Morphological, Structural, Thermal, Pasting, and Digestive Properties of Starches Isolated from Different Varieties of Rice: A Systematic Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice Samples
2.2. Starch Isolation from Rice Samples
2.3. Moisture Content Determination
2.4. Color Attributes Analysis
2.5. Morphological Analysis on the Microstructure of Starch
2.6. X-ray Diffraction Analysis
2.7. Determination of Apparent Amylose Content
2.8. Determination of Swelling Power and Water Solubility Index
2.9. Pasting Properties Analysis
2.10. Thermal Analysis
2.11. Thermogravimetric Analysis
2.12. In Vitro Digestibility Analysis
2.13. Statistical Analysis of Experimental Data
3. Results
3.1. Moisture Content and Color Characteristics of Isolated Starch
3.2. Morphology of Isolated Starch
3.3. X-ray Diffraction of Isolated Starch
3.4. Apparent Amylose Content of Isolated Starch
3.5. Swelling Power and Water Solubility Index of Isolated Starch
3.6. Pasting Profiles of Isolated Starch
3.7. Thermogravimetric Properties of Isolated Starch
3.8. Thermal Properties of Isolated Starch
3.9. In Vitro Digestibility of Isolated Starch
3.10. Principal Component and Correlation Analysis of Isolated Starch Properties
4. Discussion
4.1. Morphological and Structural Characteristics of Isolated Rice Starches
4.2. Physio-Chemical Properties of Isolated Rice Starches
4.3. Thermal Attributes of Isolated Starch
4.4. Pasting Profiles of Isolated Rice Starches
4.5. Digestibility of Rice Starch Based on In Vitro Model
4.6. PCA and Correlation Analysis of Starch Properties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bertolini, A. Starches: Characterization, Properties, and Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Zarski, A.; Bajer, K.; Kapuśniak, J. Review of the Most Important Methods of Improving the Processing Properties of Starch toward Non-Food Applications. Polymers 2021, 13, 832. [Google Scholar] [CrossRef]
- Shahbandeh, M. Rice Consumption Worldwide Leading Countries 2021/2022. Available online: https://www.statista.com/statistics/255971/top-countries-based-on-rice-consumption-2012-2013/#statisticContainer (accessed on 1 December 2022).
- Lawal, O.S.; Lapasin, R.; Bellich, B.; Olayiwola, T.O.; Cesàro, A.; Yoshimura, M.; Nishinari, K. Rheology and Functional Properties of Starches Isolated from Five Improved Rice Varieties from West Africa. Food Hydrocoll. 2011, 25, 1785–1792. [Google Scholar] [CrossRef]
- Adebowale, K.O.; Lawal, O.S. Microstructure, Physicochemical Properties and Retrogradation Behaviour of Mucuna Bean (Mucuna pruriens) Starch on Heat Moisture Treatments. Food Hydrocoll. 2003, 17, 265–272. [Google Scholar] [CrossRef]
- Wani, A.A.; Singh, P.; Shah, M.A.; Schweiggert-Weisz, U.; Gul, K.; Wani, I.A. Rice Starch Diversity: Effects on Structural, Morphological, Thermal, and Physicochemical Properties-A Review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 417–436. [Google Scholar] [CrossRef]
- Rosa, D.S.; Guedes, C.G.F.; Pedroso, A.G. Gelatinized and Nongelatinized Corn Starch/Poly(Epsilon-Caprolactone) Blends: Characterization by Rheological, Mechanical and Morphological Properties. Polímeros 2004, 14, 181–186. [Google Scholar] [CrossRef]
- Singh Sodhi, N.; Singh, N. Morphological, Thermal and Rheological Properties of Starches Separated from Rice Cultivars Grown in India. Food Chem. 2003, 80, 99–108. [Google Scholar] [CrossRef]
- Puchongkavarin, H.; Varavinit, S.; Bergthaller, W. Comparative Study of Pilot Scale Rice Starch Production by an Alkaline and an Enzymatic Process. Starch 2005, 57, 134–144. [Google Scholar] [CrossRef]
- Nara, S.; Komiya, T. Studies on the Relationship between Water-Satured State and Crystallinity by the Diffraction Method for Moistened Potato Starch. Starch-Stärke 1983, 35, 407–410. [Google Scholar] [CrossRef]
- Guo, J.; Kong, L.; Du, B.; Xu, B. Morphological and Physicochemical Characterization of Starches Isolated from Chestnuts Cultivated in Different Regions of China. Int. J. Biol. Macromol. 2019, 130, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and Measurement of Nutritionally Important Starch Fractions. Eur. J. Clin. Nutr. 1992, 46 (Suppl. 2), S33–S50. [Google Scholar]
- Londoño-Restrepo, S.M.; Rincón-Londoño, N.; Contreras-Padilla, M.; Millan-Malo, B.; Rodríguez-García, M.E. Morphological, Structural, Thermal, Compositional, Vibrational, and Pasting Characterization of White, Yellow, and Purple Arracacha Lego-like Starches and Flours (Arracacia xanthorrhiza). Int. J. Biol. Macromol. 2018, 113, 1188–1197. [Google Scholar] [CrossRef] [PubMed]
- Oates, C.G. Towards an Understanding of Starch Granule Structure and Hydrolysis. Trends Food Sci. Technol. 1997, 8, 375–382. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, M.E.; Hernandez-Landaverde, M.A.; Delgado, J.M.; Ramirez-Gutierrez, C.F.; Ramirez-Cardona, M.; Millan-Malo, B.M.; Londoño-Restrepo, S.M. Crystalline Structures of the Main Components of Starch. Curr. Opin. Food Sci. 2021, 37, 107–111. [Google Scholar] [CrossRef]
- Lindeboom, N.; Chang, P.R.; Tyler, R.T. Analytical, Biochemical and Physicochemical Aspects of Starch Granule Size, with Emphasis on Small Granule Starches: A Review. Starch-Stärke 2004, 56, 89–99. [Google Scholar] [CrossRef]
- Esquivel-Fajardo, E.A.; Martinez-Ascencio, E.U.; Oseguera-Toledo, M.E.; Londoño-Restrepo, S.M.; Rodriguez-García, M.E. Influence of Physicochemical Changes of the Avocado Starch throughout Its Pasting Profile: Combined Extraction. Carbohydr. Polym. 2022, 281, 119048. [Google Scholar] [CrossRef] [PubMed]
- Dome, K.; Podgorbunskikh, E.; Bychkov, A.; Lomovsky, O. Changes in the Crystallinity Degree of Starch Having Different Types of Crystal Structure after Mechanical Pretreatment. Polymers 2020, 12, 641. [Google Scholar] [CrossRef]
- Gong, B.; Liu, W.; Tan, H.; Yu, D.; Song, Z.; Lucia, L.A. Understanding Shape and Morphology of Unusual Tubular Starch Nanocrystals. Carbohydr. Polym. 2016, 151, 666–675. [Google Scholar] [CrossRef]
- Singh, S.; Singh, N.; Isono, N.; Noda, T. Relationship of Granule Size Distribution and Amylopectin Structure with Pasting, Thermal, and Retrogradation Properties in Wheat Starch. J. Agric. Food Chem. 2010, 58, 1180–1188. [Google Scholar] [CrossRef]
- Cornejo-Ramírez, Y.I.; Martínez-Cruz, O.; Del Toro-Sánchez, C.L.; Wong-Corral, F.J.; Borboa-Flores, J.; Cinco-Moroyoqui, F.J. The Structural Characteristics of Starches and Their Functional Properties. CyTA—J. Food 2018, 16, 1003–1017. [Google Scholar] [CrossRef]
- Gunaratne, A.; Corke, H. Starch: Analysis of Quality. Encycl. Food Grains 2016, 2, 198–207. [Google Scholar] [CrossRef]
- Li, J.-Y.; Yeh, A.-I. Relationships between Thermal, Rheological Characteristics and Swelling Power for Various Starches. J. Food Eng. 2001, 50, 141–148. [Google Scholar] [CrossRef]
- Ragaee, S.; Abdel-Aal, E.-S.M. Pasting Properties of Starch and Protein in Selected Cereals and Quality of Their Food Products. Food Chem. 2006, 95, 9–18. [Google Scholar] [CrossRef]
- Li, G.; Wang, S.; Zhu, F. Physicochemical Properties of Quinoa Starch. Carbohydr. Polym. 2016, 137, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Roumeliotis, S.; Eglinton, J. Determination of Biophysical Characteristics of Starch in Whole Barley Grain Using near Infrared Spectroscopy. NIR News 2013, 24, 12–14. [Google Scholar] [CrossRef]
- Irinislimane, H.; Belhaneche-Bensemra, N. Extraction and Characterization of Starch from Oak Acorn, Sorghum, and Potato and Adsorption Application for Removal of Maxilon Red GRL from Wastewater. Chem. Eng. Commun. 2017, 204, 897–906. [Google Scholar] [CrossRef]
- Wang, S.; Copeland, L. New insights into loss of swelling power and pasting profiles of acid hydrolyzed starch granules. Starch-Starke 2012, 64, 538–544. [Google Scholar] [CrossRef]
- Cruz, B.R.; Abraão, A.S.; Lemos, A.M.; Nunes, F.M. Chemical Composition and Functional Properties of Native Chestnut Starch (Castanea sativa Mill). Carbohydr. Polym. 2013, 94, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Tester, R.F.; Morrison, W.R. Swelling and Gelatinization of Cereal Starches. I. Effects of Amylopectin, Amylose, and Lipids. Cereal Chem. 1990, 67, 551–557. [Google Scholar]
- Jane, J.; Chen, Y.Y.; Lee, L.F.; McPherson, A.E.; Wong, K.S.; Radosavljevic, M.; Kasemsuwan, T. Effects of Amylopectin Branch Chain Length and Amylose Content on the Gelatinization and Pasting Properties of Starch. Cereal Chem. J. 1999, 76, 629–637. [Google Scholar] [CrossRef]
- Pérez, S.; Bertoft, E. The Molecular Structures of Starch Components and Their Contribution to the Architecture of Starch Granules: A Comprehensive Review. Starch-Stärke 2010, 62, 389–420. [Google Scholar] [CrossRef]
- Nawar, S.; Buddenbaum, H.; Hill, J. Digital Mapping of Soil Properties Using Multivariate Statistical Analysis and ASTER Data in an Arid Region. Remote Sens. 2015, 7, 1181–1205. [Google Scholar] [CrossRef]
- Han, X.-Z.; Hamaker, B.R. Amylopectin Fine Structure and Rice Starch Paste Breakdown. J. Cereal Sci. 2001, 34, 279–284. [Google Scholar] [CrossRef]
- Bertoft, E. Understanding Starch Structure: Recent Progress. Agronomy 2017, 7, 56. [Google Scholar] [CrossRef]
- Zhang, G.; Hamaker, B.R. REVIEW: Cereal Carbohydrates and Colon Health. Cereal Chem. 2010, 87, 331–341. [Google Scholar] [CrossRef]
- Miao, M.; Jiang, B.; Zhang, T. Effect of Pullulanase Debranching and Recrystallization on Structure and Digestibility of Waxy Maize Starch. Carbohydr. Polym. 2009, 76, 214–221. [Google Scholar] [CrossRef]
- Chung, H. Comparison in Glass Transition and Enthalpy Relaxation between Native and Gelatinized Rice Starches. Carbohydr. Polym. 2002, 48, 287–298. [Google Scholar] [CrossRef]
- Wang, L.; Xie, B.; Xiong, G.; Du, X.; Qiao, Y.; Liao, L. Study on the Granular Characteristics of Starches Separated from Chinese Rice Cultivars. Carbohydr. Polym. 2012, 87, 1038–1044. [Google Scholar] [CrossRef]
- Zhang, L.; Xie, W.; Zhao, X.; Liu, Y.; Gao, W. Study on the Morphology, Crystalline Structure and Thermal Properties of Yellow Ginger Starch Acetates with Different Degrees of Substitution. Thermochim. Acta 2009, 495, 57–62. [Google Scholar] [CrossRef]
- Liu, X.; Yu, L.; Xie, F.; Li, M.; Chen, L.; Li, X. Kinetics and Mechanism of Thermal Decomposition of Cornstarches with Different Amylose/Amylopectin Ratios. Starch-Stärke 2010, 62, 139–146. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Y.; Xu, X.; Jin, Z. Starch Retrogradation Studied by Thermogravimetric Analysis (TGA). Carbohydr. Polym. 2011, 84, 1165–1168. [Google Scholar] [CrossRef]
- Singh, N.; Singh, J.; Kaur, L.; Singh Sodhi, N.; Singh Gill, B. Morphological, Thermal and Rheological Properties of Starches from Different Botanical Sources. Food Chem. 2003, 81, 219–231. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Shoemaker, C.B.; Xu, Z.; Zhu, S.; Zhong, F. Effect of Dry Heat Treatment with Xanthan on Waxy Rice Starch. Carbohydr. Polym. 2013, 92, 1647–1652. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Morris, C.F.; Batey, I.L.; Wrigley, C.W. Sources of Variation for Starch Gelatinization, Pasting, and Gelation Properties in Wheat. Cereal Chem. J. 1997, 74, 63–71. [Google Scholar] [CrossRef]
- Batey, I.; Crosbie, G.B.; Ross, A. Interpretation of RVA Curves. In The RVA Handbook; American Association of Cereal Chemists: St. Paul, MN, USA, 2007. [Google Scholar]
- Cozzolino, D. The Use of the Rapid Visco Analyser (RVA) in Breeding and Selection of Cereals. J. Cereal Sci. 2016, 70, 282–290. [Google Scholar] [CrossRef]
- Tikapunya, T.; Zou, W.; Yu, W.; Powell, P.O.; Fox, G.P.; Furtado, A.; Henry, R.J.; Gilbert, R.G. Molecular Structures and Properties of Starches of Australian Wild Rice. Carbohydr. Polym. 2017, 172, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.K.; Srivastav, P.P. Isolation, Modification, and Characterization of Rice Starch with Emphasis on Functional Properties and Industrial Application: A Review. Crit. Rev. Food Sci. Nutr. 2021, 62, 6577–6604. [Google Scholar] [CrossRef] [PubMed]
- Balet, S.; Guelpa, A.; Fox, G.; Manley, M. Rapid Visco Analyser (RVA) as a Tool for Measuring Starch-Related Physiochemical Properties in Cereals: A Review. Food Anal. Methods 2019, 12, 2344–2360. [Google Scholar] [CrossRef]
- Srichuwong, S.; Sunarti, T.C.; Mishima, T.; Isono, N.; Hisamatsu, M. Starches from Different Botanical Sources II: Contribution of Starch Structure to Swelling and Pasting Properties. Carbohydr. Polym. 2005, 62, 25–34. [Google Scholar] [CrossRef]
- Li, Z.; Kong, X.; Zhou, X.; Zhong, K.; Zhou, S.; Liu, X. Characterization of Multi-Scale Structure and Thermal Properties of Indica Rice Starch with Different Amylose Contents. RSC Adv. 2016, 6, 107491–107497. [Google Scholar] [CrossRef]
- Charles, A.L.; Chang, Y.-H.; Ko, W.-C.; Sriroth, K.; Huang, T.-C. Some Physical and Chemical Properties of Starch Isolates of Cassava Genotypes. Starch-Stärke 2004, 56, 413–418. [Google Scholar] [CrossRef]
- Qadir, N.; Wani, I.A. In-Vitro Digestibility of Rice Starch and Factors Regulating Its Digestion Process: A Review. Carbohydr. Polym. 2022, 291, 119600. [Google Scholar] [CrossRef]
- Lu, P.; Li, X.; Janaswamy, S.; Chi, C.; Chen, L.; Wu, Y.; Liang, Y. Insights on the Structure and Digestibility of Sweet Potato Starch: Effect of Postharvest Storage of Sweet Potato Roots. Int. J. Biol. Macromol. 2020, 145, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, K.S.; Lim, S.-T. Digestibility of Legume Starches as Influenced by Their Physical and Structural Properties. Carbohydr. Polym. 2008, 71, 245–252. [Google Scholar] [CrossRef]
- Ai, Y.; Jane, J. Gelatinization and Rheological Properties of Starch. Starch-Stärke 2015, 67, 213–224. [Google Scholar] [CrossRef]
- Regina, A.; Bird, A.; Topping, D.; Bowden, S.; Freeman, J.; Barsby, T.; Kosar-Hashemi, B.; Li, Z.; Rahman, S.; Morell, M. High-Amylose Wheat Generated by RNA Interference Improves Indices of Large-Bowel Health in Rats. Proc. Natl. Acad. Sci. USA 2006, 103, 3546–3551. [Google Scholar] [CrossRef]
- Blazek, J.; Oprland, L. Pasting and Swelling Properties of Wheat Flour and Starch in Relation to Amylose Content. Carbohydr. Polym. 2008, 71, 380–387. [Google Scholar] [CrossRef]
- Wang, H.; Ratnayake, W.S. Physicochemical and Thermal Properties of Phaseolus vulgaris L. var. Great Northern Bean Starch. J. Food Sci. 2014, 79, C295–C300. [Google Scholar] [CrossRef]
- Karakelle, B.; Kian-Pour, N.; Toker, O.S.; Palabiyik, I. Effect of Process Conditions and Amylose/Amylopectin Ratio on the Pasting Behavior of Maize Starch: A Modeling Approach. J. Cereal Sci. 2020, 94, 102998. [Google Scholar] [CrossRef]
Sample Code * | Common Name | Sub Species | Types of Rice | Place of Origin | Morphological Properties of Grains | Length–Width Ratio of Grain | Weight (g) of 1000 Grains |
---|---|---|---|---|---|---|---|
R01 | Jasmine rice | Indica | Aromatic, non-glutinous | Kunming, Yunnan, China | White, thin, and long | 3.97 ± 0.3 a | 19.27 ± 0.15 e |
R02 | Waxy rice | Japonica | Glutinous | Mudanjiang, Heilongjiang, China | White, short, and round | 1.56 ± 0.08 g | 18.45 ± 0.23 f |
R03 | Black rice | Japonica | Non-glutinous | Mudanjiang, Heilongjiang, China | Black and long | 2.14 ± 0.08 f | 18.55 ± 0.26 f |
R04 | Hani terrace red rice | Indica | Non-glutinous | Honghe, Yunnan, China | Light red and long | 2.37 ± 0.15 e | 25.14 ± 0.15 a |
R05 | Youzhan rice | Indica | Non-glutinous | Dongguan, Guangdong, China | White, thin, and long | 3.71 ± 0.27 b | 13.67 ± 0.45 h |
R06 | Wuchang rice | Japonica | Non-glutinous | Harbin, Heilongjiang, China | White and short | 2.14 ± 0.1 f | 19.98 ± 0.12 d |
R07 | Wanniangong rice | Indica | Non-glutinous | Shangrao, Jiangxi, China | White, thin, and long | 3.55 ± 0.22 c | 17.11 ± 0.18 g |
R08 | Organic brown rice | Japonica | Non-glutinous | Suihua City, Heilongjiang, China | Beigh and short | 2.12 ± 0.07 f | 21.85 ± 0.07 c |
R09 | Organic waxy rice | Japonica | Glutinous | Chaoyang, Liaoning, China | White and short-round | 1.56 ± 0.07 g | 19.20 ± 0.17 e |
R10 | Organic wuchang rice | Japonica | Non-glutinous | Wuchang, Heilongjiang, China | White and long | 2.87 ± 0.11 d | 22.59 ± 0.20 b |
Samples | 2θ (Degree) | |||
---|---|---|---|---|
SOR01 | 15.099 | 17.184 | 17.875 | 22.974 |
SOR02 | 15.090 | 17.280 | 17.853 | 22.936 |
SOR03 | 15.265 | 17.321 | 18.131 | 23.275 |
SOR04 | 15.009 | 17.062 | 17.949 | 22.777 |
SOR05 | 15.194 | 17.091 | 18.012 | 23.005 |
SOR06 | 15.435 | 17.231 | 18.069 | 23.062 |
SOR07 | 15.377 | 17.290 | 18.116 | 23.181 |
SOR08 | 15.152 | 16.968 | 18.121 | 22.987 |
SOR09 | 15.065 | 17.219 | 17.849 | 22.891 |
SOR10 | 15.185 | 17.270 | 18.079 | 23.026 |
Sample Code | Moisture Content (%) | Color Characteristics | Amylose Content (%) | Crystallinity (%) | Swelling Power (g/100 g) | Water Solubility Index (g/100 g) | ||
---|---|---|---|---|---|---|---|---|
L* (Lightness) | a* (Redness) | b* (Yellowness) | ||||||
SOR01 | 9.25 ± 0.06 a | 98.76 ± 0.01 b | −1.01 ± 0.01 h | 1.06 ± 0.01 f | 19.84 ± 0.14 f | 34.13 ± 0.05 b | 36.47 ± 2.87 d | 9.8 ± 0.10 cd |
SOR02 | 8.91 ± 0.09 b | 98.56 ± 0.02 h | −0.16 ± 0.01 c | 0.81 ± 0.01 i | 1.67 ± 0.01 j | 28.04 ± 0.64 d | 51.20 ± 0.24 a | 0.00 e |
SOR03 | 4.44 ± 0.03 f | 94.66 ± 0.01 i | 0.86 ± 0.01 a | 6.14 ± 0.01 a | 26.57 ± 0.31 a | 33.1 ± 0.26 c | 32.61 ± 0.85 e | 17.71 ± 1.38 a |
SOR04 | 3.88 ± 0.02 g | 96.27 ± 0.03 h | 0.67 ± 0.01 b | 3.46 ± 0.02 b | 13.95 ± 0.02 h | 32.89 ± 0.83 c | 40.96 ± 1.83 b | 9.36 ± 1.09 d |
SOR05 | 5.67 ± 0.06 d | 98.23 ± 0.06 f | −0.37 ± 0.02 f | 1.43 ± 0.05 d | 23.54 ± 0.70 d | 25.33 ± 0.23 e | 38.87 ± 1.37 c | 10.93 ± 0.96 bc |
SOR06 | 5.96 ± 0.06 c | 98.45 ± 0.02 d | −0.24 ± 0.01 d | 1.02 ± 0.02 g | 21.68 ± 0.10 e | 23.82 ± 0.44 f | 34.74 ± 0.25 ed | 16.76 ± 0.10 b |
SOR07 | 6.00 ± 0.05 c | 98.35 ± 0.10 e | −0.16 ± 0.01 c | 1.07 ± 0.01 f | 19.09 ± 0.04 g | 28.32 ± 0.19 d | 41.13 ± 0.42 b | 10.02 ± 0.42 cd |
SOR08 | 4.72 ± 0.05 e | 98.13 ± 0.02 g | −0.53 ± 0.01 g | 2.83 ± 0.02 c | 25.67 ± 0.13 b | 27.73 ± 0.09 d | 27.69 ± 0.12 f | 21.36 ± 0.76 ab |
SOR09 | 5.91 ± 0.17 c | 98.47 ± 0.01 d | −0.22 ± 0.01 d | 0.96 ± 0.02 h | 2.55 ± 0.34 i | 39.65 ± 0.33 a | 51.32 ± 0.3 a | 0.00 e |
SOR10 | 3.67 ± 0.10 h | 99.15 ± 0.02 a | −0.29 ± 0.01 e | 1.38 ± 0.03 e | 25.08 ± 0.11 c | 34.08 ± 0.09 b | 34.35 ± 0.61 ed | 16.93 ± 1.05 b |
Sample Code | PT (°C) | PV (cP) | TV (cP) | BD (cP) | FV (cP) | SB (cP) | Peak Time (Min) |
---|---|---|---|---|---|---|---|
SOR01 | 76.78 ± 0.03 c | 8402 ± 96 b | 1915 ± 11 g | 6487 ± 87 a | 3145 ± 6 g | 1230 ± 17 g | 4.73 ± 0 g |
SOR02 | 73.40 ± 0.44 e | 3603 ± 61 i | 1626 ± 27 i | 1977 ± 36 h | 2251 ± 45 h | 625 ± 22 h | 3.98 ± 0.04 i |
SOR03 | 74.70 ± 0.48 d | 7653 ± 187 c | 5215 ± 94 a | 2438 ± 160 g | 8138 ± 108 a | 2923 ± 15 a | 5.8 ± 0 a |
SOR04 | 83.40 ± 0.48 a | 4665 ± 23 g | 2877 ± 23 e | 1789 ± 36 i | 4764 ± 34 e | 1887 ± 13 d | 5.73 ± 0 b |
SOR05 | 78.83 ± 0.40 b | 7455 ± 71 d | 2044 ± 34 f | 5412 ± 77 c | 3386 ± 29 f | 1343 ± 34 f | 5.07 ± 0.07 f |
SOR06 | 74.15 ± 0.48 d | 7210 ± 65 e | 4385 ± 32 b | 2825 ± 91 e | 6815 ± 6 c | 2430 ± 32 c | 5.45 ± 0.04 d |
SOR07 | 78.25 ± 0.61 b | 8998 ± 34 a | 4070 ± 38 d | 4928 ± 8 d | 5697 ± 46 d | 1627 ± 19 e | 5.18 ± 0.04 e |
SOR08 | 72.53 ± 0.51 f | 6814 ± 207 f | 4202 ± 120 c | 2612 ± 88 f | 6958 ± 105 b | 2755 ± 15 b | 5.58 ± 0.04 c |
SOR09 | 69.43 ± 0.46 h | 4208 ± 49 h | 1560 ± 2 i | 2648 ± 51 f | 2204 ± 10 h | 644 ± 8 h | 3.4 ± 0 j |
SOR10 | 71.28 ± 0.08 g | 7675 ± 39 c | 1718 ± 11 h | 5957 ± 29 b | 3340 ± 16 f | 1622 ± 7 e | 4.13 ± 0 h |
Sample Code | To (°C) | Tp (°C) | Tc (°C) | ΔH (J/g) | RDS (%) | SDS (%) | RS (%) |
---|---|---|---|---|---|---|---|
SOR01 | 61.77 ± 0.46 c | 67.69 ± 0.33 b | 74.44 ± 0.33 c | 10.88 ± 0.62 b | 47.63 ± 0.68 d | 52.23 ± 0.68 d | 0.13 ± 0.03 e |
SOR02 | 58.83 ± 0.24 d | 67.58 ± 0.12 b | 78.81 ± 0.27 b | 11.13 ± 0.82 b | 74.32 ± 0.45 a | 23.41 ± 0.37 g | 2.27 ± 0.08 a |
SOR03 | 55.85 ± 0.55 g | 62.47 ± 0.44 de | 69.06 ± 0.14 ef | 10.89 ± 0.70 b | 39.80 ± 0.32 g | 59.48 ± 0.24 a | 0.72 ± 0.11 d |
SOR04 | 70.61 ± 0.48 a | 75.61 ± 0.15 a | 81.04 ± 0.41 a | 13.91 ± 0.69 a | 54.39 ± 0.65 c | 44.97 ± 0.66 e | 0.64 ± 0.01 d |
SOR05 | 61.37 ± 0.47 c | 67.90 ± 0.35 b | 74.11 ± 0.24 c | 9.14 ± 0.48 c | 43.63 ± 0.83 e | 54.92 ± 0.83 c | 1.46 ± 0.16 b |
SOR06 | 56.03 ± 0.22 g | 61.86 ± 0.64 ef | 69.48 ± 0.42 e | 9.37 ± 0.24 c | 44.13 ± 1.01 e | 55.15 ± 0.97 c | 0.72 ± 0.05 d |
SOR07 | 63.03 ± 0.33 b | 67.95 ± 0.16 b | 73.36 ± 0.07 d | 7.63 ± 0.19 d | 47.34 ± 1.10 d | 51.54 ± 1.14 d | 1.12 ± 0.08 c |
SOR08 | 55.65 ± 0.03 g | 61.52 ± 0.49 f | 67.89 ± 0.45 g | 6.96 ± 0.13 ed | 41.28 ± 1.23 fg | 57.58 ± 1.13 b | 1.14 ± 0.11 c |
SOR09 | 56.89 ± 0.19 f | 64.24 ± 0.24 c | 74.23 ± 0.80 c | 8.63 ± 0.06 c | 72.43 ± 1.65 b | 25.27 ± 1.67 f | 2.3 ± 0.05 a |
SOR10 | 57.95 ± 0.25 e | 63.06 ± 0.41 d | 68.71 ± 0.07 f | 6.74 ± 0.10 e | 41.63 ± 1.10 f | 57.03 ± 1.08 b | 1.33 ± 0.04 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Zhang, X.; Du, B.; Xu, B. Morphological, Structural, Thermal, Pasting, and Digestive Properties of Starches Isolated from Different Varieties of Rice: A Systematic Comparative Study. Foods 2023, 12, 4492. https://doi.org/10.3390/foods12244492
Lin X, Zhang X, Du B, Xu B. Morphological, Structural, Thermal, Pasting, and Digestive Properties of Starches Isolated from Different Varieties of Rice: A Systematic Comparative Study. Foods. 2023; 12(24):4492. https://doi.org/10.3390/foods12244492
Chicago/Turabian StyleLin, Xiaojun, Xuanyi Zhang, Bin Du, and Baojun Xu. 2023. "Morphological, Structural, Thermal, Pasting, and Digestive Properties of Starches Isolated from Different Varieties of Rice: A Systematic Comparative Study" Foods 12, no. 24: 4492. https://doi.org/10.3390/foods12244492
APA StyleLin, X., Zhang, X., Du, B., & Xu, B. (2023). Morphological, Structural, Thermal, Pasting, and Digestive Properties of Starches Isolated from Different Varieties of Rice: A Systematic Comparative Study. Foods, 12(24), 4492. https://doi.org/10.3390/foods12244492