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Abstract: This study aimed to investigate the effect of sea cucumber hydrolysate (SCH) on immuno-
suppressed mice induced by cyclophosphamide (Cy). Our findings demonstrated that SCH could
increase the thymus index and spleen index, decrease the serum alanine transaminase (ALT) and
aspartate aminotransferase (AST) levels, increase the serum IgG and small intestinal sIgA levels,
reduce small intestinal and colon tissue damage, and activate the nuclear factor-κB (NF-κB) pathway
by increasing TRAF6 and IRAK1 protein levels, as well as the phosphorylation levels of IκBα and
p65, thereby enhancing immunity. In addition, SCH alleviated the imbalance of the gut microbiota
by altering the composition of the gut microbiota in immunosuppressed mice. At the genus level,
when compared with the model group, the relative abundance of Dubosiella, Lachnospiraceae, and
Ligilactobacillus increased, while that of Lactobacillus, Bacteroides, and Turicibacter decreased in the
SCH groups. Moreover, 26 potential bioactive peptides were identified by oligopeptide sequencing
and bioactivity prediction. This study’s findings thus provide an experimental basis for further
development of SCH as a nutritional supplement to alleviate immunosuppression induced by Cy as
well as provides a new idea for alleviating intestinal damage induced by Cy.

Keywords: sea cucumber hydrolysate; cyclophosphamide; NF-κB; gut microbiota

1. Introduction

The immune system is a network composed of cells, tissues, and organs that functions
to eliminate potentially harmful substances from the body [1]. The gut is the body’s largest
digestive organ, and the intestinal mucosa is the first line of defense against pathogenic and
non-pathogenic microorganisms [2]. The trillions of bacteria that colonize the mammalian
gut are called gut microbiota [3]. Gut microbiota and its metabolites play an important role
in the immune system’s functions, which is to maintain the symbiotic relationship between
the host and microorganisms [4–6]. Gut microbiota also protects the host by promoting
immune homeostasis, immune response, and preventing pathogen colonization [3].

Cyclophosphamide (Cy) belongs to the mustard alkylating agent oxazaphosphorine
family and was first synthesized by Norbert Brock in 1958 [7]. Cy is an effective chemother-
apy agent used in the treatment of lymphoma and breast and ovarian cancers; it is also
used as an immunosuppressant in bone marrow transplantation [8]. Currently, high doses
of Cy (>120 mg/kg) are used as immunosuppressants for the treatment of autoimmune
diseases such as lupus, while low doses (1−3 mg/kg) are used in cancer treatment [7]. Cy
can reduce the number of white blood cells and the activity of lymphocytes in the spleen [9].
Long−term exposure to Cy can inhibit the activation, proliferation, and differentiation of B
cells as well as reduce serum antibody levels [10]. The intraperitoneal injection of Cy can
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cause weight loss, immune organ index reduction, cellular immune factors, immunoglobu-
lin reduction, and immune cell activity reduction in mice [11,12]. Cy can also modify the
gut microbiota composition and destroy the intestinal mucosa of mice [13,14].

Sea cucumbers have long been used in the food and medicine industries in Asian coun-
tries. Past studies have demonstrated that sea cucumber peptide possesses antioxidative,
hypoglycemic, memory-enhancing, and other biological activities [15–17]. Moreover, sea
cucumber oligopeptides have been reported to exert immune activation on RAW264.7 cells
through MAPK and the nuclear factor−κB (NF−κB) pathways [18]. However, the effect of
sea cucumber hydrolysate (SCH) on intestinal immunity has rarely been reported. In this
study, Cy was used to establish an immunosuppressive mouse model. The effect of SCH on
Cy-induced immunosuppressed mice was investigated by determining the immune organ
index, serum, and intestinal tissue biochemical index, small intestinal and colon tissue
damage, the expression level of the NF-κB pathway-related protein, and gut microbiota.

2. Materials and Methods
2.1. Materials and Reagents

Alanine transaminase (ALT) and aspartate aminotransferase (AST) kits were pur-
chased from Nanjing Jiancheng Bioengineering Research Institute Co., Ltd. (Nanjing,
China). Immunoglobulin G (IgG) and secretory immunoglobulin A (sIgA) detection kits
were purchased from Shanghai Enzyme Linked Biotechnology Co., Ltd. (Shanghai, China).
The primary antibodies used in this study were as follows: anti−p−IκBα (1:1000, bs−2513R,
Bioss (Beijng, China)), anti−IκBα (1:1000, bs−1287R, Bioss), β−actin (1:2000, 20536−1−AP,
Proteintech (Wuhan, China)), anti−p65 (1:1000, 10745−1−AP, Proteintech), anti−TRAF6
(1:5000, 66498−1−Ig, Proteintech), anti−IRAK1 (1:1000, 10478−2−AP, Proteintech), and
anti−p−p65 (1:500, AP3749a, Abcepta (Suzhou, China)). Among the primary antibodies
used in Western blotting, only anti-TRAF6 (clone number: 1D1E1) was a murine mono-
clonal antibody, while the remaining were rabbit polyclonal antibodies.

2.2. Preparation of SCH

SCH was derived from sea cucumber (Acaudina molpadioides) via enzymatic hydrolysis
and produced by Bestlife Biotechnology Co., Ltd. (Tangshan, China). Briefly, the sea
cucumber was cleaned after gutting, thoroughly crushed by a beater (JR05-300, SUPOR,
Hangzhou, China), hydrolyzed with a complex protease (papain: trypsin = 2:1, w/w,
Novozymes), precipitated, filtrated, and spray dried to obtain the SCH.

2.3. Determination of the Basic Constituents of SCH

The moisture content of SCH was measured by using the direct drying method. Briefly,
2−10 g of SCH powder was accurately weighed, dried at 101–105 ◦C for 4 h, and weighed
after a constant weight was achieved. The ash content of SCH was measured by using
the high−temperature ashing method, wherein, the SCH powder was accurately weighed,
carbonized to smokeless at a high temperature on an induction furnace, burned in a Muffle
furnace at 550 ± 25 ◦C for 4 h, and weighed after a constant weight was achieved. The
total protein content of SCH was determined by the Kjeldahl method. SCH powder was
accurately weighed and digested in the digestion tube, which was continued for 1 h after
the temperature of the digestion furnace reached 420 ◦C. The digestion process was stopped
when the liquid turned green and transparent. After the digestion tube was cooled, the
total protein content of SCH was measured on the automatic Kjeldahl nitrogen analyzer
(K9840, Haineng, China).

2.4. Determination of the Amino Acid Composition of SCH

The amino acid composition of SCH was determined by using an amino acid analyzer
(L-8900, Hitachi, Japan) as described elsewhere [19]. Briefly, 15 mg of the protein samples
and 10 mL of 6 M HCl were added to a hydrolysis tube and heated at 110 ◦C for 24 h. The
dried hydrolysate was then dissolved in 0.02 M HCl and filtered and tested on the machine.
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2.5. Identification of Oligopeptides in SCH by LC-MS

SCH was prepared into a solution using a certain concentration and centrifuged in an
ultrafiltration tube with an interception capacity of 3000 Da. Next, filtrate < 3000 Da was col-
lected for oligopeptide analysis. The peptide was sequenced by liquid chromatography−mass
spectrometry (LC−MS) as per the standard method, albeit with some modifications [20].
Oligopeptides were identified by ultra-performance liquid chromatography (Dionex Ul-
timate 3000, Waltham, MA, USA) and mass spectrometry (Thermo Scientific Q active,
Waltham, MA, USA). The peptides were then separated into a column (accucore C18,
100 × 2.1 mm2, 2.6 µm). The mobile phase A was composed of ultrapure water (con-
taining 0.1% formic acid) and the mobile phase B was composed of acetonitrile. The
linear elution gradient of the mobile phase B was 5–70%. Maxquant software was used
for peptide matching. The measured oligopeptides were evaluated by PeptideRanker
(http://distilldeep.ucd.ie/PeptideRanker/, accessed on 10 December 2022).

2.6. Animals and Experimental Design

All animal experiments were conducted in accordance with the Experimental Animal
Care and Use Guidelines of Tianjin University of Science and Technology and were ap-
proved by the Animal Ethics Committee of Tianjin University of Science and Technology
(approval number: TUST20210907). Fifty female Balb/c mice (age: 6−8 weeks) were pur-
chased from Beijing Sipeifu Biotechnology Co., Ltd. (Beijing, China), and fed adaptively a
week before the experiment. The mice were randomly assigned to the normal group, model
group (Cy, 80 mg/kg·BW), and SCH groups (200, 500, and 1000 mg/kg·BW). The mice in
the normal and model groups were administered 0.2 mL of Sterile water, once a day. The
SCH groups received the same volume of SCH solution (200, 500, and 1000 mg/kg·BW)
for 34 days, respectively. On days 27, 28, and 29, Cy was injected intraperitoneally, except
for the normal group, to establish an immunosuppressive model. After the experiment,
the thymus and spleen of the mice were extracted aseptically and weighed. A part of the
small intestine and colon tissue was preserved in paraformaldehyde for histopathological
observation, and a part of the small intestine tissues was stored in a −80 ◦C refrigerator for
Western blotting. The colonic contents of the mice were collected and stored in a −80 ◦C
refrigerator for detection of the fecal gut microbiota.

2.7. Immune Organ Index

At the end of the experiment, the thymus and spleen of the mice were removed and
weighed aseptically. The immune organ index was calculated using the following formula:

Index (mg/g) = immune organ weight (mg)/body weight (g)

2.8. Detection of Biochemical Indexes

The content of serum ALT, AST, IgG, and small intestinal sIgA was measured using
the test kit according to the manufacturer’s instructions. The absorbance was read with
a Thermo Multiscan FC microplate. The whole blood was centrifuged at 4 ◦C to obtain
mouse serum, and the intestinal tissue was homogenized on ice with a glass homogenizer
to obtain intestinal tissue homogenate.

2.9. Histopathological Examination

Mice’s small intestine and colon tissues were preserved with paraformaldehyde,
paraffin−embedded and sliced, and stained with hematoxylin and eosin (H&E).

2.10. Western Blotting

The mouse small intestine tissues were cleaned with cold phosphate buffer (PBS) and
then grounded thoroughly on an ice bath with RIPA buffer containing protease inhibitor
(Solarbio, Beijing, China). The supernatant was obtained after centrifugation of the mouse
small intestine homogenate at 12,000× g at 4 ◦C for 5 min. The protein concentration of
the small intestine homogenate was determined by using a total protein quantification kit

http://distilldeep.ucd.ie/PeptideRanker/
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(Jiancheng, Nanjing, China). The small intestine homogenate was mixed with the loading
buffer (Biosharp, Hefei, China) and boiled for 5 min. The proteins were isolated by 12%
SDS/PAGE and transferred onto a PVDF membrane. The membrane was treated with 5%
skim milk for 1 h and incubated with primary antibodies at 4 ◦C overnight, followed by
treatment with a secondary antibody at room temperature for 1 h. The remaining antibodies
on the PVDF membrane were washed with the TBST solution. The protein was detected
by using a chemiluminescent substrate assay kit (Biosharp, Hefei, China), and the protein
band blotting was performed using a Chemiluminescence imager (LAS4000, GE, Boston,
MA, USA). The protein band strength was detected by Image J software.

2.11. Gut Microbiota Analysis

Genomic DNA was extracted from the colonic contents of mice in each group, and the
concentration and purity of genomic DNA were detected by agarose gel electrophoresis.
Genomic DNA was diluted in sterile water and used as a template for PCR amplification.
The high variable region of 16S rDNA gene V3–V4 was used as a primer for amplification,
and the PCR products were recovered and purified. After the library was constructed,
NovaSeq 6000 was used for sequencing.

2.12. Statistical Analysis

All experiments were statistically analyzed using GraphPad Prism 8, Origin 9, and
SPSS19. The results were expressed as the mean ± SD (X ± SD). The statistical significance
between the two groups was calculated by using Student’s t-test and that among multiple
groups was determined by one-way analysis of variance (ANOVA) followed by Tukey’s
test. p < 0.05 was considered to indicate statistical significance, and the significance level
was set at * p < 0.05 and ** p < 0.01.

3. Results
3.1. Amino Acid Composition and Oligopeptide Sequence Analysis of SCH

The protein content, moisture content, and ash content of SCH were 94.71 ± 4.69%,
2.95 ± 0.11%, and 0.05 ± 0.00%, respectively. In this experiment, LC−MS was used to obtain
the total ion flow diagram of SCH (Figure 1). The amino acid composition and oligopeptide
sequence identification results of SCH are shown in Tables 1 and 2, respectively. A total
of 16 amino acids were detected in SCH, and the contents of Gly, Glu, Ala, Pro, and Asp
were higher (Table 1). The oligopeptides detected in SCH were input to PeptideRanker for
activity evaluation. The activity score of peptides in Table 2 were all >0.5. The oligopeptides
with high activity in SCH ranged in molecular weight from 189.12−547.27 m/z and were
mainly composed of oligopeptides with 2−4 amino acids.
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Table 1. Contents of amino acids in SCH.

Amino Acid Content (%)

Gly 7.77 ± 0.07
Glu 6.49 ± 0.19
Ala 3.81 ± 0.07
Pro 3.41 ± 0.07
Asp 3.25 ± 0.10
Arg 2.92 ± 0.05
Thr 1.67 ± 0.04
Val 1.58 ± 0.04
Phe 1.47 ± 0.15
Ser 1.47 ± 0.06
Leu 1.34 ± 0.10
Lys 1.04 ± 0.19
Tyr 0.86 ± 0.07
His 0.64 ± 0.22
Ile 0.62 ± 0.03

Met 0.58 ± 0.02

Table 2. Determination of the SCH oligopeptide sequence by LC–MS.

Number Observed
Mass (m/z)

Calculated
Mass (m/z) Charges Mass Error RT (min) Intensity Activity

Prediction Score Sequence

1 297.12674 296.11946 1 −2.0494 6.77 1,906,100 1.00 MF
2 223.10772 222.10044 1 −1.7651 3.65 72,543,000 0.99 GF
3 547.27758 546.2703 1 3.2459 6.04 96,065 0.99 WRW
4 161.59732 321.18009 1;2 −0.9894 1.49 27,211,000 0.99 FR
5 181.10277 360.19099 2 −1.2965 2.09 1,190,500 0.98 WR
6 539.23948 538.2322 1 1.6862 1.32 144,310 0.97 GFRC
7 207.07979 206.07251 1 −3.0502 1.52 23,017,000 0.95 GM
8 279.17032 278.16304 1 −1.1567 7.26 12,614,000 0.95 IF
9 294.14483 293.13756 1 −1.9427 2.32 2,390,400 0.92 FQ
10 173.09207 172.08479 1 −1.468 1.13 8,256,900 0.91 GP
11 165.10023 328.1859 2 −1.0154 1.01 3,343,200 0.84 PGR
12 548.27218 547.2649 1 −1.3542 1.97 18,687 0.82 GCRR
13 232.14042 231.13314 1 −1.7049 1.01 51,228,000 0.77 GR
14 239.10263 238.09536 1 −1.3903 2.08 17,041,000 0.74 GY
15 279.13393 278.12666 1 2.1445 2.52 1,674,600 0.74 PY
16 505.33845 504.33117 1 −0.073093 6.8 4,023,000 0.70 IIIF
17 286.17613 285.16886 1 −2.1445 5.87 7,544,800 0.69 IGP
18 194.6244 387.23425 2 −1.0358 1.01 6,610,400 0.64 RGR
19 237.09035 236.08308 1 −1.4734 1.46 9,146,500 0.63 SM
20 180.10551 358.19647 2 −1.6217 1.11 11,547,000 0.62 SPR
21 295.12885 294.12157 1 −4.0948 3.16 3,685,100 0.59 FE
22 173.11588 344.2172 2 −0.90103 1.34 12,308,000 0.57 GIR
23 166.11367 330.21279 2 0.50389 1.01 2,633,900 0.57 RR
24 152.0924 302.17025 2 −1.5916 1.12 77,656,000 0.55 GAR
25 519.22316 518.21588 1 2.0725 5.12 352,480 0.54 NCPK
26 189.12337 188.11609 1 −1.1305 1.37 45,416,000 0.50 IG

3.2. Effect of SCH on the Immune Organ Index in Mice

In this study, the mice were intraperitoneally injected with 80 mg/kg BW Cy for three
days to establish an immunosuppressive model. The immune organ index directly reflected
the immune state of the body [14]. The effect of SCH on the immune organ index is shown
in Figure 2A,B. The thymus index and spleen index of the model group were significantly
lower than that of the normal group (p < 0.01). When compared with the model group,
the thymus index in the SCHL group was significantly increased (p < 0.05) and the spleen
index in the SCHM group was significantly increased (p < 0.01). These results suggested
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that SCH could help restore the thymus and spleen indexes in immunosuppressed mice,
thereby restoring their immunomodulatory abilities.
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The results are presented as the means ± SD (n = 10). ## p < 0.01 compared with the normal group,
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3.3. Effects of SCH on the Biochemical Indices in Mice

To assess the effect of SCH on immunosuppressed mice, the serum ALT, AST, IgG,
and small intestinal sIgA levels were measured (Figure 3A−D). When compared with the
model group, the ALT levels in the SCH groups were significantly decreased (p < 0.05) and
the AST level in the SCHM group was significantly decreased (p < 0.01). When compared
with the model group, the IgG levels of mice in the SCH groups were significantly increased
(p < 0.01) and the sIgA levels in the SCHL and SCHM groups were significantly increased
(p < 0.01). In conclusion, SCH can reduce liver injury caused by Cy and improve immunity
by increasing the levels of immunoglobulins.
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3.4. Effect of SCH on Histological Changes of the Small Intestine and Colon

To observe the effect of SCH on intestinal morphology, small intestine, and colonic
tissues were collected for histopathological analysis (Figure 4). H&E staining revealed
that the small intestine and colon in the normal group had normal histology and an intact
surface structure. In the model group, the villi of the small intestine became shorter and
slightly swollen and the depression depth decreased. The model mice group showed severe
colon injury. When compared with the model group, the damage to the small intestine and
colon was relieved in the SCH groups. The results revealed that Cy damaged the surface
structure of the intestinal tissues and SCH improved the intestinal mucosal damage in
immunosuppressed mice.
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Figure 4. Effect of SCH on the morphology of the small intestine and colon in immunosuppressed
mice (n ≥ 3).

3.5. Effect of SCH on the Expression of NF-κB Pathway Proteins in Mice

The expression level of the NF−κB pathway-related proteins in the small intestine
of mice in each group was detected by Western blotting. Figure 5A depicts the bands of
each protein. As shown in Figure 5B,C, when compared with the normal group, the protein
expression levels of TRAF6 and IRAK1 in the model group were significantly reduced
(p < 0.01). When compared with the model group, the expression level of TRAF6 protein in
the SCHM group was significantly increased (p < 0.05), while the expression level of IRAK1
protein in the SCHL group was significantly increased (p < 0.01). As shown in Figure 5D,E,
the phosphorylation levels of IκBα and P65 in the model group were significantly reduced
when compared with those in the normal group (p < 0.01). When compared with the model
group, the phosphorylation levels of IκBα and P65 in the SCHL and SCHM groups were
significantly increased (p < 0.05).
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3.6. Effect of SCH on the Mice Gut Microbiota

The colonic contents of mice were collected and 16S rDNA sequencing was performed
to analyze the effect of SCH on the gut microbiota of mice. Because SCHL and SCHM
groups had a more significant immunity enhancement effect in the above−mentioned tests,
we selected the colonic contents of mice in the normal group, model group, SCHL group,
and SCHM group for gut microbiota sequencing. Non−metric Multi−Dimensional Scaling
(NMDS) was performed to describe the correlations between the groups of microbiomes
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(Figure 6A). When compared with the normal group, the gut microbiota composition of
Cy mice changed after modeling. In NMDS analysis, the model group was completely
separated from the normal group, the SCHL group was completely separated from the
other groups, and the SCHM group was distributed between the normal and model groups.
Therefore, Cy induced changes in the gut microbiota composition of mice, and SCH
intervention made the gut microbiota composition of immunosuppressed mice approximate
to that of the normal mice. To further determine the changes in the gut microbiota after
SCH intervention, the bacterial composition was compared at the phylum and genus
levels in the normal, model, SCHL, and SCHM groups (Figure 6B,C and Figure 7A−F).
At the phylum level, Bacteroidetes and Firmicutes were the main phyla identified, and it
was noted that the abundance of Bacteroidetes increased while the abundance of Firmicutes
decreased in the model group. However, SCH intervention reversed this trend. At the
genus level, the abundance of Dubosiella and Lachnospiraceae decreased in the model group
and increased in the SCH groups, while the abundance of Lactobacillus, Bacteroides, and
Turicibacter increased in the model group, but decreased in the SCH group. The relative
abundance of Ligilactobacillus in the SCHL and SCHM groups was higher than that in the
model group.
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4. Discussion

Sea cucumber is a type of seafood with a high edible and medicinal value, with the
characteristics of high protein and low−fat [21]. Sea cucumber peptides have been proven
to possess biological activities such as antioxidation, improving immunity, enhancing
memory, and reducing blood sugar. Bioactive peptides are easy to digest, can play a variety
of physiological functions in the human body, and generally exhibit higher biological
activity than their parent proteins [1]. Cyclophosphamide (Cy), as a chemotherapy drug,
has an immunosuppressive effect, which can destroy the gastrointestinal mucosal barrier
and induce an imbalance in the gut microbiota [14]. Past studies have demonstrated that the
immunomodulatory ability of peptides depends on their amino acid composition, sequence,
length, charge, hydrophobicity and structure [1]. The amino acids in sea cucumber are
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rich, including all types of essential amino acids and non−essential amino acids, and have
a high content of amino acids such as glycine, glutamic acid, proline, and alanine [22].
Similarly, the amino acid composition analysis of SCH in this study revealed a high content
of glycine, glutamic acid, alanine, and proline. By analyzing the oligopeptides of SCH,
26 oligopeptides with high activity scores were determined. Therefore, we investigated
the immune−enhancing ability of SCH by using a Cy−induced immunosuppression
mice model.

The thymus and spleen are both important immune organs of the body, and the
organ index reflects the immune state of the body [23]. SCH can improve the immune
organ index of immunosuppressed mice. Cy has liver−damaging effects [24]. ALT and
AST are both indexes of liver injury, and they were both decreased in the SCH groups,
indicating that SCH could alleviate liver injury caused by Cy. IgG and sIgA are important
immunoglobulins in the body. SCH can effectively increase the IgG and sIgA levels of
immunosuppressed mice, implying that SCH can improve immunity by increasing the
level of immunoglobulins.

The intestinal mucosa is resistant to food contamination, chemicals, and pathogens
and plays an important role in immune regulation [25]. Intestinal mucosa acts as a barrier
against the invasion of pathogenic microorganisms. The integrity of intestinal morphology
determines whether the intestinal barrier can function normally. SCH can reduce intestinal
mucosal damage and enhance intestinal mucosal integrity in immunosuppressed mice.

NF−κB is a nuclear transcription factor that regulates the expression of a large number
of genes essential for the regulation of host immunity [24]. NF−κB is activated by complex
molecular interactions with the adaptor proteins, phosphorylation, and ubiquitase, to
regulate gene expression [26]. TRAF6 is a key regulator of the activation of transcription
factor NF-κB [27]. IRAKs are serine/threonine kinases that play a key role in innate immune
responses [28]. Both TRAF6 and IRAK1 are upstream proteins of the NF−κB pathway.
It has been reported that co−fermented collagen peptide−pineapple juice and barley
young leaf polysaccharide both alleviate Cy−induced immunosuppression by activating
the NF−κB pathway [12,29]. In this study, the expression levels of TRAF6 and IRAK1
protein and the phosphorylation levels of Iκbα and p65 in immunosuppressed mice were
increased after SCH intervention, suggesting that SCH could activate the NF-κB pathway
and improve the immunity of mice.

Gut microbiota is closely related to host growth, immune regulation, and intestinal
health [30]. Bacteroidetes and Firmicutes are two important dominant phyla among the
gut microbiota, and their ratio has been associated with obesity and inflammation [31].
In addition, the gut microbiota of Cy−induced immunosuppressed mice has increased
Bacteroidetes and decreased Firmicutes; therefore, sodium alginate intervention can improve
immunity by alleviating the changes [14]. Similarly, our study findings demonstrated that
SCH decreased the abundance of Bacteroidetes and increased the abundance of Firmicutes.
Dubosiella newyorkensis has an anti−aging function, and it may be superior to resveratrol
in reducing oxidative stress, improving vascular endothelial functions, and regulating
the gut microbiota [32]. Past studies have demonstrated that Dubosiella may help relieve
colitis [33]. Lachnospiraceae can produce a short−chain fatty acid, and its abundance has
been positively correlated with the expression of tight junction proteins [34,35]. Ligilacto-
bacillus salivarius is a lactobacillus with beneficial functional properties such as antibacterial
activity, immunity, and the ability to regulate gut microbiota [36]. It has been shown that
Chinese and Brazilian propolis can relieve DSS−induced colitis, and propolis has been
reported to reduce the relative abundance of Bacteroides, which is important for maintaining
intestinal hemostasis [37]. Urtica dioica reduces diet−induced weight gain and insulin
resistance, which is associated with decreased Turicibacter proliferation and altered amino
acid metabolism [38]. The addition of caffeic acid decreased the relative abundance of
Bacteroides and Turicibacter, thereby altering the composition of the gut microbiota and
improving colitis [39]. In this study, when compared with the model group, the relative
abundance of Dubosiella, Lachnospiraceae, and Ligilactobacillus in the SCH groups increased,
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while the abundance of Lactobacillus, Bacteroides, and Turicibacter decreased. The above
results indicate that SCH has a good effect on the gut microbiota of Cy induced immuno-
suppressive mice, which can alter the structure of the gut microbiota and the relative
abundance of specific microbiota.

5. Conclusions

In this study, Cy was used to establish an immunosuppression model in mice, and the
effect of SCH on the immunosuppressed mice was explored. The results suggested that SCH
could increase the indexes of the thymus and spleen, decrease the levels of serum ALT and
AST, increase the contents of serum IgG and small intestinal sIgA, and reduce the damage
to the small intestine and colon. SCH also activated the NF-κB pathway by increasing
the expression levels of TRAF6 and IRAK1 proteins and increasing the phosphorylation
of IκBα and P65, thereby enhancing immunity. In addition, SCH regulated the intestinal
health of mice by increasing the relative abundance of Dubosiella, Lachnospiraceae, and
Ligilactobacillus and decreasing that of Lactobacillus, Bacteroides, and Turicibacter, thereby
alleviating the imbalance of gut microbiota caused by Cy. In this study, SCH has a good
effect on Cy−induced immunosuppression mice, which is worth developing as a functional
food and provides a new idea for exploring the molecular mechanism of bioactive peptides
to enhance immunity.
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