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Abstract: In this study, the antioxidant, antimicrobial, mechanical, optical, and barrier attributes of
Solanum lycocarpum starch bio-based edible films incorporated with a phenolic extract from jaboticaba
peel were investigated. Aiming to determine the effect of the polymers and the phenolic extract on
the properties of the films, a three-factor simplex-lattice design was employed, and the formulation
optimization was based on the produced films’ antioxidant potential. The optimized formulation
of the starch-PEJP film showed a reddish-pink color with no cracks or bubbles and 91% antioxidant
activity against DPPH radical. The optimized starch-PEJP film showed good transparency properties
and a potent UV-blocking action, presenting color variation as a function of the pH values. The
optimized film was also considerably resistant and highly flexible, showing a water vapor perme-
ability of 3.28 × 10−6 g m−1 h−1 Pa−1. The microbial permeation test and antimicrobial evaluation
demonstrated that the optimized starch-PEJP film avoided microbial contamination and was potent
in reducing the growth of Escherichia coli, Staphylococcus aureus, and Salmonella spp. In summary,
the active starch-PEJP film showed great potential as an environmentally friendly and halochromic
material, presenting antioxidant and antimicrobial properties and high UV-protecting activity.

Keywords: bioactive film; active packaging; UV-absorber; phenolic extract

1. Introduction

The current world demand for improvement in food quality and safety and the con-
comitant increased concern about the increase in plastic waste production has attracted
interest towards the development of eco-friendly packaging presenting low environmen-
tal charge in their whole life cycle [1,2]. Recently, native and modified starches from
nonconventional sources have become a promising alternative to materials to produce
environmentally friendly packaging materials and edible coatings. The main advantage
of these starches is related to avoiding competition with the food production chain since
they are not commonly used in human nutrition. They are also attractive due to their easy
manipulation, low cost, biodegradability, and nontoxicity [3,4]. In the last decade, several
studies have been developed aiming to evaluate the possible use of these nonconventional
starch sources as food packaging able to: (i) avoid weight loss and oxidation [5,6]; (ii) im-
prove the nutritional quality, sensory attributes, and shelf-life of perishable foods [5,7–9];
(iii) evaluate and monitor the freshness of food products [10,11]; and (iv) inhibit or reduce
the microbial spoilage in different food matrices [1,2,12].

Amongst the nonconventional starch sources, Solanum lycocarpum fruit is an excellent
source for starch obtention. S. lycocarpum is a common and abundant plant in the Brazilian
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Cerrado that presents a high resistance to hydric and climatic stress, surviving and fructify-
ing along the year [13]. Its fruits can vary in size, weighing between 400 g and 900 g, and are
not commonly used for human nutrition. This makes this plant a desirable target for starch
isolation to develop eco-friendly materials, such as packaging or edible coatings and films.

Currently, starch films have been enriched with antioxidant, antimicrobial, and color
change indicators to improve the active properties of these films, monitor the freshness,
and prolong the shelf-life of perishable products [3,4,14]. Additionally, the possibility of
developing innovative smart packaging to monitor the food condition supports the trends in
sustainability by reducing food waste and losses in the food supply chain. However, many
synthetic antioxidants, antimicrobials, and color indicators can harm human health or even
pollutants. Therefore, natural additives are preferred over the former synthetic molecules
concerning food safety and consumers’ health. Polyphenolic compounds stand out as pow-
erful natural antioxidants due to their reducing properties useful in free radical scavenging.
These compounds can also have UV light protection properties and antimicrobial action,
which can delay oxidative processes and prevent or diminish microbial food spoilage [2,15].

Jaboticaba (Plinia cauliflora) is a Brazilian fruit with a purple peel that is considered a
residue of the processing of wine and juice industries [11]. Among the various phenolic
extracts reported in the literature, the extract of jaboticaba peel figures as a rich source of
polyphenolic compounds with potent antioxidant and antimicrobial activity [9,10]. Thus,
using jaboticaba peel as a source of phenolic compounds has the advantage of reutilizing
an agro-industrial residue to develop low-cost and highly bioactive packaging materials or
edible films.

Considering the complexity of optimizing film/coating formulations containing more
than one ingredient, experimental mixture designs have been employed to reduce the
time and costs associated with the film production process [16–18]. Amongst the most
common mixture designs, the simplex-lattice design is a technique that allows obtaining a
predictive mathematical representation of the relationship between mixture factors and
responses with fewer observations, being possible to determine the optimal conditions for
a formulation with high accuracy, quality, and low time and cost [19–21]. Compared to the
conventional change of the one-factor-at-a-time approach, the use of mixture design has as
the main advantage the possibility of evaluating not only the impact of the isolated variable
on the response, but also the interactions between the components of the mixture [19].

Therefore, this study aimed to develop starch bio-based materials incorporated with a
phenolic extract from jaboticaba peel (PEJP) as an active component. The film composition
was optimized using a three-factor simplex-lattice mixture design. The optimized formu-
lation was characterized by its morphological, physical, optical, mechanical, antioxidant,
barrier, pH responsivity, and antimicrobial properties.

2. Materials and Methods
2.1. Materials

Citric acid (purity ≥ 99.5%, ACS reagent), glycerol (purity ≥ 99.5%, ACS reagent),
nitric acid (purity 70%, ACS reagent), ethanol (purity 95%, ACS reagent), methanol (purity
99.8%, ACS reagent), and hydrochloric acid (purity 37%, ACS reagent) were purchased from
Dinâmica Contemporânea Ltd.a. (Itaiatuba, SP, Brazil). Sodium chloride (purity ≥ 99%,
ACS reagent), anhydrous calcium chloride (purity ≥ 97%, ACS reagent), and sodium
hydroxide (pellets, purity ≥ 97%, ACS reagent) were purchased from Neon (Suzano, SP,
Brazil). Potassium bromide (ref. 221864, FTIR grade), 2,2-diphenyl-1-picrylhydrazyl (ref.
D9132), nylon membrane (ref. WHA7402002), qualitative filter paper (ref. WHA1001325),
and cyanidin-3-glycoside chloride (ref. PHL89616) were purchased from Sigma Aldrich
Chemical Co. (St. Louis, MO, USA). All other chemicals used were of analytical grade,
obtained from accredited companies, and were used as received.
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2.2. Starch Isolation

The S. lycocarpum unripe fruits were collected in Cristianópolis-GO, Brazil (17◦11′58′′ S
and 48◦42′12′′ W). The isolation of the starch from the fruits was performed in a sequential
procedure to obtain insoluble (IS) and soluble starch (SS), following the methodologies
described by Pascoal et al. [13] and Rodrigues et al. [22]. Firstly, unripe S. lycocarpum fruits
were washed, dehulled, and the seeds were removed. The pulp (20 g) was mixed with
0.8% citric acid solution (100 mL) and milled in a blender (model TE-631/4, Piracicaba, SP,
Brazil) for 5 min. The resultant dispersion was filtered through a sieve of 500 µm, and the
solid residue was washed twice with 50 mL of water. The filtrate was left to decant for
12 h at 4 ◦C, and the IS was separated by centrifugation at 4 ◦C and 4000× g for 10 min
(Centrifuge model 5804R, Eppendorf, Hamburg, Germany).

The filtration residue was sequentially dispersed in 100 mL of water acidified with
nitric acid (2 mol L−1) to pH 1.0. The dispersion was incubated at 85 ◦C (±5 ◦C) for
30 min, under stirring. Then, the mixture was cooled at room temperature and filtered
using a nylon membrane. The starch was isolated by adding 200 mL of cold ethanol to
the dispersion. The system was incubated at 4 ◦C for 12 h, and the precipitated starch
was separated by centrifugation at 4 ◦C and 4000× g for 10 min (Centrifuge model 5804R,
Eppendorf, Hamburg, Germany). The isolated starches (IS and SS) were dried at room
temperature (25 ± 2 ◦C) and stored in airtight vials.

2.3. Phenolic Extraction from Jaboticaba Peel

PEJP was prepared according to Montes et al. [23], using an acidic ethanol solution.
The ripe fruits were harvested at Jaboticabal Farm & Winery, located in Nova Fátima,
Hidrolândia-GO, Brazil (16◦55′32.35′′ S and 49◦21′39.76′′ W). The collected fruits were
washed and pulped using an electric pulper (Itametal, Bonina 0.25 DF, Brazil). The peels
were manually separated from the seeds and milled (Tecnal blender model TE-631/4,
Piracicaba, SP, Brazil) in a solution of acidic ethanol (acidified with 2.0 mol L−1 HCl to
pH 4.0) for 2 min, then macerated for 9 h at 4 ◦C. After maceration, the dispersion was
filtered using qualitative filter paper. The filtrate was stored in amber vials at 4 ◦C. The
phenolic [11] and anthocyanin contents [12] were determined for the later incorporation of
the extract in the starch films. Anthocyanin content was calculated as cyanidin-3-glycoside
(C3G, MW = 449.2 g mol−1). The absorbance of the diluted sample (A) was calculated
according to Equation (1):

A = ((A520 − A700)pH1.0) − (A520 − A700)pH4.5) (1)

where A520 is the sample absorption at 520 nm and A700 is the sample absorption at 700 nm
(UV-Vis Spectrophotometer Model 700PLUS, Femto, São Paulo, SP, Brazil).

The total anthocyanin content of the sample was calculated using Equation (2):

Anthocyanin (C3G) = (A . MW . DF . 1000)/(ε . MP) (2)

where A is de absorbance of the diluted sample (obtained from Equation (1)), MW is the
molecular weight of the cyanidin-3-glycoside (C3G), DF is the dilution factor, ε is the
coefficient of molar extinction of the C3G (26,900 L mol−1 cm−1), and MP is the molar
pathway (1 cm).

2.4. Preparation of the Starch-PEJP Films

The starch-based films were produced as described by Prates and Ascheri [24], varying
the content of polymers and PEJP. A three-factor simplex-lattice design augmented with
interior points and overall centroid was used to evaluate the influence of the type of starch
and PEJP on the antioxidant potential of starch-PEJP films (Table 1). The design was
generated using the software Statistica 10.0 (Statsoft Inc., Tulsa, OK, USA, 1997).
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Table 1. Mixture design and DPPH scavenging activity for the different formulations of starch-
PEJP films.

Tests
Film Components 1 Antioxidant Activity

(% DPPH Scavenging) 2
SS (%) IS (%) PEJP (µL)

E1 5.0 0.5 0 0
E2 1 2 0 8.54
E3 1 0.5 500 86.93
E4 3 1.25 0 0
E5 3 0.5 250 37.99
E6 1 1.25 250 86.72
E7 2.3 0.95 85 0
E8 3.7 0.75 85 10.12
E9 1.7 1.5 335 54.78

E10 1.7 0.75 165 14.01
1 SS = soluble starch from S. lycocarpum; IS = insoluble starch from S. lycocarpum; PEJP = phenolic extract from
jaboticaba peel. 2 Results are presented as the mean of three determinations.

For the film production, SS or IS was firstly dispersed in distilled water and autoclaved
(Phoenix Luferco, model AV 50/2, Araraquara, SP, Brazil) at 121 ◦C for 20 min (1 Kgf cm−2).
After autoclaving, the solution was cooled at room temperature (25 ◦C), and the required
content of PEJP was added to the system. Glycerol (0.5% (w/v)) was added to all formula-
tions as a plasticizing agent. The filmogenic dispersion was homogenized under magnetic
stirring for 10 min, gently poured on acrylic molds, and left to dry at room temperature
until complete solvent evaporation. The dried films were detached from the molds and
stored in plastic vials for further analysis.

2.5. Characterization of the Starch-PEJP Films
2.5.1. Antioxidant Activity against DPPH Radical

The antioxidant activity of the starch-PEJP films was determined using an adapted
methodology from Brand-Williams et al. [25]. Samples of 2 cm2 were immersed in 1.5 mL
of DPPH (2,2-diphenyl-1-picrylhydrazyl) solution (0.15 mmol L−1 in 80% v/v methanol)
and incubated for 60 min at room temperature (25 ◦C) under orbital stirring. The decrease
in the absorbance of the resulting solution was monitored at 520 nm in a UV-Visible
spectrophotometer (SP-220, Biospectro, São Paulo, BR). All measurements were performed
in triplicates. The antioxidant activity was calculated as a percentage of DPPH radical
scavenging using Equation (3):

DPPH scavenging (%) = ((As − Aa)/As) . 100

where As is the absorbance of the standard DPPH solution at 520 nm and Aa is the ab-
sorbance of the mixture reaction containing the tested samples at 520 nm.

2.5.2. Scanning Electron Microscopy (SEM)

The surface and cross-sectional morphologies of the optimized starch-PEJP film were
visualized using a JEOL JSM-IT300 scanning electron microscope (Jeol Ltd., Welwyn Gar-
den City, Hertfordshire, UK). The samples were mounted on an aluminum stub using
carbon-coated double-sided adhesive tape, sputter-coated with a layer of gold under
vacuum (Coating system model DESK V, Denton Vacuum, Moorestown, NJ, USA), and
examined using an accelerating voltage of 5 kV and a magnification varying from 500 to
2000 times. SEM experiments and analyses were performed in the Laboratório Multiusuário
de Microscopia de Alta Resolução (LabMic) at the Federal University of Goias, GO, Brazil.

2.5.3. Fourier Transform Infrared (FTIR) Spectroscopy

FTIR spectra of the isolated starches and the optimized starch-PEJP film were acquired on
a PerkinElmer FTIR spectrometer (Spectrum 400, PerkinElmer, Inc., Waltham, MA, USA). For
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the test, samples were milled and mixed with potassium bromide (KBr), and the pellets were
analyzed in the range of 4000–400 cm−1 (resolution of 2 cm−1), with 16 scans recorded [26].

2.5.4. Mechanical Properties

The mechanical properties such as tensile strength, elongation at break, and Young’s
Modulus of the optimized starch-PEJP films were measured according to ASTM D882-02
standard [27], using a Lloyd texture analyzer (model TA1, Lloyd/Ametek, Largo, FL, USA).
Starch-PEJP films with uniform thickness were cut into 50 × 200 mm strips using a sharp
stainless cutter, and tests were performed using an initial grip separation of 100 mm and a
crosshead speed of 1 mm min−1. The thickness of the films was determined using a digital
micrometer (Mitutoyo Corp., Tokyo, Japan) at 10 random positions in the sample.

2.5.5. Thermal Properties

Thermal properties of the optimized starch-PEJP films were accessed by Thermogravi-
metric Analysis (TGA) using a TGA/DSC equipment (Mettler Toledo, Model 822e, Barueri,
SP, Brazil). The analysis was conducted under a nitrogen atmosphere at a heating rate of
10 ◦C min−1. Samples of approximately 10 mg of the starch-PEJP film were cut as small
pieces, placed into an aluminum pan, and heated from 30 ◦C to 500 ◦C. The TGA/DTG
analysis was performed in the Laboratório de Métodos de Extração e Separação (LAMES)
at the Federal University of Goias, GO, Brazil.

2.5.6. Optical Properties

The light barrier properties of the starch-PEJP film against visible and ultraviolet
light were determined by measuring the sample absorbance at a wavelength between 200
and 800 nm using a UV-Visible spectrophotometer (Model 700PLUS, Femto, São Paulo,
SP, Brazil). Samples with uniform thickness were cut into 1 × 4 cm strips and placed in
the spectrophotometer test cell, and the spectrum was recorded using air as a standard
reference. For the opacity determination [28], the absorbance was checked at 600 nm, and
the opacity of the starch-PEJP film was calculated using Equation (3):

Opacity (A.mm−1) = A600/X (3)

where, A600 is the absorbance value at 600 nm, and X is the thickness of the starch-PEJP
film (mm).

For the transparency tests [29], the transmittance was checked at 600 nm, and the
transparency of the films was determined using Equation (4):

Transparency (%.mm−1) = logT600/X (4)

where, T600 is the percentage of transmittance at 600 nm, and X is the film thickness (mm).

2.5.7. Color Evaluation at Different pH Values

To evaluate the halochromic potential of the starch-PEJP film, 25 µL of different pH
solutions were dropped into the film’s surface, and the color changes were registered after
15 min, using a digital camera (Samsung NX 3000). In the tests using acid pH it was used a
10 mmol·L−1 HCl solution for achieve pH = 2.0 and 0.1 mmol·L−1 HCL solution for pH 4.0.
Milli-Q water was used as the standard for neutral pH (pH = 7.0) and 0.1 mmol·L−1 NaOH
solution was the standard for alkaline pH (pH = 9.0).

2.5.8. Water Solubility

To evaluate the water solubility of the starch-PEJP film, it was used an adapted
methodology from Rodrigues et al. [30]. Starch-PEJP samples of 2 cm2 were dried at 105 ◦C
for 24 h and weighed. The dried films were immersed in 30 mL of distilled water and
stirred at room temperature for 24 h. The flasks containing the film were filtered using
a qualitative filter paper (Whatman, WHA1001325, Sigma Aldrich), the residues were
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dried at 105 ◦C for 24 h, and their final weight was determined. The water solubility was
expressed as percentage.

2.5.9. Water Vapor Permeability (WVP)

The water vapor permeability (WVP) of the starch-PEJP films was measured gravimet-
rically according to the methodology described by Ghasemlou et al. [31]. The starch-PEJP
films (discs of 5.4 cm2) were placed on the top of glass cups, filled with 25 g of anhydrous
calcium chloride (0% RH), and the edges were covered with parafilm® M to guarantee
sealing. After this, each glass cup was placed in a desiccator maintained at 75% RH with a
sodium-chloride-saturated solution (LabSynth, Diadema, São Paulo, Brazil) and stored at
room temperature (25 ◦C ± 2 ◦C). The permeability of the starch-PEJP films was determined
by linear regression of the constant mass transfer region between weight gain (g) and time (h)
which was correlated with the exposed area to determine WVP, as described in Equation (5):

WVP (g m−1 h−1 Pa−1) = (∆m/A.∆t) . (X/∆p) (5)

where ∆m/∆t is the slope of the weight-versus-time plot (g h−1), X is the average film
thickness (m), A is the area of the exposed film surface (m2), and ∆p is the water vapor
pressure difference between the two sides of the film (1753.55 Pa). WVP was measured for
four replicated samples.

2.5.10. Antimicrobial Tests

The capacity to avoid microbial infiltration was tested according to the methodology
described by Rodrigues et al. [30]. The starch-PEJP films were cut into discs of 1.5 cm2 (test
area of 1.4 cm2), placed on the top of flasks containing 2 mL of nutrient Broth (NB, Kasvi,
São José dos Pinhais, PR, Brazil), and covered the edges with parafilm® M to guarantee
sealing. The flasks were left in an open environment at room temperature (25 ◦C) for
10 days. Open flasks were used as a positive control, and flasks closed with a silicon
stopper were used as a negative control. The occurrence of turbidity of the nutrient broth
in any flask was recorded as microbial contamination.

The antimicrobial activity of the starch-PEJP films was evaluated using the agar
diffusion method described by Agarwal et al. [32], with some modifications. Spread plates
of BHI agar (Kasvi, São José dos Pinhais, Paraná, Brazil) were inoculated with 10 µL
(108 CFU mL−1) of different microorganisms (Escherichia coli EPEC CDC O55, Staphylococcus
aureus ATCC 13565, and Salmonella spp. ATCC S64). Then, starch-PEJP films were cut
into 4.0 × 1.0 cm strips and laid onto the inoculated plate’s surface. Next, the plate was
incubated at 37 ◦C for 24 h. Antimicrobial efficiency was determined in four replicates by
evaluating halo formation around the films and observing microbial growth density.

2.6. Statistical Analysis

The three-factor simplex-lattice design results were analyzed by regression analysis
coupled to response surface methodology (RSM) using the software Statistica 10.0 (Statsoft
Inc., Tulsa, OK, USA, 1997). All measurements were performed at least in triplicate. Results
were expressed as mean ± standard deviation (X ± SD). The model was simplified by
dropping terms that were not statistically significant (p > 0.05) by ANOVA. The effect
size of each variable and interaction on the antioxidant activity of the produced film was
represented using a Pareto chart. The Pareto chart aims to identify the vital few variables
that strongly contribute to the response. Pareto rules say that 10% to 20% of the tested
elements will determine 60% to 80% of the response. These variables are essential items of
concern and must be carefully considered. The desirability function was performed, and
the optimum formulation was set to maximal antioxidant activity.
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3. Results and Discussion
3.1. Production of the Starch-PEJP Films

Before the production of the starch-PEJP films, PEJP was characterized regarding the
content of phenolic compounds and anthocyanin, and the results evidenced a phenolic
content of 110.4 (± 0.2) µg GAE mL−1 of PEJP and an anthocyanin concentration of 103.2
(± 1.2) µg mL−1. SS and IS were evaluated regarding their antioxidant activity, and results
showed 25.2% of DPPH scavenging activity for IS and 78.2% for SS.

To determine the best proportion of S. lycocarpum starches (IS and SS) and PEJP to
produce a film with maximum antioxidant activity, 10 formulations were predicted by a
three-factor simplex-lattice design. The starch-PEJP films generally presented a regular and
uniform appearance without cracks or bubbles. The results of the antioxidant activity of
the prepared starch-PEJP films are shown in Table 1.

As can be observed in Table 1, the type of starch and the content of PEJP significantly
interfered with the antioxidant activity of the starch-PEJP films, being observed values from
0 to 86.93% of DPPH discoloration. Results from multivariate analysis evidenced that the
most critical component that affected the films’ antioxidant potential was the proportion of
PEJP (Figure 1). In general, the antioxidant activity of the films increased when increasing
the proportion of PEJP. This was expected due to the high content of phenolics, especially
anthocyanin molecules, observed in this extract [33].
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However, not only the content of PEJP contributed to the antioxidant potential of
the starch-PEJP films, but also the content of SS and the combined effect of PEJP/SS
improved the scavenging potential of the films against DPPH radical (Figure 2). The ability
of phenolics to donate protons or produce stable intermediary radicals is the primary
explanation for the improved antioxidant potential of PEJP [34]. On the other hand, the
antioxidant activity showed by SS also contributed to the antioxidant potential evoked
by the starch-PEJP films. The higher antioxidant activity of this starch may be due to the
formation of saccharic acid residues in the anomeric regions of the starch as a result of the
isolation process using nitric acid at high temperature.
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Figure 2. Two-dimensional response surface plot depicting the effect of the variables (SS, IS, and
PEJP) on the antioxidant potential of the starch-PEJP films.

3.2. Optimization of the Starch-PEJP Film Formulation

The optimization of the formulation to achieve the maximum antioxidant activity was
performed within the composition constraint using the desirability function. The optimal
starch-PEJP composition predicted by the model included 1% IS, 0.87% SS and 375 µL of
PEJP, with a projected antioxidant activity of 90.83% (d = 0.99). The experimental validation
evidenced that the starch-PEJP film presented an antioxidant activity of 91.01% (±0.5), with
a thickness of 81.8 µm (±0.6). In this optimized formulation, the starch-PEJP film showed a
reddish-pink color, a regular and uniform appearance, and no cracks or bubbles (Figure 3).

Foods 2023, 12, x FOR PEER REVIEW 8 of 19 
 

 

However, not only the content of PEJP contributed to the antioxidant potential of the 
starch-PEJP films, but also the content of SS and the combined effect of PEJP/SS improved 
the scavenging potential of the films against DPPH radical (Figure 2). The ability of 
phenolics to donate protons or produce stable intermediary radicals is the primary 
explanation for the improved antioxidant potential of PEJP [34]. On the other hand, the 
antioxidant activity showed by SS also contributed to the antioxidant potential evoked by 
the starch-PEJP films. The higher antioxidant activity of this starch may be due to the 
formation of saccharic acid residues in the anomeric regions of the starch as a result of the 
isolation process using nitric acid at high temperature. 

 
Figure 2. Two-dimensional response surface plot depicting the effect of the variables (SS, IS, and 
PEJP) on the antioxidant potential of the starch-PEJP films. 

3.2. Optimization of the Starch-PEJP Film Formulation 
The optimization of the formulation to achieve the maximum antioxidant activity 

was performed within the composition constraint using the desirability function. The 
optimal starch-PEJP composition predicted by the model included 1% IS, 0.87% SS and 
375 μL of PEJP, with a projected antioxidant activity of 90.83% (d = 0.99). The experimental 
validation evidenced that the starch-PEJP film presented an antioxidant activity of 91.01% 
(±0.5), with a thickness of 81.8 μm (±0.6). In this optimized formulation, the starch-PEJP 
film showed a reddish-pink color, a regular and uniform appearance, and no cracks or 
bubbles (Figure 3). 

 
Figure 3. Macroscopic appearance of the optimized starch-PEJP film formulation. Figure 3. Macroscopic appearance of the optimized starch-PEJP film formulation.

3.3. Characterization of the Optimized Starch-PEJP Film
3.3.1. Fourier Transform Infrared (FTIR) Spectroscopy

FTIR analysis was used to characterize the SS and IS and evaluate the interactions
between the polymers and PEJP in the optimized formulation of the starch-PEJP film.
The FTIR spectra of SS and IS (Figure 4a) showed typical bands of amylaceous materials,
with the presence of a strong broad band in the region of 3600–300 cm−2 assigned to the
stretching of -OH groups, a peak around 2940–2910 cm−1 related to the vibration of -CH
bonds from glucose, and a peak in the region of 1647 cm−1 assigned to scissors vibrations
of hydroxyl groups from hydration water. [13,35]. The chemical modification in the SS
structure was evidenced in FTIR analysis (Figure 4a) by the presence of a band at 1734 cm−1,
ascribed to the C=O stretching of carboxylic acid, which is absent in the FTIR spectrum of IS.
However, the formation of saccharic acid in the anomeric regions of the starch molecule did
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not impair the backbone structure of the starch molecule, with typical peaks being observed
in the region of 1200–800 cm−1 from both starches, SS and IS. This region is referred to as a
fingerprint region for polysaccharides, presenting bands related to the stretching vibrations
of C-O-C and C-O-H from glycosidic linkages [13,36].
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From the FTIR spectrum of the optimized formulation for the starch-PEJP films
(Figure 4b), it is possible to suggest the occurrence of an interaction at the molecular
level between IS and SS, evidenced by the changes in the band at 3400 cm−1 observed in
the native starches (Figure 4a), which became sharper and shifted to a lower wavenumber
(3287 cm−1) in the produced film (Figure 4b). These alterations indicate that besides the
presence of a different content of entrapped water, there is also an enhancement of the
hydrogen interactions between the starch polymers, phenolic compounds, and even glyc-
erol (as a plasticizer) [36–38]. In addition, the bands observed at 1151 cm−1 and 1076 cm−1

(Figure 4b) confirm the presence of phenolic compounds from PEJP, mainly anthocyanins
such as cyanidin and delphinidin [33].

3.3.2. Scanning Electron Microscopy

SEM analysis was used to evaluate the surface and cross-sectional morphology of the
optimized formulation of the starch-PEJP film (Figure 5).
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The produced film presented, in general, a homogeneous surface (Figure 5a), with
some irregularities associated with the drying stress, which may be caused by the stress
induced in the polymer chains upon solvent evaporation. On the other hand, the cross-
sectional analysis of the starch-PEJP coating (Figure 5b) evidenced a compact, soft and
uniform structure without vesicles or pores. These results suggest that PEJP was compatible
with the other polymer components (IS and SS) and plasticizer (glycerol), resulting in a
cohesive and stable three-dimensional matrix.
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3.3.3. Optical Properties

Despite the reddish-pink color observed in the optimized starch-PEJP film, it presented
good transparency to visible light (Figure 3, Table 2) with a low opacity value in the visible
spectrum (Table 2). High transparency values are associated with great homogeneity of
the interactions between the compounds that constitute the polymer matrix, which was
already confirmed by the structural analysis through SEM (Figure 5). In addition, the
opacity of matrices used as food coating can contribute to avoiding food deterioration
caused by exposure to visible and ultraviolet light, protecting the food against nutrient
losses, discoloration, and development of off-flavors [5,29,39].

Table 2. Properties of the starch-PEJP compared to other similar starch bio-based films and coatings.

Properties Optimized Starch-PEJP
Film 1

Starch Bio-Based Films
and/or

Coatings with Phenolics
References

Transparency
(% mm−1) 75.1 ± 1.9 40–84.36 [39–42]

Opacity
(A mm−1) 7.5 ± 0.2 0.5–6.23 [3,14,29,40,43]

Water solubility
(%) 59.1 ± 0.8 4.2–66.3 [8,40,43–45]

Water vapor permeability
(g m−1 h−1 Pa−1) 3.28 ± 0.04 × 10−6 9.8 × 10−11–3.4 × 10−4 [2,15,36,46–48]

Tensile strength
(MPa) 16.3 ± 0.7 0.6–19.9 [8,14,41,49,50]

Elongation
(%) 79.7 ± 3.1 0.6–70.4 [8,14,39,40,50]

Young’s modulus
(MPa) 5.5 ± 0.9 1.23–43.4 [3,8,49,50]

1 Results were expressed as the mean of at least three determinations.

The presence of opacity in the starch-PEJP film may be an interesting property if
considering its use as a packaging for oxidizable foods. Similar values of transparency
and opacity were reported in other starch films and coatings containing phenolic extracts
(Table 2). This optical behavior could be attributed to the selective light absorption of
the polyphenols found in these extracts. However, not only the opacity at visible light
is mandatory, but also it is important to determine the light absorption profile of a food
package in the ultraviolet region (200–400 nm) since one of the desired characteristics of
covering materials is that it should protect food from the effects of ultraviolet radiation.

The results from the UV-blocking action of the starch-PEJP film showed a high ab-
sorption in the UV region (Figure 6), especially in the regions of UVC (200–290 nm) and
UVB (290–320 nm). These results can be explained due to the chemical structures of the
phenolic compounds found in PEJP, with the absorption profile being dependent on the
organization of the aromatic rings and positions of the hydroxyl groups in the phenolic
molecules [30]. Together with the already-mentioned antioxidant activity and the presence
of visible opacity, the high barrier to UV radiation showed by the starch-PEJP film makes
it a promising material to be used as a food covering since it contributes to the reduction
in the oxidative processes and, therefore, can improve or extend the shelf-life of food,
especially those oxidizable food products [3].
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3.3.4. Water Solubility

The water solubility of the optimized starch-PEJP film is shown in Table 2. Water
solubility is an essential parameter to be evaluated for materials used as food packaging
and covering since their resistance and integrity when in contact with water will determine
their final applicability as packaging or coating [26,44]. The desired value for the solubility
of a film will depend on its application or intended use. Hence, according to the results,
the starch-PEJP matrix can act as an edible coating or film package for foods and foodstuffs
with lower moisture content, with a special focus on oxidizable/perishable products.

3.3.5. Water Vapor Permeability (WVP)

The water vapor permeability is a key characteristic to measure the quality of food
packaging, enabling the determination the content of vapor molecules of water passing
through the film. The WVP values of starch-biobased films can widely vary depending
on the content of amylose and amylopectin of the starch used, the presence of chemical
modifications, and complexation with other polymers and/or plasticizers [15,48,51]. The
WVP of the starch-PEJP film is shown in Table 2, and the high WVP obtained is a result
of the film microstructure and composition. Despite the homogeneous microstructure
of the starch-PEJP film (Figure 5), the hydrophilic nature of the film network polymers
may have contributed to obtaining a less crystalline material with increased free volume
and molecular mobility, which favors the water movement between the film and the
surrounding environment.

Similar studies (Table 2) also confirmed that the WVP behavior of starch-based films
could be highly affected by the chemical properties of the starch and non-starch components
used in the formulation. Aaliya et al. [2] and Wang et al. [15] have reported that a higher
number of free hydroxyls and free glycerol in the film matrix can reduce the moisture
barrier of starch-based films. In addition, the maintenance of a crystalline structure in the
film matrix contributes to lowering the WVP values since the reduction in free volume and
molecular mobility of the film network contributes to increasing the water resistance [36].

3.3.6. Mechanical Properties

The mechanical properties of the optimized starch-PEJP film are shown in Table 2.
Results from tensile strength (16.3 MPa) were higher than for other starch-based films and
coatings, indicating that the starch-PEJP matrix is more resistant to tearing. Furthermore,
the starch-PEJP film also presented a higher elongation at break (79.7%) than other starch
bio-based films (Table 2). The elongation at break is a parameter that indicates the plastic
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behavior of the material. The high flexibility of the produced starch-PEJP film can be
explained by the combined effect of glycerol and the phenolic compounds acting together
as plasticizing agents, reducing the intermolecular forces between adjacent polymer chains
as well as increasing the mobility of polymer chains on the film matrix, thus making the
starch-PEJP film more extensible. The flexibility of the produced film was also confirmed
by the determination of Young’s modulus (5.5 MPa). Young’s modulus is an essential
parameter for measuring the stiffness of polymeric films, being observed a wide variation
in this value as a function of the film composition (Table 2). In general, the higher Young’s
modulus of the material, the stiffer this material is, with lower values indicating a film with
elastic properties. For the starch-PEJP film, the low value of Young’s modulus (Table 2)
suggested that the starch-PEJP is a soft material with a highly flexible matrix.

3.3.7. Thermal Properties

The thermal stability of the starch-PEJP film was evaluated by TGA analysis. Figure 7
shows the TGA and DTG thermograms of the starch-PEJP film, where it is possible to
observe three stages of degradation. In the first stage (70–100 ◦C), the descending trend of
the TGA curve is relatively gentle, and the mass loss observed (8.5%) could be attributed
to the volatilization of absorbed bounded water in the film and small molecules from
the polymeric matrix [21]. The second stage occurs between 160 and 270 ◦C (peak at
200 ◦C), corresponding to the decomposition of organic materials of low molecular weight,
such as glycerol and phenolic compounds. Additionally, at this temperature range, starch
depolymerization and internal reorganization can occur, leading to the glass transition
phenomenon, in which the polymer matrix changes from a hard to a soft feature [5].
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The sharp descending curve of the third weight loss stage (280–330 ◦C) indicates the
extensive degradation of the sample, with a weight loss of 48.9% being observed (Figure 7).
In this stage the total decomposition of the material occurs due to the disruption of adjacent
hydroxyl and glycosidic bonds between the polymers in the starch-PEJP film matrix, with
the oxidation and complete decomposition of organic matter [5]. Above 450 ◦C, an evident
stabilization of the TGA/DTG was observed, which was attributed to the endothermic
crystallization that leads to carbonization and ash formation [21]. In general, TGA results
indicated that the starch-PEJP film could withstand high temperatures, suggesting an
organized and stable film matrix.

3.3.8. Color Evaluation at Different pH Conditions

The color changing of starch-PEJP film at different pH values is shown in Figure 8. The
color variation is associated with anthocyanins found in the PEJP [33]. The more reddish-
pink color observed at acidic pH can be attributed to the conversion of the anthocyanin
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molecules to flavylium cations. The positive charge on the flavylium ion is delocalized
over the heterocyclic part of the molecule, and this delocalization is responsible for the
intensification of the reddish-pink color of the optimized starch-PEJP film [52,53].
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At pH 4.0, the optimized starch-PEJP film did not present color alteration, and at
pH 6.0, it was possible to observe a slight brownish tone starting to appear. This color
change can be ascribed to the conjugation of water molecules to the heterocycle structure
of the anthocyanin molecules and the increase in pH, which leads to a neutralization of the
positive charges and the formation of the colorless carbinol pseudo-base [7,54]. When the
pH value reached 9.0, the color of the starch-PEJP film changed from a reddish-pink to a
greenish tone, an event probably associated with the transformation of anthocyanins into
colored quinones and the methylation reaction on its aromatic ring [55].

In recent years, there has been growing interest in developing intelligent food pack-
aging to reduce food waste and enhance consumer safety. The possibility of developing a
smart coating of high sensitivity and safety that provides direct information without dam-
aging the package integrity just by optical/visual color changes is of great interest [11,44].
Therefore, the ability of the starch-PEJP film to change its color as a function of pH variation
allows its use as a natural indicator of the quality of foodstuffs with pH response of reac-
tions of deterioration or also acts in real-time monitoring of food freshness. Furthermore,
the straightforward interpretation of the response upon color change and the simplicity in
function and operation are advantages of this system using a natural indicator compared
to the commonly used electronic, electrochemical and enzymatic indicators [56].

3.3.9. Antimicrobial Permeation

Aiming to evaluate the ability of the optimized starch-PEJP film to avoid microbial
contamination and permeation, the microbial penetration was assessed, and the results are
shown in Figure 9. Microorganisms that could penetrate through the film matrix would
cause turbidity in the medium as a function of microbial growth. As can be observed
in Figure 9, the positive control test did not present any restriction to the penetration of
microorganisms from the environment to access the culture medium. Therefore, all flasks
showed microbial contamination after ten days of storage under environmental conditions.
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Considering the flasks covered with the starch-PEJP film, the results evidenced that the
coating could prevent the penetration of microorganisms into the medium, being observed
no visible microbial growth, and the maintenance of a transparent medium (Figure 9). This
result can be due to two reasons: (1) the starch-PEJP film is a cohesive matrix, providing
a physical barrier against microbial penetration; and (2) the intrinsic antimicrobial effect
of the phenolic compounds from PEJP could also contribute to avoiding the microbial
permeation. This is a very encouraging result for developing smart antimicrobial films with
improved mechanical properties through the combination of starch with other bioactive
compounds, which can be used as a food coating or packaging, reducing the primary
contamination and increasing the shelf-life of the product.

3.3.10. Antimicrobial Efficiency Assessment

Together with avoiding microbial permeation, the inhibition of microbial growth is a
desired feature for antimicrobial food packaging and coating materials [15]. To determine
the antimicrobial efficiency of the optimized starch-PEJP film, we evaluated the size of
the inhibitory region of food-derived bacteria, and the results are shown in Figure 10.
As can be observed, the films were more effective towards the Gram-positive bacterium
Staphylococcus aureus (Figure 10a) rather than the Gram-negative bacteria Escherichia coli
(Figure 10b) and Salmonella spp. (Figure 10c). This antimicrobial behavior can be ascribed
to the intrinsic tolerance of these different groups of microorganisms and the sensitivity of
the molecules found in the PEJP.
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The tolerance against antimicrobial molecules is strongly correlated with the structural
differences between these two types of bacteria. It is possible that the absence of a lipid
membrane in the cell wall of the Gram-positive bacteria could facilitate PEJP to enter and
interfere with cellular metabolism. Nevertheless, the more complex nature of the cell wall of
the Gram-negative strains, with a thick outer lipopolysaccharide membrane, makes difficult
for the PEJP to pass through the outer layer and cause alterations in their cytoplasm [12,57].

Moreover, this partial inhibition can be ascribed to the concentration of PEJP used
in the film production, which could be in insufficient quantity to completely inhibit the
microbial load present in the plate. However, considering that it is possible to increase
the content of PEJP by increasing the volume of film-forming solution used in the casting
procedure, it is possible to infer that the starch-PEJP film is promising as a bioactive material
containing natural antimicrobial compounds that avoid microbial penetration and diminish
food microbial spoilage.

4. Conclusions

We obtained a halochromic starch-PEJP film with efficient antioxidant and antimicro-
bial activity in this study. The simplex-lattice mixture design was effective in obtaining
mathematical models to predict response values. Consequently, it was a helpful tool to
optimize the starch-PEJP formulation to the maximum antioxidant activity. The optimized
formulation showed a reddish-pink to greenish color as a function of the pH, suggesting
this film is an effective smart material to be used as a natural indicator for the quality of
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foodstuffs or even be used in the real-time monitoring of food freshness. Future studies are
required to explore those applications.

The optimized starch-PEJP film also showed high extensibility with low stiffness
and good properties of transparency and opacity. Furthermore, the starch-PEJP film
demonstrated strong antimicrobial effectiveness, being an efficient barrier against microbial
permeation and can reduce the growth of Gram-positive and Gram-negative bacteria.
Therefore, the starch-PEJP film has potential applications in the food industry as bioactive
coverage with active functionality as a natural indicator with potent antioxidant and
antimicrobial properties. Additionally, the results of this study could be used as a guideline
for producing environmentally friendly smart active films for the packaging of foods by
simultaneously studying various variables and their effects on the material properties
and bioactivities.
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