linalool and nerolidol lend strawberries with a unique
rose aroma. Caproaldehyde and trans-2-hexen-1-al give strawberries their distinctive
green/vegetative aroma [33,34]. Only 15 odor-active chemicals contribute to the strawberry
flavor in commercial strawberry fruits, with esters being the most significant compound [27].
Ester compounds were the most abundant secondary-metabolite substances in GI strawber-
ries in the current study. This finding indicated that GI strawberries had a stronger aroma
than non-GI strawberries. Strawberry fruit aromatic compounds are primarily influenced
by species, cultivar, agricultural techniques (e.g., soil and climate), breeding programs,
maturity, and postharvest environmental conditions [33]. Low amounts of volatile furanone
exist in strawberries, which are the main substances that contribute to the sweet aroma;
among which, 5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) and DMMF with caramel
and burnt pineapple aromas, respectively, have a significant impact on the aroma develop-
ment of strawberries [27,37]. Only DMMF was detected in the current study, which could
be related to the conversion of DMHF to DMMF under the action of O-methyltransferase
and the higher stability of DMMF over DMHF [38]. Fatty acids are the main precursors
for the synthesis of aroma compounds in strawberry fruits based on the annotation re-
sults of KEGG metabolites. The synthesis process includes α-oxidation, β-oxidation, and
lipoxygenase (LOX) oxidation, where β-oxidation and LOX are the main pathways [39].

The findings in the present study agreed with those of Huang et al. [4], who dis-
covered that phenolics in strawberries are primarily non-extractable. The total content
of phenolic compounds in strawberries substantially varies based on the cultivar, grow-
ing conditions, and maturity, and its estimation may differ depending on the analytical
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technique [40]. In previous studies, high amounts of phenolics were found in strawberry
products, ranging from 25.04 mg/kg FW to 42.06 mg/kg FW [41]. Cervantes et al. [16]
quantified the polyphenolic profiles of raw strawberry fruits and found chlorogenic, ellagic,
trans-cinnamic, caffeic, gallic, and p-coumaric acids. Previous studies showed that ellagic
acid is one of the primary hydrolysable tannins in strawberries, accounting for 81% of the
phenolic acids in strawberries [17].

The PCA and HCA results demonstrate a pattern of metabolome separation among
groups and indicate the presence of any difference in metabolome within the sample
group [42]. The samples from the same group were collected, which showed that the
quality of the strawberries was relatively stable from the same group, whereas that of
the samples from different groups significantly differed. PCA can effectively extract the
main information from high-dimensional data but is insensitive to variables with a small
correlation, which can be effectively addressed by PLS–DA. PLS–DA is a multivariable sta-
tistical analysis with supervised pattern recognition. Appropriate rotation of the principal
components facilitates effective differentiation between group observations [43]. OPLS–DA
combines orthogonal signal correction and PLS–DA. Compared with PLS–DA, OPLS–DA
can reduce noise irrelevant to classification information and thereby enhance analytical
capability, ensure the validity of the models, maximize the differentiation between groups,
and help identify different metabolites [44,45]. The VIP value in OPLS–DA is regarded as an
effective indicator for assessing the influence intensity and interpretability of the discrimina-
tion between groups. The contribution of the variable to the separation is substantial when
the VIP value is high. Metabolites with a VIP score greater than one are generally assumed
to be differentiated metabolites. Furthermore, fold change (FC) is required to further verify
the significance of metabolites between groups. Absolute log2FC (|log2FC|) is frequently
used to assess the probability of the difference between groups [46]. The PC1 of the OPLS–
DA model for VIP values greater than 1 and |log2FC| ≥ 1.0 was examined to identify
potential differential metabolites [47]. Therefore, isoamyl butyrate, trans-2-octen-1-ol, and
cinnamic acid were identified as characteristic markers of GI strawberries. Isoamyl butyrate
is fruity [48] and was significantly high in GI strawberries. However, trans-2-octen-1-ol
display edsoapy and plasticky odors [49] and was undetected in GI strawberries. Cinnamic
acid, which has an excellent fragrance preservation function, is typically used as a raw
material for flavoring, increasing the fragrance of the main spice [50]. This finding may be
related to the intense aroma of GI strawberries. However, further studies are necessary to
confirm this relationship. FDA is widely used to distinguish samples from different groups,
which indicated the feasibility of separating strawberry samples of different origins using
three characteristic markers. In the future, additional samples could be added to validate
the model.

5. Conclusions

Overall, six groups of strawberry fruits, including GI and non-GI samples, were
collected from different districts of Beijing China. The unique flavor of GI strawberries was
explained in terms of aroma and phenolic compound aspects to protect the high-quality
product (GI strawberries). Characteristic markers were identified, and a discrimination
model was established.

A total of 147 volatile compounds were identified by GC–MS/MS. In GI strawberries,
ester compounds dominated among secondary metabolites with a relative content of
49.95%. Several compounds that are primarily responsible for strawberry characteristics
were detected in the samples. Their contents in GI samples were in the top three of the six
groups, generally providing GI strawberries with a pleasant fragrance. This result indicated
that GI strawberries had stronger aroma than non-GI strawberries. Isoamyl butyrate and
trans-2-octen-1-ol were identified as characteristic markers via OPLS–DA.

In addition, the total phenolic content was 24.41–36.46 mg/kg FW. GI strawberries
exhibited higher levels of cinnamic, salicylic, and 3,4-dihydroxybenzoic acids than non-GI
strawberries (p < 0.05). However, samples from MY and PG had the highest levels of



Foods 2023, 12, 3889 12 of 14

total phenolic acids, followed by GI. This finding demonstrated that the unique flavor
of high-quality GI strawberries might not be attributed to total phenolic content. The
OPLS–DA results revealed that cinnamic acid can be used as a characteristic phenolic acid
marker of GI strawberries.

FDA was performed on the six groups, which were then divided, based on the three
characteristic markers. The results showed that distinguishing strawberry samples from
different origins was feasible using the three characteristic markers. In the future, additional
samples could be added to validate the model. This study provides comprehensive infor-
mation on the volatile profile and phenolic acid composition of GI and non-GI strawberries.
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//www.mdpi.com/article/10.3390/foods12213889/s1, Figure S1: Schematic diagram representing
the volatile compound abundance in the major chemical classes detected in strawberry fruits from
different groups; Figure S2: Cluster heat map of strawberry samples on the basis of volatile com-
pounds; Figure S3: OPLS-DA score plots of strawberry samples between GI group and other groups
on the basis of volatile compounds; Figure S4: Differential volatile compounds in the major chemical
classes detected in strawberry samples from different groups; Figure S5: KEGG barplots of GI versus
CP; Figure S6: Chromatograms of 30 types of phenolic acids; Figure S7: Contents of phenolic acids
(mg/kg FW ± RSD (n = 3)) in strawberry samples from six groups; Figure S8: Cluster heat map of
strawberry samples on the basis of phenolic acids; Figure S9: OPLS-DA score plots of strawberry sam-
ples between GI group and other groups on the basis of phenolic acids; Table S1: Aroma composition
and relative content in strawberries from different groups.
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