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Abstract: The present study was carried out to valorize the Opuntia ficus-indica (OFI) by-products
by extracting and identifying their biochemical compounds and evaluating their antioxidant poten-
tial by in vitro activities (DPPH radical and FRAP), as well as their capacity to stabilize margarine
oxidation (rancimat test). In addition, their in vitro anticoccidial effect on the destruction of Eime-
ria oocysts isolated from naturally infected chickens was also targeted. Microwaves and response
surface methodology tools were used to extract the maximum amount of phenolic compounds
(42.05 ± 0.46 GAE mg/g DW of total phenolic compounds in 90 s at 400 watts). Moreover, the effect
of extraction factors was also studied. Eight phenolic compounds, including isorhamnetin, dihy-
drokaempferol, and kaempferol-3-O-rutinoside, were identified. The findings confirmed that OFI
peel extract has strong antioxidant activities (DPPH radical, ferric reducing power). The rancimat
test shows that OFI peel extract improves margarine stability by 3.2 h. Moreover, it has a notable
destruction rate of Eimeria oocysts (30.06 ± 0.51%, LC50: 60.53 ± 0.38 mg/mL). The present investi-
gation offers promise for the reuse of food waste as natural margarine additives, protection of the
environment, and substitution of anticoccidial synthetic treatments.

Keywords: Opuntia ficus-indica peel; microwave; antioxidant activities; margarine oxidative stability;
anticoccidial activity; Eimeria

1. Introduction

The growth of industries and technology has led to an increase in the amount of
waste and by-products released into the environment. In recent years, the concept of
a green economy has appeared in the technological world and has been adopted by the
International Trade Union Federation. This economic model is based on rules and principles
of sustainable development, including respect for the environment by limiting waste and
recovering by-products [1–3]. Opuntia ficus-indica peels (OFI) are one of the most important
by-products generated by the prickly pear cactus industry; their percentage can exceed 40%
up to 55% of the whole weight of the fruit [4,5]. OFI peels are rich in proteins, vitamins,

Foods 2023, 12, 4403. https://doi.org/10.3390/foods12244403 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods12244403
https://doi.org/10.3390/foods12244403
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0003-2831-3271
https://orcid.org/0000-0003-3004-463X
https://orcid.org/0000-0001-7118-6488
https://orcid.org/0000-0001-5356-6890
https://orcid.org/0000-0002-9325-7889
https://doi.org/10.3390/foods12244403
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods12244403?type=check_update&version=2


Foods 2023, 12, 4403 2 of 16

minerals, and carbohydrates (dietary fiber and pectin) as well as bioactive substances
known for their source of beneficial properties. Numerous studies have been published
that found that OFI peels have multiple physiological activities such as antioxidant, anti-
inflammatory, antimicrobial, and anti-acetylcholinesterase [4,6–8].

The valorization of OFI peel by-products is an absolute necessity to limit waste and
preserve the environment, and they can be used in a more profitable way in human and
animal feed. The valorization process frequently targets bioactive compounds. This may
be extracted using a variety of techniques; however, their yield and antioxidant strength
heavily depend on many variables, including extraction time, type of solvent, solvent
concentration, etc. [9]. Indeed, several studies were investigated on the optimization of
phenolic compound extraction parameters [10–12]. One of the greatest green process
extraction techniques is microwave-assisted extraction. The recovery of polyphenols from
natural matrices makes extensive use of it because of its interesting advantages, which
include lower solvent usage (even solvent-free extraction is possible), time, and energy
consumption [13,14]. These advantages can be attributed to the particular microwave-
assisted extraction mechanism, which consists of the transformation of electromagnetic
energy into heat by ionic conduction and dipolar rotation through dipole inversions and
displacement of charged ions present in the bioactive compounds and the solvent.

One of the biggest challenges for researchers is assigning value to these bioactive
compounds after extraction. Some are studying them for therapeutic purposes, while
others are researching them as potential alternative food additives. Several molecules
and natural extracts from mango, rambutan, grape, banana, prickly pear, potato, and
tomato peels have shown their antioxidant potential in biscuits, vegetable oils, pasta,
mayonnaise, margarine, rinds, and other different food formulations [15–17]. Margarine is
one of the most susceptible foods to oxidation, which causes rancidity. That is a serious
problem dreaded by manufacturers because it detracts from margarine’s nutritional and
sensory qualities while forming free radicals and peroxides that are harmful to health. As a
result, margarine is receiving a great deal of attention in the search for natural antioxidant
alternatives [13,18].

On the other hand, there is growing interest in the investigation of bioactive ingredients
in medications and animal feed. In recent years, great attention has been accorded to the use
of OFI peel as animal feed [19,20]. Badr et al.’s [21] investigation is one of the studies that has
confirmed the positive impact of OFI peel addition in chicken feed in terms of improved
daily growth, feed conversion ratio, meat quality, and economic efficiency. Moreover,
multiple studies found that using medicinal herbs in chicken feed rather than artificial
medications boosts the immune system, enhances growth performance, and perhaps even
has anticoccidial properties [22,23]. Two of the most common signs of coccidiosis in broiler
chickens are diarrhea and weight loss. Despite developments in veterinary care, this
illness continues to be the principal contributor to chicken mortality and financial losses.
Many studies are concentrating on the use of natural extracts to treat Eimeria, which is
its primary cause [24–26]. Moreover, the ability of OFI flowers to destroy Emeria oocysts
has been demonstrated by Amrane-Abider et al.’s [27] research. Therefore, in order to
valorize OFI peel by-products and evaluate their antioxidant and anticoccidial potentials,
the following strategy was adopted: I. Maximize and optimize the OFI peel phenolic
compound extraction using microwave-assisted extraction and response surface methods
(Box–Behnken design). II. Determine the phenolic profile and the antioxidant capacity
of OFI peel optimum. III Study their use as natural antioxidants in margarine. IV. Study
the effect of that peel extract on the destruction of Eimeria oocysts isolated from naturally
infected chickens (in vitro anticoccidial).

2. Materials and Methods
2.1. Plant Material

Opuntia ficus-indica (OFI) fruit samples were harvested in Talandjast, Bejaia department,
northeast Algeria. After washing the fruit, the peels were dehydrated in a freeze-dryer
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(Christ, Alpha 1-4 LD plus, made in Germany), then ground, sieved, and stored in a cool
place at 4 ◦C.

2.2. Chemical Reagents

All chemicals were obtained from Sigma Chemical (Sigma–Aldrich GmbH, Tauftkirchen,
Germany), with the exception of sodium carbonate, which was obtained from Biochem,
Chemopharma (GA, USA), and Folin–Ciocalteu (Biochem, Chemopharma, made in Mon-
treal, QC, Canada). Diclosol® is available from Avico and the Arab Industry Veterinary Co.
in Amman, Jordan.

2.3. Microwave-Assisted Extraction

The microwave-assisted extraction technique was used to extract bioactive molecules
from OFI peels according to the Amrane-Abider, Nerin, Cannelas, Zeroual, Hadjal, and
Louaileche [13] method. Briefly, one gram of OFI peel powder and a volume (milliliter) of
ethanol were mixed. The mixture was irradiated using a microwave (NN-S674MF, Maxi
power, Shenzhen, China) under various test parameter settings (Table 1). The extraction
suspension was immediately chilled in cold water. The Opuntia ficus-indica peel extract
was filtered after being centrifuged at 4500 rpm for 10 min (NÜVE, NF-800-R Model,
Ankara, Turkey).

Table 1. Box–Behnken design matrix experimental plan, experimental data, and predicted values for
tree level three extraction factor response surface analysis.

Run Variable Levels TPC (GAE mg/g DW)

X1 X2 X3 Observed Predicted

1 40 30 700 12.59 14.47
2 60 60 700 32.32 31.47
3 60 90 1000 19.59 20.12
4 80 90 700 26.97 25.08
5 80 60 400 37.24 38.78
6 80 30 700 34.67 33.70
7 60 60 700 33.82 31.47
8 60 90 400 40.11 40.50
9 60 60 700 29.27 31.47
10 40 60 400 21.66 20.30
11 40 60 1000 25.36 23.86
12 60 30 1000 39.28 38.89
13 80 60 1000 27.94 29.30
14 60 30 400 24.90 24.37
15 40 90 700 19.47 20.44

X1: Ethanol concentration (%); X2: Extraction time (s); X3: Microwave power (W).

2.4. Determination of Phenolic Compound Contents and Antioxidant Activities
2.4.1. Determination of Total Phenolic Content (TPC)

The phenolic compound (TPC) content of OFI peels was determined in accordance
with Velioglu et al. [28]. To summarize, 1.5 mL of diluted (1/10) Folin–Ciocalteu reagent
was mixed with 500 microliters of OFI extract. After five minutes, one thousand five
hundred microliters of 6% sodium carbonate were added to the initial mixture. Prior to
measuring the absorbance at 750 nm in comparison to a blank, the mixture was incubated
in the dark at room temperature for one hour (h). Gallic acid served as the calibration curve
reference. The results are shown as milligrams of gallic acid equivalent (GAE) per gram of
dry weight (DW).

2.4.2. Determination of Antioxidant Activity (DPPH Radical Scavenging Assay)

Using the radical scavenger 1,1-diphenyl-2-picrylhydrazyl (DPPH), the antioxidant
activity was evaluated according to Molyneux [29]. Two hundred microliters of the OFI
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peel optimum extract were mixed with 1 mL of methanolic DPPH radical solution (60 µM).
The decolorizing process was detected at 515 nm after 30 min. DPPH radical scavenging
activity was calculated using the following equation:

DPPH radical scavenging (%) =
A0 − A1

A0
× 100 (1)

where A0 is the absorbance of DPPH· solution with the extraction solvent and A1 is the
absorbance is the absorbance of the OFI peel optimum extract. The findings are given as
50% inhibition concentration (IC50) and are expressed as mg/mL.

2.4.3. Ferric Reducing Power (FRAP)

The reducing power of the peel optimum extract was evaluated as the capacity of
reducing Fe3+ to Fe2+ according to the method by Amarowicz et al. (2004) [30]. Phosphate
buffer (0.2 M, pH 6.6) and potassium ferricyanide (C6N6FeK3, 1%) were mixed with
equivalent quantities (2.5 mL), and then 1 mL of OFI peel optimum extract was added. The
mixture was incubated at 50 ◦C for 20 min. Two-point-five milliliters of trichloroacetic acid
at 10% were added. For ten minutes, the mixture was centrifuged at 1750× g. Five hundred
microliters of ferric chloride solution (0.1%), 2.5 mL of distilled water, and a 2.5 mL aliquot
of the top layer were combined. The absorbance was measured at 700 nm, and the result
was expressed as a concentration that reduces the oxidized iron by half (IC50).

2.5. Phenolic Compound Profile

Opuntia ficus-indica peels’ optimal phenolic components profile was obtained by using
ultrahigh-performance liquid chromatography electrospray ionization quadrupole time-of-
flight mass spectrometry (UPLC-ESI-Q-TOF-MS) as described in Amrane-Abider, Nerin,
Cannelas, Zeroual, Hadjal and Louaileche’s [13] investigation.

2.6. Margarine Preparation and Oxidative Stability

Margarines were prepared according to the recipe described by Amrane-Abider, Nerin,
Cannelas, Zeroual, Hadjal and Louaileche [13]. The major ingredients in the margarine
formula were the fatty phase (82%) (palm oil, sunflower oil, and equivalent hydrogenated
soybean, emulsifier (lecithin), and β-carotenes (12 mg/kg)), the watery phase (18%) (milk,
aroma (diacetyl), salt (0.60%), lactic acid (0.5 mL/kg)), and the preservative (potassium
sorbate). Three types of margarines were prepared to test the effectiveness of OFI peel
optimum extracts in preventing margarine oxidation: a control margarine without any
antioxidants, a reference margarine with vitamin E as an antioxidant (100 ppm), and
one with OFI peel optimum extracts as natural antioxidants at two concentrations of
50 ppm and 100 ppm. The latter extract was included following solvent evaporation using
rotavapor (Rotavapor® R-300, Buchi) and lyophilization. To analyze and estimate the ability
of the antioxidant molecules found in optimum OFI peel to stabilize and inhibit margarine
oxidation, the rancimat test was carried out. The rancimat method is an accelerated
oxidation tool that measures the conductivity of oxidation products (volatile compounds)
while providing the induction time that characterizes the oxidation stability of margarine.
The oxidative stability of margarines was determined using the rancimat test according to
the ISO International Standard [31] method. In summary, three grams of the sample were
heated to the melting point and then introduced into an air oxidation flask. Test conditions
were set (the temperature was 98 ◦C and the gas flow rate was 10 L/h). Sixty-five milliliters
of distilled water were filled into the measuring cells.

2.7. Determination of the Anticoccidial Activity of OFI Peel Optimum Extract

Isolation of Eimeria species from naturally infected chickens, as well as purification and
identification, were based on methods described by Carvalho et al. [32]. The proportions of
Eimeria species investigated (Eimeria tenella 75%, Eimeria acervulina 10%, Eimeria mitis 4%,
Eimeria preacox 4%, Eimeria maxima 4%, and Eimeria brunetti 3%) as anticoccidial treatment
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are indicated in the work by Amrane-Abider, Imre, Herman, Debbou-Iouknane, Zemouri-
Alioui, Khaled, Bouiche, Nerín, Acaroz, and Ayad [27] on the OFI flower. Briefly, the
parasite sporulation was carried out in a potassium dichromate solution (2.5% K2Cr2O7)
under high humidity over 70%, and a temperature of 29 ◦C. The buffered saline solution
was used in Eimeria oocyst purification (PBS, containing sodium chloride, potassium
chloride, disodium-phosphate double hydrated, and potassium dihydrogen phosphate
at respective percentages of 8%, 0.2%, 1.13%, and 0.2%). To avoid denaturation of the
antibiotic (penicillin V 100 IU) and antifungal (fluconazole 17 mg/mL) agents, sterilization
was achieved by membrane filtration (diameter 0.2 µm at a pH of 7.4).

The HBSS (Hanks’ Balanced Salt Solution) medium is based on a mixture of salt
(sodium chloride, potassium chloride, and calcium chloride in the following percentages:
8%, 0.4%, and 0.139%), with the addition of a carbohydrate source (1% dextrorotatory
glucose) and complete with disodium phosphate, potassium dihydrogen phosphate, and
magnesium sulfate (0.0478, 0.06, and 0.097%, respectively).

The in vitro anticoccidial activity of the OFI peel optimum extract was determined
according to Debbou-Iouknane, Nerín, Amrane-Abider, and Ayad [22].

The effect of the OFI peel optimum extract on oocyst reduction was carried out
as follows: two hundred microliters of peel extract were added to 1 mL of suspension
(containing 100 µL of washed suspension of Eimeria oocysts at 24.5 × 105 oocysts/mL)
and 700 µL of phosphate-buffered saline. After incubating the parasite suspension and
extracting it from the plant matrix in the dark at room temperature for the period 1.3.5.7 and
24 h, the samples were centrifuged at 320 g for 5 min and the absorbance of the supernatant
was measured at 273 nm with a spectrophotometer.

The percentage of destroyed sporulated oocysts was then calculated using the follow-
ing equation:

Nr = 100 −
(

Nt × 100
N0

)
(2)

where: Nr = oocyst number reduction rate; Nt = oocyst number at x time (1 to 24 h);
N0 = oocyst number at time 0 (24.5 × 105 oocysts).

Diclazuril as a synthetic anticoccidial was evaluated at a concentration of 10 mg/mL
under the same experimental conditions. The regression curve’s lethal concentration (LC50)
for the diclazuril and OFI peel values was then deduced.

2.8. Experimental Design and Statistical Analyses

In order to maximize the extraction of phenolic compounds from OFI peels, a three-
level, three-factor Box–Behnken (BBD) experimental design of the JMP program (version
10.0, SAS package) was used. Based on the literature and preliminary studies, three factors
were optimized: X1 for ethanol concentration (40–80%), X2 for extraction time (30–90 s), and
X3 for microwave power (400–1000 watts) (Table 1). All the experiments were performed
in triplicate, and by using analysis of variance (ANOVA), a 95% confidence interval was
set. The results were expressed as the mean value ± standard deviation (SD). Statistical
analysis was performed using the STATISTICA 12 program.

3. Results and Discussion
3.1. Phenolic Compounds

In the present study, we investigated the effects of microwave variable extraction
on the total phenolic content of OFI peels and identified their optimum combination. In
addition, we evaluated the effect of the OFI peel optimum extracts on margarine oxidative
stability as a natural antioxidant and their in vitro anticoccidial effect on the destruction of
Eimeria oocysts (chicken parasites).

Investigations into food processing technologies should include effects on phenolic
compounds and/or parameters that affect the stability of phenolic compounds in foods.
Our results revealed that the experimental data of the Box–Behnken design matrix and
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the predicted values for the three independent variables affected the extraction of total
phenolic components from the OFI peel, as shown in Table 1.

The current investigation shows that OFI peel extracts are highly rich in polyphenols.
However, their content depends strongly on the extraction conditions; it varied from 12.59
to 40.11 mg GAE/g DW. Moreover, there is a good agreement between the experimental
results and those predicted by the polynomial model. That was confirmed by the model’s
coefficient of determination (R2) value, which is in the order of 0.97. While the adjusted
value of the coefficient of determination was equal, R2

adjusted = 0.90, as shown in Table 2.
The statistical analyses in Table 2 demonstrate that the model was significant (p < 0.01) and
the lack of fit was not significant (p > 0.05), thereby confirming the validity of the model.

Table 2. Variance analysis (ANOVA) table for the effect of microwave extraction factors (ethanol
concentration, time, and power) on TPC extraction (mg GAE/g DW).

Source DF Sum of Squares F Ratio Prob > F

TPC
X1 1 245.0340 42.5626 0.0013 *
X2 1 214.0661 37.1834 0.0017 *
X3 1 30.7549 5.3422 0.0688
X1X2 1 53.1776 9.2370 0.0288 *
X1X3 1 42.2435 7.3377 0.0423 *
X2X3 1 304.5200 52.8954 0.0008 *
X1X1 1 117.9654 20.4907 0.0062 *
X2X2 1 27.5454 4.7847 0.0804
X3X3 1 13.2628 2.3038 0.18952
Model 9 886.31 16.71 0.0032 *
Lack of fit 3 18.0061 1.1137 0.5053
Error 5 28.7851
Total model 14 895.0955
R2 = 0.97
Adj. R2 = 0.90

Legend: DF, degree of freedom; SS, sum of squares; *, significant influence.

Table 3 illustrates the interaction between the ethanol concentration, extraction time,
and microwave power factors on the extraction efficiency of OFI peel total phenolic com-
pounds using microwave extraction. The concentration of ethanol as an independent
variable significantly influences microwave extraction (p = 0.00089).

Table 3. Effect of main factors and interactions.

Variables p-Value

X2-Extraction time (s) × X3-Microwave power (W)
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In addition, the ethanol concentration quadratic factor shows a significant (p < 0.00625)
impact on bioactive extraction. On the other hand, the extraction time and power interaction
has a strong impact on the extraction of bioactive chemicals from OFI peel.

The extraction time—power interaction was by far the strongest factor interaction
that had an impact on the extraction of the bioactive chemicals. Ethanol concentration–
microwave power and extraction time–ethanol concentration interactions followed. The
interaction between the factors in total phenolic compound extractions is well illustrated in
Figure 1. According to Figure 1A, a low ethanol concentration in a short extraction time
(4–30 s) does not allow a good extraction rate of phenolic compounds (7 mg GAE/g DW).
Despite the prolongation of extraction time with low solvent concentrations, the extraction
rate remains low (16 mg GAE/g DW), while it increases gradually with high concentrations.
This result shows once again the importance of this factor in the extraction of bioactive
compounds, which are known to be moderately polar since the ability of a solvent to extract
compounds also depends on the physicochemical properties of the latter.
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extraction efficiency [37]. It turned out that the inverse was also true; in both instances, the 
TPC level was higher than 40 GAE mg/g DW. Furthermore, the ideal condition for extract-
ing a maximum TPC from OFI peels was low power (400 W) for 90 s using 67.86% ethanol, 
as shown in Figure 2. This result was confirmed experimentally by measuring TPC (42.05 
± 0.46 mg GAE/g DW). Our outcome was higher than several investigations conducted in 
Algeria, Egypt, and South Africa, where the TPCs of OFI peels were 28.68, 8.48, and 17.59 
mg GAE/g DW, respectively [4,38,39]. 

Figure 1. Response surface plots showing the effects of X1: ethanol extraction (%), X2: extraction
time (seconds), and X3: microwave power (Watts) on TPC extraction (mg GAE/g DW) from prickly
pear peel. (A) Represents the interaction plot of ethanol contraction and extraction time factors;
(B) represents the interaction plot of ethanol contraction and microwave power factors; (C) represents
the interaction between extraction time and microwave power factors.

The same observation was found with the interactive influences of the ethanol con-
centration and microwave power extraction parameters (Figure 1B), where an increase in
ethanol concentration increased the TPC extraction yield [33]. The high-power input facility
of extraction of bio-available compounds becomes available quickly as a result of the sol-
vent heating up quickly and the cell walls rupturing, increasing the amount of energy that
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is delivered to the substrate [34]. However, varying the microwave power alone (without
varying the ethanol concentration) does not change the results much (15 mg GAE/g DW),
whereas a simultaneous variation with the ethanol concentration changes the results signif-
icantly. The highest amount of phenolic compounds was obtained with 400 to 600 W and
an ethanol concentration above 65 percent.

Moreover, time and microwave power extraction parameters were the most significant
interactive factors, as shown in both Table 3 (p < 0.00077) and Figure 1C, which is in ac-
cordance with several studies [13,35]. Phenolic compound recovery is strongly dependent
on microwave power, although it is often limited to a certain value [33]. On the other
hand, exaggerated exposure to microwaves, even at low power levels, reduces extraction
efficiency due to structural denaturation of bioactive compounds and oxidation [36]. More-
over, high microwave power at a minimum time may be at the root of biopolyphenol
extraction efficiency [37]. It turned out that the inverse was also true; in both instances,
the TPC level was higher than 40 GAE mg/g DW. Furthermore, the ideal condition for
extracting a maximum TPC from OFI peels was low power (400 W) for 90 s using 67.86%
ethanol, as shown in Figure 2. This result was confirmed experimentally by measuring
TPC (42.05 ± 0.46 mg GAE/g DW). Our outcome was higher than several investigations
conducted in Algeria, Egypt, and South Africa, where the TPCs of OFI peels were 28.68,
8.48, and 17.59 mg GAE/g DW, respectively [4,38,39].

Foods 2023, 12, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 2. Microwave-assisted extraction parameters and response prediction profile of OFI peel. 

The scavenging of free DPPH radicals by OFI peels was evaluated. This assay reflects 
the hydrogen donation ability of antioxidants. The result was expressed as an IC50 value, 
where a lower IC50 value indicated higher radical scavenging activity. Opuntia ficus-indica 
peel extract exhibits a high ability to scavenge DPPH radicals with an IC50 value of 12.99 
± 0.36 mg/mL (Table 4). This test not only confirms the antioxidant capacity of OFI peels 
but also confirms the mechanism of action of their compounds, which is to give hydrogen. 
Choe and Min [40] reported that natural antioxidants maintain their stability even after 
donating hydrogen, i.e., they become relatively stable antioxidant radicals with a low 
standard reduction potential, below 500 mV. Our result was higher than that found by 
Chougui et al. [41] (IC50 value of 77.81 mg/mL) for peel extract and Chougui et al. [42] (IC50 
value of 49.60 mg/mL) for seed extract. On the other hand, 6.57 ± 0.05 mg/mL of the present 
extract reduces the oxidized iron by half. This result shows us another antioxidant mech-
anism of OFI peels, namely electron donation. The ferric-reducing power test is based on 
the ability of antioxidants to reduce ferric ions (Fe3+) to ferrous ions (Fe2+) [43]. On one side, 
that result was higher than that of Aruwa, Amoo, and Kudanga [39] (93.74 mg/mL for OFI 
peel); on the other side, it was lower than that of Chougui, Djerroud, Naraoui, Hadjal, 
Aliane, Zeroual, and Larbat [41] (1.03 mg/mL for OFI peel). These differences may be due 
to plant conservation, extraction processes, drying modes, and storage conditions, as re-
ported in a recent literature review [44]. 

Table 4. Antioxidant activities and margarine oxidative stability of Opuntia ficus-indica peel opti-
mum extract. a–d Different lowercase le ers indicate statistically significant differences (p < 0.05) ac-
cording to ANOVA test. 

Antioxidant Activities IC50 (mg/mL) 
DPPH radical 12.99 ± 0.36 

Ferric reducing power  6.57 ± 0.05 
Rancimat (hours) 

Margarine control 12.82 ± 0.51 a 
Margarine vitamin E 14.33 ± 0.22 b 

Margarine enriched (OFI) 50 ppm 15.86 ± 0.17 c 
Margarine enriched (OFI) 100 ppm 16.02 ± 0.41 d 

Figure 2. Microwave-assisted extraction parameters and response prediction profile of OFI peel.

The scavenging of free DPPH radicals by OFI peels was evaluated. This assay reflects
the hydrogen donation ability of antioxidants. The result was expressed as an IC50 value,
where a lower IC50 value indicated higher radical scavenging activity. Opuntia ficus-
indica peel extract exhibits a high ability to scavenge DPPH radicals with an IC50 value
of 12.99 ± 0.36 mg/mL (Table 4). This test not only confirms the antioxidant capacity of
OFI peels but also confirms the mechanism of action of their compounds, which is to give
hydrogen. Choe and Min [40] reported that natural antioxidants maintain their stability
even after donating hydrogen, i.e., they become relatively stable antioxidant radicals with
a low standard reduction potential, below 500 mV. Our result was higher than that found
by Chougui et al. [41] (IC50 value of 77.81 mg/mL) for peel extract and Chougui et al. [42]
(IC50 value of 49.60 mg/mL) for seed extract. On the other hand, 6.57 ± 0.05 mg/mL of the
present extract reduces the oxidized iron by half. This result shows us another antioxidant
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mechanism of OFI peels, namely electron donation. The ferric-reducing power test is based
on the ability of antioxidants to reduce ferric ions (Fe3+) to ferrous ions (Fe2+) [43]. On one
side, that result was higher than that of Aruwa, Amoo, and Kudanga [39] (93.74 mg/mL
for OFI peel); on the other side, it was lower than that of Chougui, Djerroud, Naraoui,
Hadjal, Aliane, Zeroual, and Larbat [41] (1.03 mg/mL for OFI peel). These differences may
be due to plant conservation, extraction processes, drying modes, and storage conditions,
as reported in a recent literature review [44].

Table 4. Antioxidant activities and margarine oxidative stability of Opuntia ficus-indica peel optimum
extract. a–d Different lowercase letters indicate statistically significant differences (p < 0.05) according
to ANOVA test.

Antioxidant Activities IC50 (mg/mL)

DPPH radical 12.99 ± 0.36
Ferric reducing power 6.57 ± 0.05

Rancimat (hours)

Margarine control 12.82 ± 0.51 a

Margarine vitamin E 14.33 ± 0.22 b

Margarine enriched (OFI) 50 ppm 15.86 ± 0.17 c

Margarine enriched (OFI) 100 ppm 16.02 ± 0.41 d

Phenolic profile analysis of OFI peel optimum by chromatography (UPLC-ESI-Q-TOF-
MS) revealed the presence of eight phenolic molecules, including phenolic acids (vanillic
acid, coumaric acid, and protocatechuic acid) and flavonoids (Table 5) (Figure 3).
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Figure 3. Opuntia ficus-indica peels’ optimal phenolic component profile (UPLC-ESI-Q-TOF-MS)
(1) Vanillic acid; (2) Coumaric acid; (3) Protocatechuic acid; (4) Isohamnetin; (5) Dihydrokaempferol;
(6) Kaempferol-3-O-rutinoside; (7) Isorhamnetin 3-O-rutinoside; (8) Isorhamnetin 3-O-glucoside.



Foods 2023, 12, 4403 10 of 16

Table 5. Phenolic compound constituents identified in OFI peel optimum extract by LC-MS/MS.

Compounds [M-H] Retention
Time (min)

Concentration
(µg/g)

Molecular
Formula Fragment Ions (m/z)

1 Vanilic acid 167 0.65 60.09 ± 0.13 C8H8O4 167 (100), 153 (5), 137 (3), 123 (1)
2 Coumaric acid 163 0.82 93.12 ± 0.25 C9H8O3 119 (100),163 (22), 91 (2)
3 Protocatechuic acid 153 3.08 81.80 ± 0.19 C7H6O4 153 (39), 109 (100), 111 (29)
4 Isorhamnetin 315 6.88 155.37 ± 0.51 C16H12O7 315 (100), 301 (7), 297 (6), 285 (2)
5 Dihydrokaempferol 287 7.15 206.16 ± 0. 30 C15H12O6 289 (100), 273 (2), 271 (49), 153 (11)
6 Kaempferol-3-O-rutinoside 593 7.46 112.81 ± 0.15 C27H30O15 287 (100), 146 (7)
7 Isorhamnetin 3-O-rutinoside 623 7.78 108.79 ± 0.21 C28H32O16 315 (42), 314 (100)
8 Isorhamnetin 3-O-glucoside 477 8.10 95.80 ± 0.12 C22H22O12 315 (100), 300 (80)

Coumaric acid, dihydrokaempferol, and isorhamnetin were already identified by
Amrane-Abider, Nerín, Tamendjari, and Serralheiro [4] and Chougui, Djerroud, Naraoui,
Hadjal, Aliane, Zeroual, and Larbat [41] in OFI peel in Algeria. This last substance is a
flavonol, frequently present in Opuntia ficus-indica as well as other plants, including Hip-
pophae rhamnoides and Ginkgo biloba [45]. Isorhamnetin has a number of pharmacological
properties, including cardiovascular and cerebrovascular protection, anti-inflammation,
prevention of obesity, anti-tumor, anti-oxidation, anti-bacterial, and anti-viral [46]. The
other compounds had already been identified in OFI fruit pulp and flowers [11,27,47–50].
The variability of phenolic compounds reported by various authors could be due to
different extraction and analysis methods. In addition, maturity stages, geographical
variations, and differences in culture or growth conditions could also play a role in the
mentioned variability.

3.2. Margarine Oxidative Stability

The consumption of margarine has been rising gradually. However, due to its high fat
content—around 80%—the danger of oxidation is quite significant. Therefore, antioxidants
must be included because oxidation lowers the nutritional and sensory quality of food. In
the past, manufacturers added synthetic antioxidants such as butylhydroxyanisole (BHA),
butylhydroxytoluene (BHT), and butylhydroxyquinone (BHQT), but for health reasons,
some countries and industries banned them and replaced them with vitamin E [13,51].
Despite the benefits of this molecule, it remains a synthetic molecule, raising the question
of whether natural extracts may also take its place. To assess the antioxidant capacity of
OFI optimum as a natural antioxidant in margarine, an accelerated oxidation test (rancimat)
was used. Oxidative stability in this test was expressed as the time required to reach a
critical oxidation point (time stability in hours), as shown in Table 4.

According to data presented in Table 4, OFI peel extract as a natural antioxidant
increases the margarine’s oxidative stability by 3.2 h, with the induction time equal to
16.02 ± 0.41 h. Better oxidative stability is demonstrated in margarine with OFI peel
optimum extract compared to those containing vitamin E. Our extract demonstrated a
longer induction time than vitamin E-fortified margarines, 14.33 ± 0.22 and 15.86 ± 0.17,
respectively, even at 50 ppm. The effectiveness of an antioxidant in protecting fatty acids,
particularly emulsions, against fatty acid oxidation is highly dependent on the nature of
the compounds, i.e., free hydroxyl groups and polarity [18]. In the present study, vanillic
acid is slightly soluble in water, kaempferol-3-O-rutinoside is slightly soluble in water, and
the rest of the compounds identified are sparingly soluble in water, which favors their
perfect penetration into the emulsion as well as their good protection of fatty acids from
oxidation, especially essential fatty acids, which are highly sensitive to oxidation. Knowing
that lipid oxidation involves a very complex set of free-radical reactions that take place
between fatty acids and oxygen [52], it is obvious to achieve a good oxidative stability
of margarine with OFI peel extract, especially as our extract has already shown a great
anti-free radical capacity (as already shown in the DPPH radical test). Referring to the
phenolic composition of OFI peel (Table 5), other mechanisms are possible; flavonoids
are well known for being effective metal chelators [53]. The oxidative stability results of
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OFI peel optimum extract are a significant advancement, particularly considering that
vitamin E (α-tocopherol) is a potent antioxidant and anti-radical that is well suited to lipid
oxidation prevention and protection. According to Choe and Min [40], the effectiveness
of antioxidants in reducing free radicals in food depends on the energy of dissociation
between oxygen and the phenolic hydrogen bond, which is between 70 and 80 kcal/mol
and declines in the δ > γ > β > α-tocopherol order (from a thermodynamic point of view,
hydrogen transfer from antioxidants is more favorable when the energy of dissociation of
the O-H bond in the antioxidants is low). Opuntia ficus-indica peels were also incorporated
into margarine by Chougui, Djerroud, Naraoui, Hadjal, Aliane, Zeroual, and Larbat [41].
However, our outcomes are far better (100 ppm of OFI improved the margarine’s oxidative
stability by 1.35 h compared to margarine containing vitamin E). This could be because of
how the phenolic chemicals were extracted. In this previous study, the traditional extraction
approach (maceration) was used, whereas ours involved the use of a microwave followed
by optimization of the extraction conditions for the phenolic components. In a similar
line, several investigations have verified that microwave-assisted extraction of phenolic
compounds is more efficient than maceration when it comes to concentration and extraction
time reduction (by 42 to 97.33 percent) [54–56].

This investigation joins other studies confirming that natural extracts rich in bioactive
compounds can be excellent natural antioxidant additives to margarine, such as Amrane-
Abider, Nerin, Cannelas, Zeroual, Hadjal, and Louaileche [13] (OFI seed), Ouahrani, Casal,
Bachir-bey and Zaidi [18] (Moringaoleífera leaves), Serra et al. [57] (herbs and spices: Ros-
marinus officinalis, Curcuma longa, Thymus piperella, and Thymus vulgaris), and Martínez-
Girón [58] (Capsicum annuum peel and pulp, and Solanum betaceum Cav. juice).

3.3. Anticoccidial Activities

The current situation of avian coccidiosis is alarming because the irrational use of
various anticoccidial drugs is becoming ineffective against avian coccidiosis due to the
increasing resistance of Eimeria species. That is why researchers are scrambling to find the
best herbal remedy [27,59]. The present study is part of that context. Figure 4 shows that
OFI peel optimum extract has an interesting anticoccidial activity with an oocyst reduction
rate of 30.06 ± 0.51 percent after 7 h of treatment. According to our knowledge, there is
not enough research on OFI peel anticoccidial efficacy. Hence, to highlight the potential of
our investigation, other herbal extracts were examined. Our findings are better than those
reported for pulp and leaf olive extracts (25.36% and 5.87%, respectively) [22,60], whereas
60.53 ± 0.38 mg/mL of OFI peel extract destroyed 50 oocysts (Figure 5), which is higher
than the reported values of Debbou-Iouknane, Nerín, Amrane-Abider, and Ayad [22], where
192.94 mg/mL of olive leaves destroyed half of the Eimeria oocysts isolated from broiler
chickens. Moreover, while the present results were better even against Eimiria isolated
from other animals like rabbits, Murshed et al. [61] revealed that the oocyst inhibition
percentages were low (below 50%) using 25–100 mg/mL of Calotropis procera leaf.

Despite the interesting results of the present study, they remain inferior to those found
in our previous study [27], where extracts of OFI flowers destroyed Eimeria oocysts after
7 h by 44.89%. This is probably linked to the phenolic compounds, as OFI flowers are
rich in phenolic compounds, particularly flavonoids. Kerboeuf et al.’s [62] mini-review
reported that certain flavonoids limit protozoan resistance to other drugs. The results of this
study showed a correlation between diclazuril (R2 = 0.87) and OFI peel extract (R2 = 0.95)
concentrations in reducing the oocyst numbers (Figure 5).
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Figure 4. Reduction in the number of Eimeria oocysts as a function of time and absorbance at a
wavelength of 273 nm after treatment with optimum OFI peel (A) and diclazuril (B).

Instead of testing natural extracts, Alnassan et al. [63] studied the effect of commercial
molecules such as allicin on chicken Eimeria tenella, which is known for its antibacterial
and antiviral activities. Their findings were higher (56.24%) than those of the present study.
In the same light, our finding was lower than the quercetin standard, with the oocyst
reduction rate equal to 45.38%. Thymol, carvacrol, and saponins were the other standard
molecules that exhibited high anticoccidial activity (the Eimeria spp. oocyst reduction rate
was superior to 50%) [60,64]. These previous studies confirm the direct effect of bioactive
substances on Eimeria spp.
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Plant extracts with high concentrations of bioactives, particularly polyphenolic com-
pounds, have been shown by Molan et al. [65] to inhibit the enzymes involved in coccidian
parasite sporulation. According to Abbas et al. [65], plant extracts have the ability to
penetrate both oocyst shell layers and induce a loss of intracellular components, which de-
stroys and softens the parasite’s primary cytoplasmic mass. In a similar vein, Ali et al. [66]
and Tanweer et al. [67] reported the crucial role of these compounds in Eimeria oocyst
destruction by modifying membrane ionization, leading to cell death.

Since one of the objectives of this study was to find an alternative to the synthetic treat-
ment, we proceeded in the same way using diclazuril, which is known for its effectiveness
in reducing Emeria oocysts (Figure 5). High correlation coefficients of diclazuril and OFI
peel extract (R2 = 0.87 and R2 = 0.95, respectively) were found. Our findings demonstrate
that, despite the OFI peel extract’s positive effects, it is still not as effective as diclazuril
(oocyst reduction rate: 64.70%, LC50: 37.65 mg/mL). However, as shown above (Table 5),
OFI peel is rich in phenolic acid and flavonoids; maybe it was necessary to proceed with the
purification of these compounds to have better effects since pure molecules or standards
often give better results because their functional groups are free.

4. Conclusions

The optimization of the extraction procedure for phenolic compounds and antiox-
idant activities of the Opuntia ficus-indica peel extract was satisfactory using a Box–
Behnken response surface design. The total phenolic content strongly influences the
optimized parameters such as ethanol concentration, extraction time, and microwave
power. OFI peel extracts have been found to be a source of natural phenolic compounds,
such as isorhamnetin, dihydrokaempferol, and kaempferol-3-O-rutinoside, and exhibit
high antioxidant activities. In the present study, it was demonstrated that the addition
of OFI peel extract to margarine increased resistance towards oxidation, compared to
margarine without antioxidants and margarine containing vitamin E. In addition, it
was concluded that OFI peel extract possesses the ability to destroy Eimeria spp. from
broiler chickens and can serve as an alternative to synthetic anticoccidial drugs. In
the future, in vivo investigations are required to assess the efficiency of the OFI peel
bioactive compounds in poultry.
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