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Abstract: Protein content variation in milk can impact the quality and consistency of dairy products,
necessitating access to in-line real time monitoring. Here, we present a chemometric approach for the
qualitative and quantitative monitoring of β-lactoglobulin and α-lactalbumin, using mid-infrared
spectroscopy (MIR). In this study, we employed Hotelling T2 and Q-residual for outlier detection,
automated preprocessing using nippy, conducted wavenumber selection with genetic algorithms,
and evaluated four chemometric models, including partial least squares, support vector regression
(SVR), ridge, and logistic regression to accurately predict the concentrations of β-lactoglobulin and
α-lactalbumin in milk. For the quantitative analysis of these two whey proteins, SVR performed the
best to interpret protein concentration from 197 MIR spectra originating from 42 Cornell University
samples of preserved pasteurized modified milk. The R2 values obtained for β-lactoglobulin and
α-lactalbumin using leave one out cross-validation (LOOCV) are 92.8% and 92.7%, respectively, which
is the highest correlation reported to date. Our approach introduced a combination of preprocessing
automation, genetic algorithm-based wavenumber selection, and used Optuna to optimize the
framework for tuning hyperparameters of the chemometric models, resulting in the best chemometric
analysis of MIR data to quantitate β-lactoglobulin and α-lactalbumin to date.

Keywords: chemometrics; support vector regression; partial least squares; mid-infrared spectroscopy;
whey proteins; Kennard-Stones

1. Introduction

Until the late 20th century, whey was primarily seen as a waste stream derived
from cheese production. However, advancements in separation technology, coupled with
changing consumer demand for increased protein in foods have led to a surge in demand
for whey protein [1]. Today, whey-derived ingredients exhibit the fastest market growth
compared to any other dairy ingredient, with a market value of USD 53.8 billion in 2019
and projections to reach USD 81.4 billion by 2025 [2].

Whey protein concentrations present in milk can vary depending on lactation stage,
season of milk acquisition, health state of the cow, and cattle breed. The protein content
of the colostrum produced initially following birth of a calf contains roughly 70–80% im-
munoglobulins, which rapidly falls off within days to as low as 1% in the milk. Furthermore,
the content of β-lactoglobulin (β-LG) and α-lactalbumin (α-LA) vary widely in colostrum,
with ranges of 8 to 30 mg/mL and 8 to 14 mg/mL, respectively [3,4]. Furthermore, the
protein concentration continues to vary as lactation proceeds. Ng-Kwai-Hang et al. [5]
reported a drop in β-LG concentration from 4.578 to 4.315 mg/mL over the first 60 days of
lactation then a steady increase to 4.894 mg/mL at day 365 of lactation. The same study
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reported a decline in α-LA from 1.773 to 1.441 mg/mL over the same 365-day period.
Regester and Smithers [6] noted seasonal variations in β-LG and α-LA present in whey
protein concentrates depending on the season of milk collection, and Li et al. [7] reported a
drop in α-LA content in milk collected late in the season. Mastitis is also known to alter
the concentration of whey proteins in general with a concomitant decrease in both β-LG
and α-LA [8]. Milk from different breeds of cattle is also known to show variation in whey
protein content. A study from Litwinczuk et al. noted that β-LG varied by ±0.94 mg/mL,
and α-LA varied by ±0.13 mg/mL during the summer season in Polish Holstein-Friesian,
Jersey, and Simmental cows [9].

The amount of protein in milk, and the concentrations of the individual proteins
present, can impact the processing of protein powders, cheese, yogurt, infant milk formula,
and more. Whey proteins are prized for their nutritional value as well as their ability
to confer functional properties to dairy products such as emulsifying, foaming, viscosity,
color and thermal stability, buffering capacity, and gelling [10,11]. Globally, cheese is the
most abundant dairy product produced from milk [12]. Traditionally, casein-formed curd
is the most common method for cheese making, and the whey fraction, containing the
whey proteins that were once discarded, are now integrated back into cheese to improve
nutrient value, increase yield, and modify texture [13]. In the production of set type nonfat
yogurt, the addition of whey protein into yogurt milk is performed to modify hardness,
cohesiveness, and gel elasticity, leading to a more desirable final product [14].

Protein plays a crucial role in the growth and healthy development of human in-
fants [15]. However, the composition of bovine milk is considerably different from human
milk in the amount of α-LA present. Bovine milk-based infant formula must be “hu-
manized” by addition of α-LA, because bovine milk only contains about 3.5% α-LA as
compared to 22% in human milk [16].

The two most abundant whey proteins in bovine milk are β-LG and α-LA, making
up about 50 and 20 percent of the total whey protein composition, respectively. The
concentrations of these two proteins individually are of interest to the dairy processing
industry. β-LG is a major contributor to the gelling properties of whey because of its high
abundance and presence of a free thiol group [17]. Increased β-LG levels have also been
noted to cause increased fouling of plate heat exchangers [18]. Furthermore, β-LG is a major
allergen of milk, so there is evidence its presence should be limited in certain processing
situations. Unlike β-LG, pure α-LA is thermally stable and does not tend to form gels upon
heating due to a lack of free thiols to form disulfide bonds [19]. Currently, α-LA is being
investigated for use as a carrier of hydrophobic bioactives, like curcumin and capsaicin, in
aqueous beverages [20–23].

The nutritional profile and composition of dairy products are assessed through analy-
sis of protein quantity and quality [24,25]. Traditional protein quantification in the dairy
industry has been conducted by the Kjeldahl method, often complemented by high per-
formance liquid chromatograph (HPLC). The Kjeldahl method is a prominent analytical
technique for assessing total protein content in dairy products, biological samples, and
pharmaceuticals, among others [26–30]. By providing a measure of nitrogen levels in
proteins, the Kjeldahl method indirectly quantifies the total protein content. This method
involves three fundamental steps: digestion, distillation, and titration [30–32]. While
Kjeldahl analysis provides accurate measurements of total protein content in milk, it is
time-intensive, utilizes harsh chemicals and conditions, and it can only be used to indirectly
quantify total protein within a sample, like milk. Conversely, HPLC can be used to quantify
individual whey proteins, but the instrumentation is expensive, and specialized technical
expertise is required to prepare samples, run the instrument, and assess the results. Rapid
quantification of macronutrients in milk (i.e., protein, carbohydrates, and lipids) can be
accomplished with infrared spectroscopy (IR), but the data analysis required to decon-
volute the resulting spectra and quantify individual proteins has been lacking. Here, we
report a chemometric software protocol to quantify the major whey proteins, β-LG and
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α-LA, in preserved pasteurized modified milk samples, based on the rapid interpretation
of mid-infrared spectra (MIR).

There is no rapid, efficient, accurate, and precise method for the quantification of
individual whey proteins within milk across the dairy processing industry. Rapid eval-
uation of milk macro nutritional components, including total protein, total casein, and
lipids by IR spectroscopy is, however, commonplace in dairy and other food processing
facilities [33–35]. Saxton and McDougal [36] explored the application of MIR spectroscopy
for qualitative analysis of proteins derived from whey and non-whey sources, employing
the amide I/II, lipid, and carbohydrate regions. Their investigation revealed the utility
of MIR to detect adulteration of protein powders with inexpensive amino acids, which
increases the nitrogen content interpreted by Kjeldahl analysis as falsely correlating to pro-
tein quantity in the powders. The MIR detection is dependent on discerning peak shapes
within select regions of the spectra, which overlap in complex mixtures like milk, making
identification of individual proteins complex. A solution to deconvolute the IR spectra to
obtain quantitative and qualitative assessment of individual proteins is the application
of chemometrics.

Chemometrics utilize mathematical or statistical methods to select optimal measure-
ment procedures to extract relevant chemical information from chromatographic and
spectroscopic data. Chemometrics has emerged as a valuable tool for the interpretation
and analysis of complex datasets from gas chromatography, liquid chromatography, and
infrared spectroscopy [37,38]. Advances in technology have shown IR-based chemomet-
rics can be used for the rapid and accurate assessment of components in food products
including milk, meat, and potato. We detail several relevant studies, across a variety of
chemometric techniques, that provided the basis for our investigation.

MIR and chemometrics have been extensively studied for the qualitative and quan-
titative analysis of pasteurized milk, both for the presence of adulterants, and for the
quantification of components such as protein and fat. The key elements of the chemometric
work-flow examined in these studies are (1) sample selection approaches, (2) methods for
preprocessing the spectral data, (3) wave number selection techniques to improve accuracy
and reduce computational complexity, and most often (4) choice of regression algorithm
and associated parameter fine-tuning.

Most studies have focused on the problem of examining the efficacy of various re-
gression techniques for the identification of adulterants in milk products. For example,
partial least squares (PLS) and principal component analysis (PCA) were compared for
the chemometric analysis of 38 whey protein concentrate (WPC) powders that had been
adulterated with milk whey protein (MWP) [39]. The classification of samples into either
pure WPC or WPC adulterated with MWP was achieved using PCA, with PLS providing
quantification of WPC and MWP, achieving R2 values of 99%.

Mota et al. [40] explored the predictive accuracies of PLS, elastic net (EN), random
forest (RF), and gradient boosting machine (GBM) for the quantification of κ-casein from
463 Holstein cows’ milk samples using MIR, finding that GBM outperformed other models
in predicting κ-casein with R2 value of 81%.

Neto et al. [41] utilized a convolutional neural network (CNN) for binary and multiclass
classification analysis of MIR spectra from 4846 milk samples adulterated with sucrose, starch,
bicarbonate, peroxide, and formaldehyde. In the same study, GBM and RF were used for
similar classification tasks, but with milk constituents including fat, protein, lactose, solids,
solids non-fat, casein, milk urea nitrogen, somatic cells counting, freezing point, and sample
quality as input variables. The CNN achieved the highest predictive accuracy for both the
binary and multiclass classification problems, scoring 99% and 97%, respectively.

Yet another study on adulterants examined PLS, artificial neural networks (ANNs),
partial least squares discriminant analysis (PLS-DA), PCA, and support vector machines
(SVM), for the identification of milk adulterated with sucrose, urea, and starch [38]. SVM
yielded the highest R2 values of 98.4%, 97.6%, and 99.6% for starch, urea, and sucrose,
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respectively. The superior performance of SVM was attributed to superior performance in
the handling of both linear and nonlinear relationships within spectral data.

Dielectric spectroscopy coupled with chemometric techniques including PLS, least-
square based SVM (LSSVM), and extreme learning machine (ELM) were used for the
quantitative analysis of total protein content in 145 raw fresh milk samples [42]. LSSVM
with SNV preprocessing produced the best predictive model and achieved an R2 value of
86.5%. In yet another study, PLS, SVR, and ANN chemometric techniques were evaluated
for interpretation of MIR to determine the amount of lactoferrin in raw milk [43]. The ANN
produced the highest R2 value of 60%.

Two spectral preprocessing techniques—Savitzky–Golay (SavGol) with first and sec-
ond derivatives, and standard normal variate (SNV)—were employed in [40]. SNV pre-
processing produced the best predictive model with an R2 value of 86.5% for total protein
content. In another study, MSC, SNV, weighted multiplicative scatter correction, and
inverse multiplicative scatter correction preprocessing techniques achieved the best R2 val-
ues [42]. Preprocessing techniques including SNV, MSC, SavGol, and mean-centering were
evaluated in [43]. The best predictive results were obtained with MSC and mean-centering
for the analysis of MIR spectra, and SavGol with a second derivative for NIR spectra.

Some studies perform manual wavenumber selection based on RMSE [41]. Other
studies attempt to automate wavenumber selection using various approaches. For exam-
ple, genetic algorithm-based optimization for wavenumber selection is utilized in [36].
Wavenumber selection is performed by PLS factors in [44].

The majority of studies that report the use of chemometrics in milk IR analysis have
not simultaneously and quantitatively analyzed multiple individual whey proteins. Some
notable exceptions, include one study that reported the unsuitability of MIR spectroscopy
to measure β-LG and α-LA content when employing PLS methodology on raw milk,
due to the inability to achieve acceptable prediction accuracy for the two proteins (the
best R2 values for β-LG and α-LA at 64% and 31%, respectively) [44]. Another study
reported better results for the quantification of β-LG and α-LA present at ranges of 0.1–10%
with R2 value of 99%, but these results were achieved by simplifying their analysis to
aqueous whey solutions, rather than raw milk [45]. We hypothesize that a combination
of preprocessing and chemometric modeling techniques can be used to overcome the
complexity of predicting β-LG and α-LA concentrations from MIR spectra of milk. Here,
we report the use of chemometric models to achieve accurate and rapid quantitative
analysis of MIR spectra, for the two most abundant whey proteins in milk; β-LG and α-LA.

2. Materials and Methods
2.1. Materials, Samples, and Standards

Kaylegion and colleagues [46] generated the first sets of preserved pasteurized modi-
fied milk samples in 2006 which we will refer to as Cornell reference samples. They have
continued to provide new batches of Cornell reference samples every month since 2006 for
use as MIR milk analyzer calibration standards. The Cornell reference sample calibration
sets were superior to preserved raw producer milk calibration sets, displaying more consis-
tent inter-day and inter-set calibration slopes than non-modified, raw milk samples [46].
The Cornell reference sets are modified to provide a wider component range and an even
distribution of components, as compared to raw milk. These preserved pasteurized modi-
fied milk samples have also been used to predict fatty acid chain length and unsaturation
level of milk fat by MIR [47], and to calibrate MIR analyzers for the prediction of milk urea
nitrogen [48]. Currently, sets of 14 calibration samples are produced on a monthly basis at
Cornell University and sent to dairy processors for MIR instrument calibration. Sample
sets produced in January, February, and March of 2023 were used to generate a database of
42 unique Cornell reference samples for this study.

The protein standards β-lactoglobulin (≥90%, Catalog #L3908-5G) and α-lactalbumin
(≥85%, Catalog #50-176-5110) were purchased from Sigma Aldrich (St. Louis, MO, USA).
The amino acid glycine at 99% purity was purchased from Leco.com (Part #502-211) (St.
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Joseph, MO, USA). The L-lysine monohydrochloride (98.5–100.5%, Catalog #BP386-100)
was purchased from Fisher Scientific (Waltham, MA, USA). All chemicals were purchased
from Fisher Scientific, including sodium hydroxide pellets (Catalog #S318-500), boric acid
powder (Product #A74-1), hydrochloric acid (Catalog #A144S-500), and ammonium sulfate
(99.999%, Catalog #AA1063909). Preserved pasteurized modified milk samples (Cornell
reference samples) were received from Cornell University (Ithica, NY, USA) on a monthly
basis. Fourteen reference samples were in each set that arrived each month for the months
of January, February, and March of 2023, for a total of 42 individual samples. Samples were
received frozen, packaged on dry ice, and immediately stored at −20 ◦C until use.

2.2. Reagents for the Kjeldahl Method

Unless otherwise stated, all reagents were purchased from Fisher Scientific (Waltham,
MA, USA). The reagents used for the Kjeldahl method included concentrated sulfuric acid
(95–98%, Product #A484-212), and Kjeldahl catalyst tablets (FisherTabTM CT-37 Kjeldahl
Tablets, Product #K3011000); each tablet had a mass of 3.9 g and consisted of 3.5 g K2SO4
and 0.4 g CuSO4. After digestion, 50 mL deionized (DI) water was added to dilute the
mixture to prevent precipitation. Solutions (m/v%) of 40% sodium hydroxide, 4% boric
acid, 0.1 M sodium hydroxide, and 0.1 M hydrochloric acid were prepared. To 1.0 L of
4% boric acid receiving solution was added 1.5–2.0 mL of a bromocresol green-methyl red
mixed indicator (Product #B0120100ML).

2.3. Mid-Infrared Spectroscopy (MIR)

Mid-infrared (MIR) spectra were recorded using a NicoletTM iS20 MIR spectrometer
equipped with a NicoletTM iZ10 module and OMNICTM 9 software suite (Thermo Fisher
Scientific, Waltham, MA, USA). The MIR spectrometer was used in conjunction with
an attenuated total reflectance (ATR) diamond plate that was cleaned with isopropanol,
allowed to dry, and a background spectrum of nanopure water was recorded prior to
sample runs. In each case, the background spectrum was subtracted from the milk sample
spectrum to generate a true sample spectrum. Spectrum collection parameters included
1000 scans at a resolution of 2 cm−1, with data spacing at 0.482 cm−1, using a DTGS KBr
detector and KBr beam splitter. Spectra were collected using Blackman–Harris apodization
and Mertz phase correction. After data collection, the advanced ATR-correction feature of
Thermo Scientific™ OMNIC™ 9 software was applied to all spectra. The Blackman–Harris
apodization increases the signal to noise ratio and the Mertz phase correction ensures
that a true sample spectrum is generated. The advanced ATR-correction feature makes
adjustment for variation in penetration depth and absorption band shift between samples.

2.4. High Performance Liquid Chromatography (HPLC)
2.4.1. Sample Handling

Samples were stored at −20 ◦C until use. For analysis, 1.00 mL of Cornell reference
sample was mixed with 200 µL of 10% acetic acid and 200 µL of 1 M sodium acetate, the
sample was pH adjusted to 4.3 with HCl. Samples were then centrifuged at 14,000× g for
10 min, resulting in three distinct layers. The middle, whey layer was removed and filtered
through a 0.45 µm PVDF syringe filter into an amber HPLC vial for analysis.

2.4.2. Chromatography

Chromatography was conducted on an Agilent 1260 Infinity II system with a diode
array detector (Agilent Technologies, Santa Clara, CA, USA). A Restek Viva C18 column
(200 mm × 4.6 mm; 5 um pore size) (Restek, Bellefonte, PA, USA) was used and the
diode array detector was set to a wavelength of 214 nm. The mobile phase consisted of
two solvents. Solvent A was 0.1% trifluoroacetic acid (TFA) (Sigma Aldrich, St. Louis,
MO, USA) in nanopure water and Solvent B was 0.09% TFA in 90% acetonitrile (Fisher
Scientific, Waltham, MA, USA) in nanopure water. The gradient began at 42.5% B and
increased to 45.0% B at 5 min, then increased to 50% B from 5 to 8 min. From 8 to 9 min
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solvent B remained at 50%. From 9 to 12 min solvent B increased to 70%. From 12 to 13 min
solvent B increased to 100%, and was held at 100% until 14 min. The solvents were returned
to starting conditions from 14 min to 16 min. The column was equilibrated at starting
condition for an additional 3 min, providing a method with a total runtime of 19 min.

2.4.3. Calibrations

Standard curves were generated and extraction efficiency was determined using β-
lactoglobulin (≥90%, Catalog #L3908-5G) and α-lactalbumin (≥85%, Catalog #50-176-5110)
purchased from Sigma Aldrich (St. Louis, MO, USA).

2.4.4. Extraction Efficiency

To determine percent recovery of whey protein extracted from the reference samples,
β-LG and α-LA standards were spiked into a native reference sample at concentrations
of 0.3 mg/mL and 0.6 mg/mL, respectively. Whey extractions were conducted on both
a spiked and unspiked aliquot using the method described and percent recovery of 93%
for β-LG and 96% for α-LA, respectively. Extraction efficiency was determined using
Equation (1),

% Recovery =

(
ps

Cs + Pus

)
∗ 100% (1)

where

Ps is the protein in spiked sample;
Pus is the protein in unspiked sample;
Cs is the concentration of spike.

2.5. Kjeldahl

The Kjeldahl method was performed using a Foss KT 200 KjeltecTM (Foss Analytics,
Hilleroed, Denmark). The AOAC methods (991.22) and (998.06) were used to determine the
protein nitrogen and casein nitrogen content in milk [29,49]. The set of Cornell reference
samples was frozen and processed in batches of six. Each milk sample was placed in a
water bath and allowed to equilibrate to a temperature of 40 ◦C. A 5.0–5.1 g portion of each
milk sample was immediately pipetted into separate Kjeldahl tubes. For AOAC method
998.06, 70 mL of deionized water and 0.75 mL of acetic acid were added, and a 5-min
precipitation period was permitted to separate casein. To ensure full removal of casein,
an additional 0.75 mL of sodium acetate was added to each tube followed by filtration
through Cytiva Whatman Quantitative Filter Paper: Grade 589/1 circles with a particle
retention of 12 to 15 µm. In addition to the milk samples, a blank control tube was also run
through the process that did not contain milk, but rather all other reagents. This method
is used in quality control to determine the casein content of the milk samples. Casein is
of significant interest to the dairy industry because it influences the texture, stability, and
nutritional value of dairy products such as cheese and yogurt. AOAC Method 991.22 is
used to measure protein nitrogen, which provides accuracy in reporting nutrition content in
milk and milk products. The AOAC Method 991.22 procedure begins by addition of 5 mL
of deionized water to 40 mL of 15% trichloroacetic acid (TCA), followed by the 5.0–5.1 g
portion of each milk sample, left for 5 min, and filtered with a Whatman filter paper. Blank
tube contains the filter paper, all Kjeldahl reagents, and no milk. In order to digest the dairy
proteins, 25 mL of concentrated sulfuric acid and two Kjeldahl tablets were added to each
tube along with the dried filter paper. The tubes were placed in the preheated digestion
block at 440 ◦C for 1 h 45 min. The resulting ammonium sulfate solutions were cooled at
room temperature and diluted by addition of 50 mL of deionized water to each tube in
preparation for distillation.

In the distillation process, the tube that contains the ammonium sulfate solution and
the addition of 50 mL of deionized water is placed in the distillation unit with 100 mL
of 4% boric acid in the receiving vessel. Into the ammonium sulfate solution, 100 mL of
40% sodium hydroxide solution (%m/v) was dispensed, followed by 10 min of distillation.
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During this process, the red receiving solution was observed to change to green. This
transformation is due to the conversion of ammonium ions in the refluxing solution into
ammonia gas through the distillation process. The ammonia gas is then transferred from
the initial solution to the receiving vessel, where it gets captured in an aqueous acidic
solution causing the pH dependent color change.

To determine the amount of protein nitrogen that was present in the original sample,
the ammonia collected in the receiving solution was titrated with 0.1 M hydrochloric acid.
The titration quantifies the amount of ammonia in the receiving solution, leading to a color
change from green to light pink within a range of 10–25 mL of 0.1 M hydrochloric acid
(indicator pH of 3.70). Equation (2) was used to determine the percentage of nitrogen in
each sample. The percent nitrogen value obtained using Equation (2) was multiplied by the
conversion factor of 6.38 to give the percent protein value for both true protein (TP) and
casein nitrogen (CN) for each sample. By subtracting the casein value from the true protein
value, the whey protein content for each sample was determined.

% Nitrogen =

(
1.4008 ∗ (Vs − Vb) ∗ M

W (g)

)
(2)

where

• Vs and Vb (mL): Titrant acid used for test portion and blank;
• M: Molarity of the acid solution;
• W(g): Test portion weight.

2.6. Chemometrics Analysis
2.6.1. Data Description

MIR spectra were acquired from three sets of Cornell reference samples, where each
calibration set consisted of 14 unique samples. The amount of β-LG and α-LA in each
sample was determined using a combination of Kjeldahl and HPLC as described in methods
Section 2.4 and Section 2.5. Multiple replicates of each sample were analyzed by MIR
spectroscopy to accurately represent milk composition and eliminate instrument fluctuation,
leading to a robust MIR calibration of Cornell reference samples [38,45,50]. A total of 212
MIR spectra, representing replicates for each unique sample, were acquired from the
original three sets of Cornell reference samples, consisting of 42 unique specimens.

2.6.2. Outlier Detection

MIR spectral consistency within replicates was assessed by the statistical methods
Hotelling’s T2 combined with Q-residual to identify and omit outliers [51–55]. The outlier
detection identified samples that deviate significantly from the majority of spectra using
99% confidence interval of both T2 and Q-residual, thereby negatively affecting the predic-
tive ability of the chemometrics model. Hotelling’s T2 method is a multivariate statistical
technique that simultaneously considers the mean and covariance of the spectra by measur-
ing the variation of each spectrum from the mean of the spectra. Q-residual represents the
orthogonal distance of each sample from the prediction of the PLS regression model trained
on the remaining spectra. Higher Hotelling T2 and Q-residual scores indicate greater
deviation from the expected pattern, thus identifying the likelihood that a spectrum is an
outlier. By combining the T2 and Q-residual measures, outliers that exhibit both extreme
values and unusual patterns were identified and omitted from our final dataset. Hotelling
T2 and Q-residual are mathematically represented in Equations (3) and (4), respectively.
From a total of 212 spectra, 15 outliers were identified and subsequently removed from the
dataset (Figure S1).

Hotelling T2

Ti
2 = ∑k

j=1

(
t2

i,j

sj
2

)
(3)
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Q-residual
Q = e′ iei (4)

where

ei is the ith vector in the PLS residual matrix E = X − TP′;
X is the MIR spectra;
P is the PLS loadings matrix;
T is the PLS scores matrix and ti is its ith vector;
k is the number of PLS components used;
sj is the standard deviation of jth PLS component.

2.6.3. Data Partitioning

The spectral dataset consisting of 197 spectra was partitioned into a calibration set of
138 spectra (70%) and a validation set of 59 spectra (30%) [38,39]. Two different sample
partitioning techniques were employed: the Kennard–Stone algorithm (KS), and random
splitting using the scikit-learn library (RS) [36]. To ensure robust model development and
evaluation on the limited dataset, leave-one-out cross-validation (LOOCV) was further
implemented on the full dataset (calibration and validation sets) [36,37].

KS is a widely used partitioning technique in chemometric analysis, and was used
here to generate a calibration set [56–58]. The KS algorithm uses the Euclidean distance
technique to select samples that span the entire range of the dataset, facilitating the accuracy
of chemometric models. The application of KS was tested in three ways: (1) employing
the concentration values of α-LA, (2) implement the concentration values of β-LG, and
(3) utilizing MIR spectra. Since the concentration values of β-LG and α-LA exhibit a
positive linear dependence (see Figure S2), applying either (1), (2), or (3) yields similar
results. However, using either (1) or (2) is faster than using (3) because they have fewer
data points as compared to (3).

RS was also used to create an alternative calibration set. This technique randomly
assigns samples to the calibration set, providing a diverse representation of the data and
reduces selection bias that may have been introduced by the KS selection approach [59].

LOOCV is a validation method often applied to small datasets. It was applied here to
assess the performance of the KS and RS models. For LOOCV, each sample in the dataset
is systematically held out as the validation set, while the remaining samples are used
for model training. The leave-one-out process is repeated for each sample in the dataset,
ensuring that all samples are used as a test sample. In this study, LOOCV was conducted in
two distinct ways: (1) leave-one-replicate-out CV (LOROCV), and (2) leave-one-sample-out
CV (LOSOCV). In LOROCV, one replicate of each sample is left out as the validation set
while the remaining replicates and samples are used for training. In LOSOCV, all the
replicates of each sample are left out as the validation set while the remaining samples are
used for training. In the current study, we applied LORO to maximize the use of available
data, since we were analyzing 197 spectra. The LORO results may bias the validation
set due to the extent of replicate samples in the total, whereas the LOSO approach was
expected to perform worse than the LORO due to a lower total number of samples. LORO
was viewed as providing an upper bound on performance, while LOSO provides a lower
bound. Therefore, the actual performance will likely fall between these two results. The
schematic diagram of LOSOCV and LOROCV are presented in Figure S3.

By employing the KS and RS distinct sample partitioning techniques, and LOOCV, we
aimed to comprehensively evaluate the performance and generalization capability of the
developed chemometric models. The calibration set facilitated model training, while the
validation set allowed for unbiased evaluation.

2.6.4. Spectral Preprocessing

Preprocessing was carried out on the calibration (138 spectra) and validation sets
(59 spectra) to improve the signal-to-noise ratio of the spectra, and reduce spectra vari-
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ations that are not relevant for data analysis. To avoid data leakage, the preprocessing
techniques were fit on the calibration set and transformed on the validation set. A compre-
hensive investigation of different preprocessing techniques was conducted to improve the
predictive analysis of the spectra data. It was observed in the literature that using multiple
preprocessing techniques mostly performs better in making accurate predictions than a
single technique, and the order in which these techniques are applied can significantly
impact the overall predictive accuracy of the subsequent chemometric analysis [60,61].

The preprocessing techniques that were tested included multiplicative scatter correc-
tion (MSC), Savitzky–Golay (SG), mean-centering (MC), normalization, extended multi-
plicative scatter correction (EMSC), standard normal variate (SNV), robust normal variate
(RNV), and local standard normal variate (LSNV). The process was automated using nippy;
a preprocessing package for spectral dataset studies [59]. The details of the different pre-
processing techniques and the corresponding parameter values explored are summarized
in Table S1.

2.6.5. Wavenumber Selection

The complete MIR spectrum, within the wavenumber range of 4000–400 cm−1, is
comprised of 14,416 data points. We evaluated wavenumber selection techniques to iden-
tify the relevant wavenumbers for the quantification of β-LG and α-LA. The metrics for
evaluation included computational time reduction and predictive performance. The tech-
niques assessed were genetic algorithm (GA), interval PLS (iPLS), simulated annealing, PLS
coefficient scores, backward interval PLS (BiPLS), and synergy interval PLS (SiPLS). From
our survey, the combination of iPLS and GA performed the best to reduce time and yield
optimal wavenumber selection results. The initial step employed iPLS according to the
protocol of Nørgaard et al. (2000) for (1) the selection of the wavenumbers considered for
GA analysis, and (2) the identification of the most relevant interval for the quantification of
β-LG and α-LA [62]. This method splits the full spectrum into equidistant intervals and
ranks each interval based on its root mean squared error (RMSE) to identify the most im-
portant regions for β-LG and α-LA. The GA was then used to make the final wavenumber
selections for each protein [63,64]. The GA parameters and iPLS intervals are available in
the supplemental materials, Table S2 and Table S3, respectively. The results for simulated
annealing, PLS coefficient scores, BiPLS, and SiPLS are given in Figure S4, Figure S5, Table
S4, and Table S5, respectively.

2.6.6. Regression Analysis

A variety of regression techniques including PLS, SVR, ridge, and LR were tested to
describe the relationship between the target variables (i.e., concentrations of β-LG and α-LA
proteins) and the predictor variables (FT-MIR spectral data). While PLS is widely adopted
as an industry-standard method in chemometric analysis due to simplicity, and capacity
to assess high dimensional spectra data, SVR is gaining prominence due to aptitude to
address both linear and complex non-linear relationships [38]. Ridge and LR are commonly
used linear techniques in chemometrics, but like PLS, these methods have limited utility
for the analysis of non-linear data.

Partial Least Square (PLS)

The partial least squares (PLS) regression method excels at analyzing complex datasets
with many variables, by creating a latent space representation of the spectral data and
the reference values [43,45]. PLS finds the set of latent variables that retains the most
relevant spectral information by capturing the maximum variance between the spectra
and the reference values in a lower dimensionality thereby reducing the multicollinearity,
redundancy, and dimensionality of the spectral data. PLS is mathematically represented in
Equations (5) and (6).

X = TP′ + E (5)

Y = UQ′ + F = XB + F (6)
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where

Y is the concentration values of α and β;
Q is the PLS scores matrix with respect to Y;
F is the residual matrix with respect to Y;
B is the PLS regression coefficients.

Support Vector Regression (SVR)

The regression technique known as support vector regression (SVR) applies the con-
cepts of support vector machines (SVMs) to regression analysis. SVR operates on a subset
of training data points called support vectors, which are essential for creating the regression
model. The goal of SVR is to find an optimal hyperplane that maps the input variables
(spectral data) to the corresponding continuous output variable (concentration values of
β-LG and α-LA), simultaneously maximizing the margin around the training samples and
minimizing the prediction error. SVR accomplishes this by providing a tolerance parameter
called epsilon, which regulates the margin and provides a limited amount of prediction
error tolerance.

The application of kernel functions in SVR enables the identification of complex
non-linear relationships between the variables by mapping the input spectra data into
higher-dimensional space. SVR can effectively identify linear and non-linear patterns in the
data by using several types of kernels, such as linear, polynomial, or radial basis function
(RBF). SVR is mathematically represented in Equation (7).

minw,b,ξ i ,ξ
∗

i

1
2
||w||2 + C∑N

i=1(ξi + ξi
∗) (7)

subject to the constraints
yi − wϕ(xi)− b ≤ ϵ + ξi
wϕ(xi) + b − yi ≤ ϵ + ξ∗ i

ξi, ξ*
i ≥ 0 ∀ i = 1, ..., N

where
ϕ(xi) is the one of linear, polynomial, or RBF kernels;
wϕ(xi) + b is the predicted value;
yi is the target output;
C is the regularization parameter;
ξi and ξ∗ i are tolerance limits.

Ridge Regression

Ridge regression is an extension of linear regression that deals with the problem of
multicollinearity through regularization. It reduces the coefficients of less informative
wavenumbers toward zero by including a penalty term, alpha in the loss function. The
hyperparameter alpha regulates the regularization’s strength; stronger regularization is
produced by higher values of alpha. It is mathematically represented in Equation (8).

minw ||Xw − y||22 + α||w||2 (8)

where

X is the MIR spectra;
w is the ridge regression coefficient vector and w0 is the intercept;
α is the regularization parameter or penalty term, and α ≥ 0. Setting α = 0 turn Equation (8)
to minw ||Xw − y||22 which is the linear regression cost function;
Xw is the predicted concentration value usually denoted by ŷ;
y is the actual concentration value.
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3. Results
3.1. Descriptive Analysis of Protein Content in the Dataset and Spectra Preprocessing

All samples were analyzed by Kjeldahl analysis for true protein, percent casein, and
percent whey. The Kjeldahl method is a well-established industry-standard method for
quantifying bulk protein in milk, but it cannot quantify individual proteins in the whey
fraction. Figure 1 shows a representative chromatogram of a Cornell reference sample with
the two target proteins α-LA and β-LG eluting at 8–9 min and 11–12 min, respectively.
Based on previous studies, the left shoulder of the β-LG peak is consistent with variant
“B” while the right peak is variant “A” [65]. These isoforms differ by two amino acids
with sequence differences of D64G and V118A in forms A and B, respectively. As in
previous studies quantifying β-LG, areas under the curve for both variants were combined
to quantify the total β-LG present [66]. Target proteins eluted with good separation and
repeatability with extraction efficiencies of 93% for β-LG and 96% for α-LA, respectively.
Extraction efficiency was determined using Equation (1). The RSD of triplicate samples
was 0.76 for β-LG and 1.00 for α-LA.
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Figure 1. Representative chromatogram of a Cornell reference sample.

The statistical analysis of protein variability between Cornell reference samples are
presented in Table 1. The range of concentrations observed for β-LG and α-LA indicates the
diversity of the concentrations of both proteins across the reference set. The ranges noted
in our study are consistent with the generally accepted, average values found in bovine
milk of 2.0–4.0 mg/mL and 1.5–2.0 mg/mL for β-LG and α-LA, respectively. The ranges of
2.22–4.60 mg/mL and 1.08–2.08 mg/mL for β-LG and α-LA, respectively (Table 1) in our
sample data are similar to variations reported in other studies [44].

Table 1. Quantitative assessment of true protein, casein, and whey percentages determined by
Kjeldahl. Individual protein concentrations were determined by HPLC.

Component Mean SD Min. Max.

True Protein (%) 3.1506 0.6776 2.0034 4.2631
Casein (%) 2.5336 0.5529 1.6120 3.4028
Whey (%) 0.6170 0.1426 0.2763 0.9075
β-LG (mg/mL) 3.3500 0.7600 2.2200 4.6000
α-LA (mg/mL) 1.6000 0.2900 1.0800 2.0800
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Some of the raw 197 MIR spectra exhibited significant noise and overlap. To address
these challenges, a series of preprocessing techniques were employed, and their effects
on the spectra data were systematically evaluated. The preprocessing techniques and the
order in which they were applied are presented in Figure 2.
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The order in which the preprocessing techniques were applied is as follows: (1) nor-
malization, (2) baseline/scatter correction, and (3) smoothing. The preprocessing workflow
in Figure 2 was based on the workflow established in the literature, as explained by Tonolini
et al. [45]. Normalization and MC are two common techniques that were considered for
scaling the data. Five baseline/scatter correction methods were applied individually to the
raw spectra, namely SNV, MSC, RNV, EMSC, and LSNV. The commonly used chemomet-
ric preprocessing techniques in milk analysis are MC, SNV, MSC, and SavGol [38,42,45].
EMSC, RNV, and LSNV, which represent modified variations of MSC and SNV, were also
introduced. Additionally, instead of the manual approach employed in previous related
literature [38,42,44,45], the complex process shown in Figure 2 was automated using nippy
to achieve optimal preprocessing. After baseline correction, SavGol smoothing was applied
to further reduce noise and enhance spectral resolution.

The preprocessing results, when simultaneously evaluated for β-LG and α-LA using
automated preprocessing, are given in Table 2. PLS regression was employed to evaluate
the performance of each combination of preprocessing method to identify the best sequence.
The preprocessing combinations were evaluated over the range of n_components, between
1 and 20, to identify the preprocessing techniques that yielded the highest R2 score for
both β-LG and α-LA. In cases where multiple combinations yielded similar results, the
one with the minimum n_components were selected to reduce overfitting on the test
samples. From Table 2, the highest R2 values (R2 = 93%) for β-LG and α-LA were obtained
using: (1) MC + normalize + SavGol (filter_window = 151, poly_order = 1, derivative = 0);
(2) normalize + SavGol (filter_window = 99, poly_order = 3, derivative = 0); and (3) SavGol
(filter_window = 151, poly_order = 2, derivative = 0). The combination of MC, normalize,
and SavGol (filter window = 151, polynomial order = 1, derivative = 0) was selected as
the optimal preprocessing parameters because it produced the minimum n_components
(n_comps = 16) for β-LG and α-LA.
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Table 2. Evaluation of preprocessing techniques, parameter configuration, predictive accuracies (R2)
for the quantification of β-LG and α-LA on the validation set using KS splitting, and the selection of
the optimal number of PLS components.

Preprocessing R2 β-LG R2 α-LA n_Comps

Baseline + normalize+
SavGol(filter_win = 115, 93% 94% 16
poly_order = 1, deriv_order = 0)

normalize + SavGol(filter_win = 99, 93% 93% 20
poly_order = 3, deriv_order = 0)

SavGol(filter_win = 115, 93% 93% 20
poly_order = 2, deriv_order = 0)

LSNV + normalize +
SavGol(filter_win = 99, 77% 80% 8
poly_order = 0, deriv_order = 2)

SNV + SavGol(filter_win = 77, 66% 64% 8
poly_order = 3, deriv_order = 0)

EMSC + SavGol(filter_win = 191, 28% 31% 5
poly_order = 1, deriv_order = 1)

MC—mean centering; SNV—standard normal variate; MSC—multiplicative scatter correction; SavGol—Savitzky–
Golay; EMSC—extended multiplicative scatter correction; LSNV—localize standard normal variate; n_comps—
number of PLS components.

The effects of different preprocessing on the MIR spectra are represented in Figure 3.
Figure 3A illustrates the raw spectra as a basis for comparison with the preprocessed data. It
was observed that the raw spectra exhibited significant noise especially within then regions
2400–1500 cm−1. It was observed from Figure 3B,D that the application of SavGol on the
raw spectra reduced overlap, resulting in better signal to noise. However, the significance of
SavGol was not clearly seen in Figure 3C possibly due to the application of LSNV.
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= 151, poly_order = 3, deriv_order = 0); and (D) RNV (IQR = 75%, 25%) + SavGol (filter_win = 191,
poly_order = 3, deriv_order = 0).
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3.2. Spectra Interpretation and Regions of Interest

The regions of interest for both β-LG and α-LA identified by GA are presented in
Figure 4. Before employing GA, iPLS was initially utilized as an initial step to reduce the
number of wavenumbers considered for the GA analysis. Three different options with 20,
25, and 30 equidistant intervals were tested for the iPLS analysis. It was found that the
optimal choice was 20 intervals, as it provided superior coverage of the relevant spectral
regions, particularly the prominent peaks (amide I, II, and fat) (see Figure S6). The iPLS
method results serve as the initial population for the GA. Specifically, the wavenumbers
identified by iPLS are included in the initial population of potential features for the GA.
This inclusion ensures that the GA begins with a set of candidate features that already
exhibit some relevance to the protein concentrations. While the iPLS method provides
relevant intervals, it does not provide the specific relevant wavenumber data points within
each interval. The GA is used to complement this by further refining the selection to
identify the most informative individual wavenumber data points within those intervals.
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Figure 4. Selected wavenumbers for (A) β-LG and (B) α-LA using GA. The areas in white background
are the excluded wavenumbers and those in blue are the selected wavenumbers. Selected wavenum-
bers for (1) β-LG: 1520–1560, 1635–1675, 1782–1786, 2796–2800, 2858–2862, and (2) α-LA:1543–1573,
1639–1678, 1760–1778, 2488–2491 cm−1.

Based on the results derived from iPLS, wavenumbers within the range of 3000–1000 cm−1

were selected as the input for the subsequent GA analysis, and the full spectrum with
14,416 data points was reduced to 10,268 data points.

PLS-based GA was used for the identification of the most relevant wavenumbers for
each protein of interest. To achieve this, we binned the iPLS selected data points into 604 bins,
each bin representing the summation of 17 contiguous data points (604 × 17 = 10,268). This
was performed to reduce the computational time of the GA. Subsequently, the binned data
points were subjected to the PLS-based GA. The GA was run for 100 generations, and
in each generation, 200 iterations were performed. During the process, the frequency of
selection for each wavenumber in each run was recorded. The GA was implemented for
β-LG and α-LA separately but with the same GA parameters. The obtained results were
then visualized in a bar chart, providing a representation of the wavenumbers’ selection
frequency. The selection frequency bar chart is presented in the supplementary materials
(Figure S7). Out of the 604 binned wavenumbers, 85 bins (i.e., 85 × 17 = 1445 data points)
and 51 bins (i.e., 51 × 17 = 867 data points) were selected for β-LG and α-LA, respectively.
Figure 4 shows the plot of the spectra with the selected regions for each target protein.
The common selected regions for both proteins are wavenumbers within 1800–1700 cm−1,
1700–1600cm−1, and 1600–1500 cm−1. Furthermore, wavenumbers within the regions
1500 cm−1 and 3000–2750 cm−1 were selected for β-LG and α-LA, respectively.



Foods 2024, 13, 166 15 of 22

3.3. Chemometric Models

Four chemometric models, namely PLS, SVR, ridge, and LR were evaluated for their
effectiveness in the quantitative analysis of β-LG and α-LA proteins in Cornell reference
samples using either (1) the full spectrum without preprocessing (raw spectra), or (2) spectra
with the optimal preprocessing obtained and the selected wavenumbers’ data points using
GA. The complete parameter spaces for the four models are provided in Table 3.

Table 3. Chemometric models and their hyperparameters search spaces tuned by Optuna.

Model Parameter Search Space β-LG_Opt α-LA_Opt

C loguniform(5 × 10−³, 1 × 10³) 792.3681 96.3447
epsilon uniform (0.01, 0.9) 0.0311 0.01069

SVR kernel [‘linear’, ‘rbf’, ‘poly’] linear linear
degree [1,2,3,4] 3 1
gamma Loguniform (1 × 10−5, 1 × 105) 0.0126 284.4739

alpha Loguniform (1 × 10−5, 10) 0.00078 0.00095
[‘auto’, ‘svd’, ‘cholesky’,

Ridge solver ‘lsqr’, ‘sparse_cg’, ‘sag’ lsqr sparse_cg
, ‘saga’]

fit_intercept [True, False] TRUE TRUE

LR fit_intercept [True, False] TRUE TRUE
copy_X [True, False] FALSE FALSE

PLS n_comps range (1,20) 14 14

β-LG_opt—optimal parameters selected by Optuna for quantifying β-LG; α-LA_opt—optimal parameters selected
by Optuna for quantifying α-LA.

Since PLS and LR have relatively fewer hyperparameters to optimize, the n_components
hyperparameter for PLS and the fit_intercept and copy_X hyperparameters for LR were
tuned to achieve the optimal hyperparameters results. However, for SVR and ridge,
which have more hyperparameters search spaces, Optuna, an optimization framework for
hyperparameter tuning, was utilized to tune their respective hyperparameters [67]. For
SVR, the tuned hyperparameters included C, epsilon, kernel, gamma, and degree, while for
ridge, alpha, fit_intercept, and solver were optimized. The optimized hyperparameters for
linear SVR were found to be (C = 792.3681, epsilon = 0.0311, gamma = 0.0126, degree = 3,
and kernel = linear) and (C = 96.3447, epsilon = 0.01069, gamma = 284.4739, degree = 1, and
kernel = linear) for β-LG and α-LA, respectively.

The models with the optimized hyperparameters presented in Table 3 were evaluated
using root mean squared error for prediction (RMSEP) and coefficient of determination for
prediction (R2P). The results of each model’s performance are presented in Table 4.

Using raw spectra, the highest R2P values for β-LG and α-LA proteins are 95.3% and
93.0% for KS, 88.8% and 89.7% for RS, 90.7% and 92.1% for LOROCV, and 89.4% and 90.6%
for LOSOCV. With optimal preprocessing and GA-selected wavenumbers, R2P values are
96.5% and 94.7% for KS, 89.2% and 90.5% for RS, 92.7% and 92.6% for LOROCV, and 91.9%
and 91.8% for LOSOCV. The linear SVR model gave the best results for quantification of
both proteins in Cornell reference samples.
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Table 4. Comparison of models’ performance before and after preprocessing + wavenumber selection
using GA. The highest obtained R2 values for KS, RS, and LOOCV are in bold.

KS(P) RS(P) LOROCV LOSOCV

CM Protein R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Raw

PLS
β−LG 93.00% 0.21 89.70% 0.23 92.10% 0.15 90.60% 0.22
α−LA 93.80% 0.08 86.80% 0.1 90.70% 0.06 89.40% 0.09

SVR
β−LG 92.70% 0.21 85.90% 0.28 88.90% 0.18 87.40% 0.26
α−LA 95.30% 0.07 86.80% 0.1 90.50% 0.06 89.30% 0.09

Ridge β−LG 92.40% 0.22 87.50% 0.26 89.50% 0.18 88.00% 0.25
α−LA 94.20% 0.07 86.80% 0.1 89.80% 0.06 88.60% 0.1

LR
β−LG 88.70% 0.27 88.90% 0.25 −9.7 × 1018 1.3 × 108 −8.7× 1018 2.1× 108

α−LA 89.50% 0.1 88.80% 0.1 −6.7 × 1018 6.30 × 108 −1.30 × 1019 1.0 × 109

OP+GA

PLS
β−LG 92.30% 0.21 90.00% 0.23 92.60% 0.15 91.70% 0.21
α−LA 93.40% 0.08 89.00% 0.09 92.20% 0.05 91.10% 0.08

SVR
β−LG 94.70% 0.18 90.50% 0.23 92.60% 0.15 91.80% 0.21
α−LA 96.50% 0.06 89.20% 0.09 92.70% 0.05 91.90% 0.08

Ridge β−LG 93.50% 0.2 90.40% 0.23 92.60% 0.15 91.60% 0.21
α−LA 95.80% 0.06 88.80% 0.1 92.30% 0.05 91.50% 0.08

LR β−LG 81.20% 0.34 85.40% 0.28 89.10% 0.18 88.10% 0.25
α−LA 90.00% 0.1 86.40% 0.1 91.20% 0.06 90.00% 0.09

P—prediction; CM—chemometric mode; OP + GA—optimal preprocessing + wavenumber selection using GA;
KS(P)—KS prediction on validation set; RS(P)—RS prediction on validation set.

4. Discussion

The performance of different splitting techniques in chemometrics plays a crucial role
in the performance of the predictive models. In our study, we compared the performance
of KS and RS using scikit-learn for the quantitative analysis of β-LG and α-LA proteins as
presented in Table 4. It was found that KS consistently outperformed RS, providing more
accurate predictions, higher R2 values (94.7% against 90.5% for β-LG and 96.5% against 89.2%
for α-LA), and lower RMSE (0.18 against 0.23 for β-LG and 0.06 against 0.09 for α-LA). This
finding aligns with previous research highlighting the effectiveness of KS as a powerful
technique for the selection of calibration samples in chemometrics when applied to infrared
spectroscopy data [58]. The ability of KS to select representative spectra that capture the
variability in the data makes it one of the most preferred calibration sample selection choices
for handling high-dimensional spectral data. As a result of this, the use of the KS algorithm
for the quantitative analysis of β-LG and α-LA proteins are strongly recommended.

The selection of informative wavenumber regions is a crucial step in analyzing high-
dimensional spectral data. It stands to reason that these informative regions would depend
on unique structural elements of the proteins of interest. Based on established X-ray
crystallography structures of bovine β-LG and α-LA, the two proteins vary significantly in
their α-helix and β-sheet compositions. Native β-LG is composed of around 50% β-sheet
and 15% α-helix while α-LA is composed of roughly 6% β-sheet and 47% α-helix. The amide
I region (1600 to 1690 cm−1) and amide II region (1480–1575 cm−1) of the MIR spectrum
are known to be responsive to protein secondary structures. The amide I region is known
to be particularly sensitive to differences in secondary structure with β-sheet components
found at 1624–1642 cm−1 and α-helix components found at 1656–1663 cm−1. The amide
II region is less sensitive to secondary structure, but still informative with β-sheets at
1530 cm−1 and α-helix at 1545 cm−1. In our study, the informative wavenumber regions
for predicting the concentrations of β-LG and α-LA and in Cornell reference samples
was investigated using GA as presented in Figure 4. Although there is a wider range of
wavenumbers in the amide I region, it was found that the wavenumbers in the amide II
region were the most informative region for predicting both β-LG and α-LA concentrations,
specifically, β-LG at 1520–1560 cm−1 and α-LA at 1543–1573 cm−1. Furthermore, for both
target proteins, the informative regions included wavenumbers within the amide I, and
lipid regions. It was also observed that the GA selected wavenumbers in the regions
2500 cm−1 and 2750–2900 cm−1. Further investigation using iPLS also revealed that the
most informative region for both proteins is the amide II region (1480–1575 cm−1). This
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finding is consistent with previous research that highlights the significance of the amide II
region for whey protein analysis. There is a strong water band present in milk that may
be overlapping with the amide I region and obscuring informative secondary structure
information [60,61]. This overlap is not prominent in the amide II region. The identification
of these informative wavenumber regions provides valuable insights for analysis of specific
milk protein components.

Preprocessing techniques combined with GA search offer potential improvements in
predictive modeling. In our study, a combination of preprocessing techniques presented in
Table 1 were considered and some of the preprocessed spectra are presented in Figure 3.
After evaluating 434 combinations of preprocessing techniques, it was found that the
combination of MC, normalization, and zeroth-order SavGol filtering yielded the highest R2.
By leveraging the GA, the original set of 14,416 spectral data points was narrowed down to
a relevant subset for quantifying β-LG and α-LA in Cornell reference sample spectral data.
From Table 4, the highest R2 values were 95.3% and 93.0% without preprocessing + GA
selection, and 96.5% and 94.7% after preprocessing + GA, for α and β, respectively.

We evaluated the performance of linear regression using KS and RS as splitting
techniques. Further validation of results was conducted using LOROCV and LOSOCV.
LR performed well with KS, achieving satisfactory R2 values of 88.7% and 89.5% for β-
LG and α-LA, respectively. However, the performance deteriorated when using LOOCV,
which might be attributed to the high dimensionality and presence of highly correlated
wavenumbers in the milk spectral data. These results emphasize the importance of the
need for splitting techniques like LOOCV to ensure reliable model performance especially
when working with a small dataset.

The choice of regression models can significantly impact the predictive performance
in chemometrics analysis. In our study, we compared the performance of SVR, ridge, LR
and PLS regression in modeling the concentrations of β-LG and α-LA (see Table 4). SVR
slightly outperformed ridge in terms of R2 and RMSEP for both proteins using the KS, RS,
and LOOCV. The best R2 values achieved using SVR and ridge are (94.7% and 96.5%) and
(93.5% and 95.8%) for β-LG and α-LA, respectively. Both SVR and ridge outperformed the
other two models: PLS (93.4% and 92.3%) and LR (91.2% and 89.1%). The advantage of SVR
in making more accurate predictions highlights its suitability for capturing the complex
relationships between the input features and the protein concentration. These findings
suggest SVR as a promising regression technique for milk protein analysis. The maximum
R2 values obtained for β-LG and α-LA using LOOCV are 92.8% and 92.7%, respectively.
These results outscored those obtained by Niero et al. [68] who used MIR coupled with
uninformative variable elimination and PLS for the analysis of 114 milk samples. The
authors employed LOOCV and achieved R2 values of 47% and 37% for β-LG and α-LA,
respectively. Our study also gave higher predictive results than a study conducted by
Bonfatti et al. [44] on the analysis of milk samples using MIR coupled with PLS which
reported R2 values of 31% and 64% for β-LG and α-LA, respectively.

Our study highlights SVR as the top-performing model for the quantitative prediction of
α-LA and β-LG from the interpretation of MIR spectra of milk. Nevertheless, it is important to
emphasize that PLS remains a valuable and relevant technique in the realm of chemometrics
analysis. This significance stems from PLS’s advantage of having a constrained number of
hyperparameters to optimize, which contributes to its practicality and ease of implementation.
It is noteworthy that throughout our analysis, PLS served as a complementary and versatile
tool to SVR, beyond its role as a predictive model. Specifically, we employed PLS for tasks
such as wavenumber selection, the determination of optimal preprocessing techniques, and
the identification of outliers. This multifaceted application underscores the utility of PLS in
various stages of our analysis, enhancing its value as a fundamental tool in our study.

Recent developments in analytical instruments used to study food include quantum
laser cascade (QLC)-based and portable infrared spectrometers that are gaining adoption
due to their cost, ease of use, and targeted analysis [69–71]. Typically, these instruments
have inferior resolution, narrow spectrum range, and lower signal-to-noise than typical
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benchtop or in-line spectrophotometers [72]. A study by Kappacher et al. [73] compared
handheld instruments including the Enterprise sensor from Tellspec, UK, the MicroNIR
from Viavi Solutions, and the SCiO from Consumer Physics, with the benchtop NIRFlex N-
500 in qualitative analysis of 126 black truffles. Although the benchtop instrument yielded
the best results, applying preprocessing techniques to spectra produced from the handheld
devices provided results commensurate to the benchtop instrument in most instances.
However, these devices did not perform well in some test cases due to their narrow spectral
acquisition region, poor resolution, and poor sensitivity. Similarly, a recent study employed
a QLC-based MIR instrument for quantitative and qualitative analysis of β-LG, α-LA, and
casein in aqueous solutions, spanning the spectra regions of 1470–1730 cm−1, covering both
amide I and amide II regions [69]. Mean centering and SavGol with first derivative were
applied, and PLS was used for calibration. The model achieved RMSECV values of 0.309,
0.302, and 0.426 for β-LG, α-LA, and casein, respectively. While different preprocessing
techniques discussed in this paper could be used to improve the spectral quality, there are
wavenumbers outside the amide regions identified by the genetic algorithm used in this
paper, which are not present in handheld and QLC MIR instruments, thereby limiting the
wavenumbers considered for chemometric analysis. This limited wavenumber analysis
range is likely to reduce the performance of the developed chemometric techniques. There
is a current gap in the literature regarding the application of these emerging instruments to
complex mixtures such as milk samples, indicating an exciting area for future exploration
and consideration in food analytical studies.

5. Conclusions

In conclusion, our study findings demonstrate that MIR coupled with SVR chemomet-
rics proves to be effective for the quantitative analysis of individual proteins in milk. This
contrasts with the results reported by Bonfatti et al. and Niero et al., which suggested that
MIR coupled with chemometrics cannot accurately quantify individual whey proteins in
milk [44,68]. While the previous studies adhered to the well-known industry standard of
employing PLS for chemometric analysis of dairy products, we utilized a more complex
approach in SVR. Our findings show SVR’s superiority over PLS when assessing β-LG and
α-LA protein concentrations in milk, marking a substantial advancement in this domain
with R2 values of 92.8% and 92.7% for β-LG and α-LA, respectively. Furthermore, we
introduced automation into the selection of the optimal preprocessing, distinguishing our
methodology from prior studies that utilized manual preprocessing selections. Employing
a robust GA-based wavenumber selection technique, we demonstrated its effectiveness
in identifying the relevant wavenumbers for β-LG and α-LA protein quantification in
milk. The utilization of Optuna, an optimization framework for tuning hyperparame-
ters of chemometric models offers the fast identification of optimal parameters for the
chemometric models used in the analysis of β-LG and α-LA proteins.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods13010166/s1, Figure S1: Outlier detection; Figure S2: Rela-
tionship between β-lactoglobulin and α-lactalbumin; Table S1: Preprocessing techniques applied and
their parameter configurations; Figure S3: Schematic diagram of the LOOCV workflow for training
and evaluating the performance of the chemometric models; Table S2: GA parameters and their corre-
sponding values; Table S3: Equidistant intervals comprising the starting datapoint, ending datapoint,
and number of wavenumber data points in each interval; Figure S4: Selected wavenumbers data
points for (A) β-LG and (B) α-LA using simulated annealing. The areas in white background are the
excluded wavenumbers and those in blue are the selected wavenumbers; Figure S5: The magnitude
and direction of wavenumbers selection for (A) β-LG and (B) α-LA using PLS coefficient scores;
Table S4: Interval discarded across different iterations using BiPLS and the model’s performance
after discarding the interval; Table S5: Intervals selected as best performing intervals using SiPLS;
Figure S6: Optimal wavenumber selection using iPLS. The bars in gray indicate the RMSECV for
each interval. Figure S7: Wavenumber frequency selection for (A) β-LG and (B) α-LA. A-Amide II
region, B-Amide I region.
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