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Abstract: A nondestructive and rapid classification approach was developed for identifying aflatoxin-
contaminated single peanut kernels using field-portable vibrational spectroscopy instruments (FT-IR
and Raman). Single peanut kernels were either spiked with an aflatoxin solution (30 ppb–400 ppb) or
hexane (control), and their spectra were collected via Raman and FT-IR. An uHPLC-MS/MS approach
was used to verify the spiking accuracy via determining actual aflatoxin content on the surface of
randomly selected peanut samples. Supervised classification using soft independent modeling of class
analogies (SIMCA) showed better discrimination between aflatoxin-contaminated (30 ppb–400 ppb)
and control peanuts with FT-IR compared with Raman, predicting the external validation samples
with 100% accuracy. The accuracy, sensitivity, and specificity of SIMCA models generated with
the portable FT-IR device outperformed the methods in other destructive studies reported in the
literature, using a variety of vibrational spectroscopy benchtop systems. The discriminating power
analysis showed that the bands corresponded to the C=C stretching vibrations of the ring structures
of aflatoxins were most significant in explaining the variance in the model, which were also reported
for Aspergillus-infected brown rice samples. Field-deployable vibrational spectroscopy devices can
enable in situ identification of aflatoxin-contaminated peanuts to assure regulatory compliance as
well as cost savings in the production of peanut products.

Keywords: aflatoxin; FT-IR; Raman; field-portable instruments; chemometrics; food safety control

1. Introduction

Peanut (Arachis hypogaea L.) is an important cultivated crop globally, grown in over
100 countries, with a production of more than 40 million tons every year [1,2]. As a rich
source of nutrients, peanut provides protein, lipids, carbohydrates, and essential amino
acids to the human body [3]. However, toxigenic fungi are ubiquitous in nature and can
infect vulnerable agricultural commodities such as peanuts [4]. The secondary metabolites
of those fungi, named mycotoxins, can induce a wide range of toxic activities, ranging
from acute intoxication to long-term effects such as immune deficiency and cancer [5,6].
Mycotoxin contamination can occur in the field and during any point in the postharvest
stages (i.e., food production and storage) under favorable conditions [7,8]. Adequate
agricultural practices, good storage conditions, and timely plant disease management limit
mycotoxin contents in the food supply chain but cannot eliminate mycotoxin contamination
completely [7].
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Among the thousands of mycotoxins in existence, the most well known are aflatoxins,
which are primarily produced by A. flavus and A. parasiticus strains. Aflatoxin B1, B2, G1,
and G2 are the most toxic and carcinogenic Aspergillus metabolites found in peanuts [9].
A. flavus can produce aflatoxin B1 and B2, while A. parasiticus is able to produce all four
types [1]. Considering the hazards posed to health by aflatoxins and ensuring the safety of
food and agricultural products, many countries have established mandatory regulations
on aflatoxin content. For example, the European Commission (EU) has set aflatoxin B1
contamination limits as less than 5 ppb in food products (Regulation (EU) No. 165/2010].
In the United States, the Food and Drug Administration (FDA) set the maximum level of
aflatoxin level at 20 ppb for food and 300 ppb for feed [10].

Numerous methods for assessing fungal-contaminated crops have been developed
to confirm that aflatoxin levels remain below regulatory limits, such as thin-layer chro-
matography [11], high-pressure liquid chromatography [12], immunoaffinity columns [13],
and enzyme-linked immunosorbent assays [14,15]. However, the laborious, slow, com-
plex, and expensive sample preparation required for these analytical methods limits the
nondestructive and real-time assessments of the large number of peanuts consumed every
day [16]. Additionally, aflatoxin contamination is often not uniform in a batch, with a few
contaminated peanut kernels accumulating high levels of toxins, posing a safety risk and
resulting in the need for single kernel measurement [17]. Therefore, a real-time and sensi-
tive approach to continually screen single peanuts and detect mycotoxins could provide
assurances of regulatory compliance as well as cost savings in the complicated food supply
network [8].

Vibrational spectroscopic techniques such as Raman spectroscopy and infrared spec-
troscopy (IR) are powerful fingerprinting techniques used in metabolomics, enabling the
nondestructive, rapid, and high-throughput assessment of a broad variety of metabo-
lites [18]. These techniques are based on the transitions between the quantized vibrational
energy states of molecules due to the transition between the radiation from a light source
and the sample material [19]. IR and Raman are complementary to each other, since, for
a molecule to be IR active, the dipole moment of the molecule has to change for anti-
symmetrical vibrations. For Raman scattering to be active, the polarizability needs to be
changed for symmetric vibration [20]. Driven by advancements in micro electromechanical
systems (MEMS) and optoelectronics, portable/handheld Raman and IR spectrometers
have shown spectral resolution and precision equivalent to those of benchtop instruments,
which have the potential to be applied in the field without requiring complicated laboratory
environment [21].

Few applications related to utilizing vibrational techniques for aflatoxin screening in
peanuts have been reported. Benchtop FT-IR was applied to discriminate aflatoxin from
an extracted peanut oil fraction [22,23], and solvent-extracted ground peanut cake [24]
and surface-enhanced Raman spectroscopy (SERS) techniques have been reported for the
quantitative detection of aflatoxin in peanuts [25,26]. However, these SERS studies were
constrained by the required pretreatment extractions and poor reproducibility in field
applications [27]. With respect to utilizing portable vibrational techniques (FT-IR and
Raman), no scientific papers have been found in the literature dealing with the ability to
perform nondestructive and rapid detection of aflatoxin on single peanut kernels.

Herein, our objective in this research was to evaluate the performance of portable
vibrational spectroscopy (FT-IR and Raman) combined with pattern recognition analysis
for the nondestructive and rapid detection of single aflatoxin-contaminated peanut kernels,
potentially allowing for real-time and in situ screening of peanuts to support breeding
programs, postharvest research, and regulatory compliance in the future.

2. Materials and Methods
2.1. Sample Preparation

The aflatoxin mix standard (aflatoxin B1: 1 µg/mL, aflatoxin B2: 3 µg/mL, aflatoxin
G1: 1 µg/mL, and aflatoxin G2: 3 µg/mL, in benzene:acetonitrile (98:2), a certified reference
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material) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Aflatoxin-free shelled
peanuts (variety: Tifrunner) were obtained from the USDA (Crop Genetics and Breeding
Research Unit, Tifton, GA, USA). Hexane, HPLC-grade, was collected from Thermo Fisher
Scientific (Waltham, MA, USA). For the Raman study, a total of 90 peanuts with skins
(average weight of 0.7 g) were chemically spiked with aflatoxins, applying 10 µL of a
hexane solution containing different concentrations of the aflatoxin mix on one side of
each peanut, achieving target total aflatoxin concentrations of 30, 40, 50, 100, 200, and
400 parts per billion (ppb). Target concentrations of the aflatoxin mix were prepared via
evaporating different volumes of the aflatoxin mix standard (1 µg/mL B1, 3 µg/mL B2,
1 µg/mL G1, 3 µg/mL G2) using a sample concentrator (BTLab Systems, St. Louis, MO,
USA), followed by redissolving the mix with a constant volume (10 µL) of hexane. The
opposite side of each peanut served as control, to which we applied with 10 µL of hexane.
In the FT-IR study, since the attenuated total reflectance (ATR) involves applying pressure
to create good contact between the peanut and the ATR crystal, this pressure resulted in
minor oil being pressed out from kernels. The strong oil signal in the IR spectra could
mask the fingerprinting information from aflatoxin and decrease the discrimination ability
of the algorithms with the IR analysis. Thus, FT-IR measurement was only conducted
using different peanuts for spiking and controls. We spiked 60 peanuts with aflatoxins
(30–400 ppb) using the same approach described above, while another 60 peanuts were
spiked with 10 µL of hexane to serve as controls. After spiking, all peanuts with skins
were placed under a chemical hood for 10 min to allow the solvent to evaporate and enable
aflatoxins to be well absorbed into the peanut before spectral acquisition. In addition,
two peanuts without any chemical treatment were randomly selected to characterize the
spectral information of peanut cotyledons, and their skins were removed before FT-IR and
Raman spectral acquisition.

2.2. FT-IR and Raman Spectral Acquisition

The FT-IR spectral acquisition was conducted using a portable FT-IR spectrometer,
4500a (Agilent Technologies, Santa Clara, CA, USA), equipped with a 3-reflection diamond
attenuated total reflectance (ATR), a thermoelectrically cooled deuterated triglycine sulfate
(DTGS) detector, and a Michaelson interferometer (disperse light). The spectrometer had
a 2 mm diameter sampling surface, with a 200 µm active area providing a 6 µm effective
penetration depth for IR energy at 1700 cm−1. The peanut FT-IR spectra were collected
via applying a uniform pressure on each peanut surface to cover the active sampling area,
using a high-pressure clamp accessory. Spectral data were collected from 4000 to 700 cm−1

with a resolution of 4 cm−1. A total of 64 scans (~1 min) were co-added for each spectrum
collection to obtain an excellent signal-to-noise ratio, and a background was collected before
each spectrum collection to eliminate the environmental variations.

Raman spectral data were collected from 200 to 2500 cm−1 using a ProgenyTM hand-
held Raman spectrometer (Rigaku Analytical Devices, Wilmington, MA, USA) with a
1064 nm excitation wavelength and an InGaAs array detector, and the system was operated
with a spectral resolution of 4 cm−1. A tablet adapter was used to hold the single kernel
for the measurement. The laser power was set to 490 mw, and the exposure time was set
to 2.5 s, with 20 averages to maximize the signal-to-noise ratio and avoid burning of the
peanut kernels. All spectral data from FT-IR and Raman were collected once on each single
kernel to avoid potential cross-contamination during the operation.

2.3. Aflatoxin Spiking Verification Analysis (Ultra-High-Performance Liquid
Chromatography–Tandem Mass Spectrometry (uHPLC-MS/MS) Analysis) of Peanuts

To ensure the desired content of aflatoxin was spiked onto the peanuts, 16 peanuts
spiked with 50, 100, 200, and 400 ppb were randomly selected after spectral acquisition to
verify the aflatoxin content. An uHPLC-MS/MS method with Quick Easy Cheap Effective
Rugged and Safe (QuEChERS) pretreatment was used with some modifications [15,28–30].
A single peanut kernel was placed into a 50 mL centrifuge tube; 10 µL of aflatoxin M1
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(10 µg/mL, Sigma-Aldrich, St. Louis, MO, USA) was added as internal standard (IS); and
20 mL of hexane was added and blended using a hand homogenizer (D100, Benchmark
Scientific Inc, Sayreville, NJ, USA) in the tube. Then, 12.9 mL of acetonitrile and 2.1 mL
of water with 0.1% formic acid (Sigma-Aldrich, St. Louis, MO, USA) were added to each
tube, which was shaken vigorously for 20 min at 80 rpm. After that, a salt mixture from the
QuEChERS kits (Restek, Bellefonte, PA, USA) containing 4 g of MgSO4, 1 g of TSCD, 1 g
of NaCl, and 0.5 g of DHS was added to the tube, which was further shaken vigorously
for another 20 min at 80 rpm, and then centrifuged for 40 min at 4000 rpm at 4 ◦C. The
top hexane layer was removed to remove the fat from the sample, and 12 mL of the
acetonitrile layer was transferred to a QuEChERS dSPE tube (1200 mg MgSO4, 400 mg
PSA and 400 mg C18). dSPE tube was vortexed for 3 min and centrifuged for 15 min
at 4000 rpm. The supernatant solution (7.2 mL) was completely dried via flushing with
nitrogen gas, redissolved with 0.2 mL acetonitrile, filtered through a 0.22 µm nylon filter,
and transferred into an autosampler vial with a target polypropylene conical insert (Thermo
Fisher Scientific, Waltham, MA, USA) for LC-MS/MS analysis.

The total aflatoxin (B1, B2, G1, G2) levels on a single peanut surface were determined us-
ing a Nexera-i LC2040C 3D ultra HPLC coupled with a LCMS-8040 triple quadrupole mass
spectrometer with electrospray ionization (UHPLC-ESI-MS/MS) (Shimadzu, Columbia,
MD, USA). A reverse-phase Raptor ARC-18 column equipped with a guard column from
Restek (Bellefonte, PA, USA) (2.7 µm particle size and 150 × 3.0 mm dimensions) was used
for chromatographic separation. The injection volume and flow rate and were set at 5 µL
and 0.3 mL/min, respectively, for each measurement. The separations were achieved using
water with 2 mM ammonium formate and 0.1% formic acid as solvent A, and methanol
with 2 mM ammonium formate and 0.1% formic acid as solvent B, with the following
gradient: 35% B at 0.01 min, 35–65% B at 0.01–10 min, 65–35% B at 10–12 min, 35% B
at 12–15.01 min. The mass spectrometer was operated in positive mode, and the time-
managed multiple reaction monitoring (MRM) detection mode was utilized to identify the
compounds using the mass-per-charge ratio of 313.10 > 241 and 313.10 > 213 for aflatoxin
B1, 315.10 > 259.10 and 315.10 > 287 for aflatoxin B2, 329.10 > 243 and 329.10 > 200 for
aflatoxin G1, 331.10 > 245 and 331.10 > 189 for aflatoxin G2, and 329 > 273 and 329 > 259
for aflatoxin M1 (IS). The quantification of aflatoxins was achieved using the calibration
curves developed by plotting concentrations of the external standards and the area ratios
of the external and internal standard. The aflatoxins levels in each sample were analyzed
in duplicate via LC-MS/MS analysis.

2.4. Multivariate Data Analysis

Given the abundance of information within spectral data, multivariate data analysis is
required to extract meaningful information [31]. Principal component analysis (PCA), an
unsupervised technique, was performed to explore the natural clustering differentiating
the control peanuts and the peanuts with aflatoxins. However, soft independent model-
ing of class analogy (SIMCA), a supervised technique, was relied to develop predictive
classification algorithms that can be used to assign classes to unknown samples.

SIMCA uses the known knowledge about the classification information of samples,
such as control peanuts (class 1) and peanuts with aflatoxins (class 2), to build up the
training models in order to predict new unknown samples into known classes. Each class
(category) in SIMCA is modeled independently using a PCA model, described by the
different numbers of principal components. As a PCA model is generated for each class,
SIMCA can provide information about the relevance of variables and outlier detection.
When an unknown sample is projected into each PCA model, its degree of fit allows
determining if this sample can be assigned to a unique class, fit to numerous classes, or just
does not fit in any [31].

During the development of the FT-IR SIMCA aflatoxin detection model, 100 peanuts
(50 peanuts with aflatoxins and 50 peanuts without aflatoxins) were randomly selected for
developing a training model, and 20 peanuts (10 peanuts with aflatoxins and 10 peanuts
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without aflatoxins) served as an external validation set. Because of the limited capability of
Raman spectra for discriminating peanuts spiked with aflatoxins below 100 ppb, the final
Raman model was developed by including spiked peanuts with aflatoxin levels ≥ 100 ppb
(100, 200 and 400 ppb). Thus, the number of peanuts in the training model included 105 Ra-
man spectra (32 peanut spectra (≥100 ppb) containing aflatoxin and 72 Raman spectra
(from the control side). The external validation set included 26 Raman peanut spectra
(8 spectra collected from peanuts spiked with aflatoxin (≥100 ppb) and 18 Raman spectra
collected from the control side) that were randomly selected and were not part of the
training set. The training set was utilized to “train” the system to differentiate the unique
aflatoxin fingerprinting profiles on the peanut surface from common FT-IR and Raman
spectral features, which was accomplished by providing the known class assignments. The
external validation set allows for evaluating the performance (i.e., accuracy, selectivity, and
specificity) of SIMCA training models, generating an unbiased estimation of predictive
performance on deploying the models in real applications. The performance of the SIMCA
training model was evaluated in terms of interclass distance (quantitatively describing the
dissimilarity and similarity; generally when ICD > 3, it is accepted as well differentiated),
discriminating power (how well a variable discriminates between two classes), misclas-
sifications (the percentage of samples correctly assigned into their original group), class
projections, accuracy, selectivity, and specificity [32,33].

FT-IR and Raman spectral data were exported from the instruments as GRAMS (spc.)
files and analyzed using chemometrics software, Pirouette® (Version 4.5, Infometrix, Inc.,
Bothell, WA, USA). FT-IR spectra were preprocessed using the second derivative and
smoothing (Savitzky–Golay polynomial fitting algorithm with a 25-point window) to
remove the nonlinear background signal and mean centering to remove the intercept from
the model and constant background noise prior to multivariate analysis [34]. Raman spectra
were preprocessed via normalization (sample 2-norm) to take care of disparity in intensity
levels and mean centering prior to multivariate analysis [35].

3. Results and Discussion
3.1. Pattern Recognition Model Development for Detecting Aflatoxin Contamination

The spectra obtained from a control peanut, a peanut with aflatoxins (400 ppb), and a
pair of peanut cotyledons using triple-reflection ATR FT-IR are shown in Figure 1a. The
midinfrared region showed distinct bands related to the components of the peanuts. The
wide band centered at around 3200 cm−1 was associated with the water in the peanuts [36].
Absorbances at 3009–2800 cm−1 were related to =C-H cis stretching, -C-H symmetric, and
asymmetric stretching vibrations of the lipid in peanuts [37,38]. The bands at 1640 cm−1

and 1542 cm−1 were associated with the amide I and II bands, which are typically bonds
of C-N, N-H, C=C, and the combination of N-H and C-H (amide II) related to protein
amino acids [39]. The strong absorption bands located at 1013 cm−1, 1080 cm−1, and
1052 cm−1 corresponded to the organic acids and carbohydrates [9]. Spectra collected from
a control peanut and a peanut with aflatoxins (400 ppb) showed close similarity in their
spectral characteristics. The spectral differences between cotyledons and peanuts with skin
(control peanut and peanut with aflatoxins) were mainly located at 1053 cm−1, 1100 cm−1,
1280 cm−1, and 1631 cm−1. The bands centered at 1053 cm−1, 1100 cm−1, and 1280 cm−1

were unique for the spectra obtained from peanuts with skin, which were related to the
asymmetric stretching of the C-O pyranose, C-O-C from β-1,4 glycosidic linkages, and CH
bending in the cellulose structure [40]. The band located at 1631 cm−1 (O-H bending) was
higher for peanut cotyledons because of the higher amounts of moisture content existing in
cotyledons [41].
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Figure 1. Representative raw spectra of a control peanut, a peanut with aflatoxins (400 ppb), and
a pair of peanut cotyledons collected using (a) a portable FT-IR spectrometer and (b) a handheld
Raman instrument (1064 nm).

Raman spectra (cotyledons, control peanuts, and aflatoxin-spiked peanuts) exhib-
ited unique features (Figure 1b). Several of the bands in the peanut spectra (cotyledons,
control, and aflatoxin spiked) were similar. The band at 1751 cm−1 was associated with
C=O stretch in aldehydes, carboxylic acids, and ketones; the band at 1660 cm−1 was
related to C=C stretching vibrations and NH3

+ and COO− asymmetrical stretching vibra-
tions related to unsaturated fatty acids and proteins [42]. Furthermore, the vibrational
bands at 1653–1660 cm−1, 1550 cm−1, and 1229–1300 cm−1 corresponded to amide I (α
helix and β sheet), amide II, and amide III, respectively [43,44]. Vibrational bands at
964 cm−1, 1286 cm−1, and 1443 cm−1 were associated with CH2/CH3 vibrations (aliphatic
groups) [44]. However, some spectral dissimilarities, such as different intensities and
bands, were observed between cotyledons and peanuts with skin. The bands centered at
1660 cm−1, 1443 cm−1, 1300 cm−1, and 1263 cm−1 had pronounced higher intensities for
peanut cotyledons, which indicated higher contents of fatty acids and protein. The band
located at 1609 cm−1 was higher for the peanuts with skin than cotyledons, which was at-
tributed to the coupling effects of aromatic C=C stretch and NH3

+ and COO− asymmetrical
stretching, indicating the presence of pigments on the peanut skin. The main unique bands
in the spectra collected from peanuts with skin were centered at 1365 cm−1 and 786 cm−1,
which corresponded to the polyphenols and organic acids on the skin [42,45].

After Raman and FT-IR spectral acquisition, 16 peanuts (50–400 ppb) were randomly
selected and analyzed using uHPLC-MS/MS to ensure that the desired content of aflatoxin
was spiked on the surface of the peanut kernels. Aflatoxins (B1, B2, G1, and G2) were
identified and quantified based on their retention times and MS/MS spectra (Figure 2). The
uHPLC-MS/MS results of the peanuts under each concentration generally matched their
corresponding target spiked level, with minor standard deviations and standard errors, as
shown in Table 1, which can facilitate the development of robust and accurate supervised
predictive models.
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Table 1. The aflatoxin content verification analysis results of randomly selected peanuts after their
spectral acquisition.

Spiked
Concentration (ppb)

Sample
Number

LC-MS/MS Results (ppb)

Min Max Mean STD SE

50 4 36.49 61.99 46.28 11.19 5.60

100 4 123.02 141.79 130.57 8.15 4.08

200 4 194.11 248.84 227.18 23.52 11.76

400 4 341.35 394.05 372.34 24.33 12.17

Overall, both portable FT-IR and Raman instruments were able to capture some unique
characteristics from the kernel skins, suggesting that these techniques have the potential to
detect aflatoxins on a kernel’s surface. However, the FT-IR spectra provided more unique
fingerprinting information/bands from the kernel skins than from the cotyledons compared
with Raman according to the results of visual inspection. This is because FT-IR instruments
equipped with an ATR accessory have a shallower penetration depth (~2 µm) than Raman
systems (penetration depth at mm level, 1064 nm) [46,47]. In addition, it was difficult to
identify a unique marker band associated with aflatoxin by visually inspecting the FT-IR
and Raman spectra, mostly because of the overlapping bands from other predominant
chemical components on the peanut surface and cotyledons. Therefore, the application
of pattern recognition methods was critical for extracting spectral features to classify the
peanuts contaminated with aflatoxins [9].

PCA was utilized as an initial step before applying supervised pattern recognition
methods. Results from PCA analysis demonstrated a natural clustering, differentiating the
control from contaminated peanuts (Figure 3). SIMCA was selected for the rapid detection
and classification of peanuts contaminated with aflatoxins due to its advantage in mini-
mizing the overfitting problem compared with other common supervised techniques (i.e.,
support vector machine (SVM), partial least-squares discriminant analysis (PLS-DA), and
artificial neural network (ANN)) [48,49]. The optimum numbers of principal components
(PCs/factor) for each class under SIMCA model were defined based on explained variance
to avoid overfitting and underfitting [48,49]. To generate the FT-IR SIMCA training model
for aflatoxins, the spectral range (1799–1446 cm−1, 190 data points) that contained more
signatures related to aflatoxins was selected. Eight principal components were deployed
for the class of peanuts with aflatoxins, and six principal components were utilized for the
class of peanuts without aflatoxins in the SIMCA model generated using the FT-IR spectra,
explaining 99.4% and 98.8% of the variance, respectively. Peanuts with aflatoxins were
well separated from control peanuts, with an interclass distance (ICD) of 3.63 (ICD > 3),
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suggesting large Euclidian distances between the centers of clusters (important for identifi-
cation) and yielding distinctive clustering patterns. The SIMCA Coomans plot (Figure 4a)
demonstrated the performance of the supervised classification model via determining class
membership based on distance from the boundaries (vertical and horizontal lines, 95%
confidence limits) of the classes (control peanuts and peanuts spiked with aflatoxins) in the
pairwise plot. Control peanuts were well separated from peanuts with aflatoxins based on
the unique infrared spectral patterns, and they were all plotted onto the lower right quad-
rant of the diagram (Figure 4a). Some peanuts with aflatoxins were plotted in the lower
left quadrant, representing similarity with control peanuts. However, through the cross-
validation analysis, all the aflatoxin-contaminated peanuts were accurately predicted into
their assigned class, with no misclassification. The discriminating power plot (Figure 4b)
showed the variables having a prevalent impact on sample classification by maximizing
the difference between different clusters and minimizing the difference between samples
within clusters [50]. The results showed that bands centered at 1670 cm−1 and 1645 cm−1

contributed most to detecting peanuts with aflatoxins, which could be attributed to the C=C
stretching vibration of the ring structures of aflatoxins [51]. Shen et al. compared spectral
profile differences by changing the aflatoxin content in brown rice, and they reported that
the pronounced differences at 1644 cm−1 might be related to fungal infection in the brown
rice, in agreement with our finding [9].
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discriminating plot generated from the spectral data of peanut samples collected with a portable
FT-IR spectrometer, and (c) the SIMCA Coomans plot for its corresponding external validation set.

To generate the Raman SIMCA training model for aflatoxins, the spectral range
(1506–1756 cm−1, 56 data points) that contained more signatures related to aflatoxins was
selected. The SIMCA classification analysis using Raman spectra showed limited ability for
discriminating peanuts spiked with aflatoxins below 100 ppb; therefore, the models were
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only generated by including spiked peanuts with aflatoxin levels ≥ 100 ppb (100, 200 and
400 ppb). The classification model employed nine principal components to explain 89.5% of
the variance in the class of peanuts spiked with aflatoxins, and seven principal components
were utilized to explain 93.0% of the variance in the class of peanuts without aflatoxin. The
Coomans plot showed a limited separation of the two classes (in the lower left quadrant of
Figure 5a), and control peanuts and peanuts spiked with aflatoxins only had an ICD of 0.6
(ICD < 3), with no misclassification, showing that limited Raman spectral features were
resolved for identifying aflatoxins. The discriminating power plot (Figure 5b) showed that
bands centered at 1654 cm−1, associated with C=O stretching vibrations in the aflatoxins’
structure, were important for differentiating and detecting peanuts with aflatoxins [52].

Foods 2024, 13, x FOR PEER REVIEW 9 of 14 
 

 

selected. The SIMCA classification analysis using Raman spectra showed limited ability 
for discriminating peanuts spiked with aflatoxins below 100 ppb; therefore, the models 
were only generated by including spiked peanuts with aflatoxin levels ≥ 100 ppb (100, 200 
and 400 ppb). The classification model employed nine principal components to explain 
89.5% of the variance in the class of peanuts spiked with aflatoxins, and seven principal 
components were utilized to explain 93.0% of the variance in the class of peanuts without 
aflatoxin. The Coomans plot showed a limited separation of the two classes (in the lower 
left quadrant of Figure 5a), and control peanuts and peanuts spiked with aflatoxins only 
had an ICD of 0.6 (ICD < 3), with no misclassification, showing that limited Raman spectral 
features were resolved for identifying aflatoxins. The discriminating power plot (Figure 
5b) showed that bands centered at 1654 cm−1, associated with C=O stretching vibrations in 
the aflatoxins� structure, were important for differentiating and detecting peanuts with 
aflatoxins [52]. 

 
Figure 5. (a) SIMCA Coomans plot and (b) SIMCA discriminating plot generated from the spectral 
data collected using a handheld Raman spectrometer (1064 nm), and (c) SIMCA Coomans plot for 
its corresponding external validation set. 

3.2. Validation of the Pattern Recognition Models 
After verifying that the supervised SIMCA training models correctly classified pea-

nuts contaminated with aflatoxins, we challenged the models, to evaluate their perfor-
mance, by introducing an independent external validation set (Figures 4c and 5c). The 
predictive capability of these models was evaluated using sensitivity, specificity, and ac-
curacy (correct classification rate). Sensitivity was used to evaluate the capability of the 
classification model to identify single peanut kernels with aflatoxins. Specificity was used 
to evaluate the ability of the model to detect the peanuts without aflatoxins, while accu-
racy was used to determine the ability of the model to predict peanuts (with and without 
aflatoxins) into their actual class [53]. All 20 validation peanut kernels were accurately 
predicted to the corresponding class (ntrue positive = 10, nfalse negative = 0, nfalse positve = 0, ntrue negative = 

10), resulting in 100% accuracy, 100% sensitivity, and 100% specificity (Table 2). 

Table 2. Statistical performance results of SIMCA models obtained from portable FT-IR and 
handheld Raman (1064 nm) spectral data. 

Model Types Accuracy (%) Sensitivity (%) Specificity (%) 
FT-IR 100 100 100 

Raman 80.8 62.5 88.9 

The performance of the supervised SIMCA model generated with Raman data was 
assessed using an external validation set with 8 peanuts with aflatoxins (100, 200, and 400 
ppb) and 18 peanuts without aflatoxins, illustrating 80.8% accuracy, 62.5% sensitivity, and 
88.9% specificity (ntrue positive = 5, nfalse negative = 3, nfalse positve = 2, ntrue negative = 16) in their predic-
tions. This revealed that the Raman model had an adequate ability to differentiate peanuts 

Figure 5. (a) SIMCA Coomans plot and (b) SIMCA discriminating plot generated from the spectral
data collected using a handheld Raman spectrometer (1064 nm), and (c) SIMCA Coomans plot for its
corresponding external validation set.

3.2. Validation of the Pattern Recognition Models

After verifying that the supervised SIMCA training models correctly classified peanuts
contaminated with aflatoxins, we challenged the models, to evaluate their performance,
by introducing an independent external validation set (Figures 4c and 5c). The predictive
capability of these models was evaluated using sensitivity, specificity, and accuracy (correct
classification rate). Sensitivity was used to evaluate the capability of the classification
model to identify single peanut kernels with aflatoxins. Specificity was used to evaluate
the ability of the model to detect the peanuts without aflatoxins, while accuracy was used
to determine the ability of the model to predict peanuts (with and without aflatoxins) into
their actual class [53]. All 20 validation peanut kernels were accurately predicted to the
corresponding class (ntrue positive = 10, nfalse negative = 0, nfalse positve = 0, ntrue negative = 10),
resulting in 100% accuracy, 100% sensitivity, and 100% specificity (Table 2).

Table 2. Statistical performance results of SIMCA models obtained from portable FT-IR and handheld
Raman (1064 nm) spectral data.

Model Types Accuracy (%) Sensitivity (%) Specificity (%)

FT-IR 100 100 100
Raman 80.8 62.5 88.9

The performance of the supervised SIMCA model generated with Raman data was
assessed using an external validation set with 8 peanuts with aflatoxins (100, 200, and
400 ppb) and 18 peanuts without aflatoxins, illustrating 80.8% accuracy, 62.5% sensitivity,
and 88.9% specificity (ntrue positive = 5, nfalse negative = 3, nfalse positve = 2, ntrue negative = 16)
in their predictions. This revealed that the Raman model had an adequate ability to
differentiate peanuts without aflatoxins but had a limited capability to identify the peanuts
with aflatoxins. The fingerprinting information of aflatoxins might not be easily extracted
and identified from the Raman spectrum because more interference from other chemical
functional groups in the cotyledons was present in the Raman spectrum than in the FT-IR
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spectrum (deeper penetration of Raman). This difference could limit the ability to detect
aflatoxins on kernel surfaces using Raman spectra.

An overview of previous studies performed using FT-IR and Raman spectroscopy is
summarized in Table 3, comparing the performance of our models with that of the models
reported in the literature. Previous FT-IR studies for classifying aflatoxin-contaminated
peanuts were conducted using benchtop FT-IR instrument equipped with ATR accessory or
with a diffuse reflectance sample holder. Overall, the models that we obtained in this study
using a portable FT-IR instrument provided similar or even superior performance in terms
of accuracy, sensitivity, and specificity. Comparing our results to those reported by Lee
et al. (who used homogenized ground maize samples and a benchtop Raman instrument
equipped with 785 nm laser, and analyzed the data with different pattern recognition
techniques) showed that our model yielded higher accuracy (correct classification rates)
than their model generated by PLS-DA but slightly lower accuracy than the ones generated
using KNN and LDA [53,54]. Moreover, the low aflatoxin concentration range (30–400 ppb)
utilized for this study would cover almost all possible early-stage-contaminated peanuts
in the peanut production industry and commercial market, providing a rapid and non-
destructive pass/fail screening approach. In addition, to the best of our knowledge, our
study is the first to report a nondestructive classification approach to detect single aflatoxin-
contaminated peanut kernels using field-portable vibrational spectroscopy instruments.

Table 3. Overview of previous studies performed using FT-IR and Raman spectroscopy to detect
aflatoxin content with bulk crop samples.

Sample Aflatoxins Instrument Chemometrics Results Reference

Ground peanut
paste

Aflatoxin B1
(<10,624 ppb)

Benchtop FT-IR
with ATR
accessory

Bagged
decision tree Accuracy = 77% [55]

Brown rice
Aflatoxins

(B1, B2, G1, G2)
(<2406 ppb)

Benchtop FT-IR
with ATR
accessory

LDA a Accuracy = 90.6% [9]

Ground maize
Aflatoxins

(B1, B2, G1, G2)
(<1206 ppb)

Benchtop FT-IR
with a diffuse

reflectance holder

KNN b

LDA
PLS-DA c

KNN:
CCR d = 84%

LDA:
CCR d = 84%

PLS-DA:
CCR = 72%

[53]

Ground maize
Aflatoxins

(B1, B2, G1, G2)
(<1206 ppb)

Benchtop Raman
(785 nm)

LDA
PCDA e

PLS-DA

LDA:
False negative rate = 0%

PCDA:
False negative rate = 13.3%

PLS-DA:
False negative rate = 6.7%

[54]

Ground maize
Aflatoxins

(B1, B2, G1, G2)
(<1206 ppb)

Benchtop Raman
(785 nm)

KNN
LDA

PLS-DA

KNN:
CCR = 91.4%

LDA:
CCR = 91.4%

PLS-DA:
CCR = 53.4%

[53]

a LDA: linear discriminant analysis; b KNN: k-nearest neighbors; c PLS-DA: partial least-squares discriminant
analysis; d CCR: correct classification rate; e PCDA: principle component discriminant analysis.

4. Conclusions

Our study demonstrated that both field-deployable FT-IR and Raman instruments
have the potential to nondestructively and rapidly classify/identify aflatoxin-contaminated
peanuts. The developed chemometric (SIMCA) models based on FT-IR and Raman spectral
data demonstrated robust and excellent predictive ability, as supported by the results of
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internal and external validations, for identifying the peanuts contaminated with aflatoxin.
In our study, the performance of the FT-IR spectroscopic method was superior that of
the Raman method in terms of detection limit (30 ppb for FT-IR and 100 ppb for Raman)
and model prediction. Our FT-IR prediction model provided similar or even superior
performance to that reported using benchtop infrared systems. Our Raman model showed
comparable performance in terms of accuracy to previous methods using benchtop Raman
equipped with a 785 nm laser. With the development of this classification approach
using Aspergillus-infected peanuts in a future study, these state-of-art field-deployable
instruments could be used for the real-time monitoring and rapid identification of early-
stage-contaminated samples in terms of penetration depth, which would greatly benefit
consumers and the food industry, ensuring food safety and quality.
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