Enhancement of Tomato Fruit Quality Through Moderate Water Deficit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Experimental Design
2.3. Plant Growth Indexes
2.4. Gas Exchange and Chlorophyll Fluorescence Parameters of Tomato Leaves
2.5. Morphological Indicators, Dry Weight, and Water Content of Tomato Fruit
2.6. Soluble Solids Content of Tomato Fruit
2.7. Soluble Protein Content of Tomato Fruit
2.8. Vitamin C Content of Tomato Fruit
2.9. Carotenoids Contents of Tomato Fruit
2.10. Sugar Compositions of Tomato Fruit
2.11. Organic Acid Compositions of Tomato Fruit
2.12. Volatile Compounds of Tomato Fruit
2.13. Statistical Analysis of Tomato Fruit
3. Results
3.1. Effect of Water Deficit on Growth Indices of Tomato
3.2. Effect of Water Deficit on Photosynthetic Indexes of Tomato Leaves
3.3. Effect of Water Deficit on Chlorophyll Fluorescence Parameters of Tomato Leaves
3.4. Effect of Water Deficit on the Appearance and Morphology of Tomato Fruits
3.5. Effect of Water Deficit on Color Parameters of Tomato Fruits
3.6. Effect of Water Deficit on the Nutritional Quality of Tomato Fruits
3.7. Effect of Moderate Water Deficit on the Bioactive Compounds in Tomato Fruits
3.8. Effect of Moderate Water Deficit on the Content of Sugar Components in Tomato Fruits
3.9. Effect of Moderate Water Deficit on the Content of Organic Acid Components in Tomato Fruits
3.10. Effects of Moderate Water Deficit on Total Soluble Sugar, Organic Acid Content, and Sugar–Acid Ratio of Tomato Fruit
3.11. Effects of Moderate Water Deficit on Volatile Substances in Tomato Fruit
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ripoll, J.; Urban, L.; Staudt, M.; Lopez-Lauri, F.; Bidel, L.P.R.; Bertin, N. Water shortage and quality of fleshy fruits—Making the most of the unavoidable. J. Exp. Bot. 2014, 65, 4097–4117. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Fei, L.; Li, Y.; Zeng, J.; Dai, Z. Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the Loess Plateau of China. Agric. Water Manag. 2019, 222, 221–230. [Google Scholar] [CrossRef]
- Chen, J.; Kang, S.; Du, T.; Qiu, R.; Guo, P.; Chen, R. Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agric. Water Manag. 2013, 129, 152–162. [Google Scholar] [CrossRef]
- Carrera, C.S.; Dardanelli, J.L. Changes in the Relationship Between Temperature During the Seed-Filling Period and Soya Bean Seed Isoflavones Under Water-Deficit Conditions. J. Agron. Crop Sci. 2016, 202, 421–432. [Google Scholar] [CrossRef]
- Favati, F.; Lovelli, S.; Galgano, F.; Miccolis, V.; Di Tommaso, T.; Candido, V. Processing tomato quality as affected by irrigation scheduling. Sci. Hortic. 2009, 122, 562–571. [Google Scholar] [CrossRef]
- Pulupol, L.U.; Behboudian, M.H.; Fisher, K.J. Growth, yield, and postharvest attributes of glasshouse tomatoes produced under deficit irrigation. Hortscience 1996, 31, 926–929. [Google Scholar] [CrossRef]
- Cuartero, J.; Fernandez-Munoz, R. Tomato and salinity. Sci. Hortic. 1998, 78, 83–125. [Google Scholar] [CrossRef]
- Beecher, G.R. Nutrient content of tomatoes and tomato products. Proc. Soc. Exp. Biol. Med. 1998, 218, 98–100. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.; Zhang, J.; Davies, W.J. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. J. Exp. Bot. 2015, 66, 2253–2269. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Meléndez-Martínez, A.J.; Moriana, A.; Girón, I.F.; Martín-Palomo, M.J.; Galindo, A.; Pérez-López, D.; Torrecillas, A.; Beltrán-Sinchiguano, E.; Corell, M. Yield response to regulated deficit irrigation of greenhouse cherry tomatoes. Agric. Water Manag. 2019, 213, 212–221. [Google Scholar] [CrossRef]
- Du, Y.; Cao, H.; Liu, S.; Gu, X.; Cao, Y. Response of yield, quality, water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in Northwestern China. J. Integr. Agric. 2017, 16, 1153–1161. [Google Scholar] [CrossRef]
- Huaifu, F.; Changxia, D.; Zhujun, Z. The Effect of Different Cubage Pot Culture on Fruit Quality and Leaf Nitrogen Metabolism of Lycopersicon esculentum. Chin. Agric. Sci. Bull. 2012, 28, 150–154. [Google Scholar]
- Topçu, S.; Kirda, C.; Dasgan, Y.; Kaman, H.; Çetin, M.; Yazici, A.; Bacon, M.A. Yield response and N-fertiliser recovery of tomato grown under deficit irrigation. Eur. J. Agron. 2007, 26, 64–70. [Google Scholar] [CrossRef]
- Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation management under water scarcity. Agric. Water Manag. 2002, 57, 175–206. [Google Scholar] [CrossRef]
- Kuşçu, H.; Turhan, A.; Demir, A.O. The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment. Agric. Water Manag. 2014, 133, 92–103. [Google Scholar] [CrossRef]
- Zegbe, J.A.; Behboudian, M.H.; Clothier, B.E. Responses of ‘Petopride’ processing tomato to partial rootzone drying at different phenological stages. Irrig. Sci. 2006, 24, 203–210. [Google Scholar] [CrossRef]
- Cui, J.; Shao, G.; Lu, J.; Keabetswe, L.; Hoogenboom, G. Yield, quality and drought sensitivity of tomato to water deficit during different growth stages. Sci. Agrícola 2019, 77, e20180390. [Google Scholar] [CrossRef]
- Basiouny, F.M.; Basiouny, K.; Maloney, M. Influence of water stress on abscisic acid and ethylene production in tomato under different PAR levels. J. Hortic. Sci. 1994, 69, 535–541. [Google Scholar] [CrossRef]
- Wang, F.; Kang, S.; Du, T.; Li, F.; Qiu, R. Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agric. Water Manag. 2011, 98, 1228–1238. [Google Scholar] [CrossRef]
- Mitchell, J.P.; Shennan, C.; Grattan, S.R. Developmental changes in tomato fruit composition in response to water deficit and salinity. Physiol. Plant. 1991, 83, 177–185. [Google Scholar] [CrossRef]
- Nangare, D.D.; Singh, Y.; Kumar, P.S.; Minhas, P.S. Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis. Agric. Water Manag. 2016, 171, 73–79. [Google Scholar] [CrossRef]
- Saltveit, M.E. Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biol. Technol. 1999, 15, 279–292. [Google Scholar] [CrossRef]
- Da Silva, T.L.; Aguiar-Oliveira, E.; Mazalli, M.R.; Kamimura, E.S.; Maldonado, R.R. Comparison between titrimetric and spectrophotometric methods for quantification of vitamin C. Food Chem. 2017, 224, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A. A simple, sensitive HPLC-DAD method for simultaneous determination of carotenoids, chlorophylls and α-tocopherol in leafy vegetables. J. Food Meas. Charact. 2017, 11, 979–986. [Google Scholar] [CrossRef]
- Liu, F. Optimization of Detection Methods for Polyphenols in Tomato Fruit and Comprehensive Evaluation of Its Quality; Gansu Agricultural University: Lanzhou, China, 2021. [Google Scholar]
- Coelho, E.M.; Da Silva Padilha, C.V.; Miskinis, G.A.; de Sá, A.G.B.; Pereira, G.E.; de Azevêdo, L.C.; Dos Santos Lima, M. Simultaneous analysis of sugars and organic acids in wine and grape juices by HPLC: Method validation and characterization of products from northeast Brazil. J. Food Compos. Anal. 2018, 66, 160–167. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Xie, J.; Yu, J.; Li, J.; Lv, J.; Gao, Y.; Niu, T.; Patience, B.E. Effects of preharvest methyl jasmonate and salicylic acid treatments on growth, quality, volatile components, and antioxidant systems of Chinese chives. Front. Plant Sci. 2022, 12, 767335. [Google Scholar] [CrossRef]
- Xu, S.; Lü, E.; Lu, H.; Zhou, Z.; Wang, Y.; Yang, J.; Wang, Y. Quality detection of litchi stored in different environments using an electronic nose. Sensors 2016, 16, 852. [Google Scholar] [CrossRef]
- Salehi, M. Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis. Environ. Int. 2022, 158, 106936. [Google Scholar] [CrossRef]
- Patanè, C.; Tringali, S.; Sortino, O. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Sci. Hortic. 2011, 129, 590–596. [Google Scholar] [CrossRef]
- Jiang, Y. China’s water scarcity. J. Environ. Manag. 2009, 90, 3185–3196. [Google Scholar] [CrossRef]
- Wu, Q.; Xia, G.M.; Chen, T.T.; Chi, D.C.; Jin, Y.; Sun, D.H. Impacts of nitrogen and zeolite managements on yield and physicochemical properties of rice grain. Int. J. Agric. Biol. Eng. 2016, 9, 93–100. [Google Scholar]
- Kirnak, H.; Kaya, C.; Tas, I.; Higgs, D. The influence of water deficit on vegetative growth, physiology, fruit yield and quality in eggplants. Bulg. J. Physiol. 2001, 27, 34–46. [Google Scholar]
- Anjum, S.A.; Wang, L.C.; Farooq, M.; Hussain, M.; Xue, L.L.; Zou, C.M. Brassinolide Application Improves the Drought Tolerance in Maize Through Modulation of Enzymatic Antioxidants and Leaf Gas Exchange. J. Agron. Crop Sci. 2011, 197, 177–185. [Google Scholar] [CrossRef]
- Medyouni, I.; Zouaoui, R.; Rubio, E.; Serino, S.; Ahmed, H.B.; Bertin, N. Effects of water deficit on leaves and fruit quality during the development period in tomato plant. Food Sci. Nutr. 2021, 9, 1949–1960. [Google Scholar] [CrossRef]
- Quarrie, S.A.; Jones, H.G. Effects of Abscisic Acid and Water Stress on Development and Morphology of Wheat. J. Exp. Bot. 1977, 28, 192–203. [Google Scholar] [CrossRef]
- Zhuang, J.; Wang, Y.; Chi, Y.; Zhou, L.; Chen, J.; Zhou, W.; Song, J.; Zhao, N.; Ding, J. Drought stress strengthens the link between chlorophyll fluorescence parameters and photosynthetic traits. PeerJ 2020, 8, e10046. [Google Scholar] [CrossRef]
- Liang, G.; Liu, J.; Zhang, J.; Guo, J. Effects of drought stress on photosynthetic and physiological parameters of tomato. J. Am. Soc. Hortic. Sci. 2020, 145, 12–17. [Google Scholar] [CrossRef]
- Kalariya, K.A.; Singh, A.L.; Chakraborty, K.; Zala, P.V.; Patel, C.B. Photosynthetic characteristics of groundnut (Arachis hypogaea L.) under water deficit stress. Indian J. Plant Physiol. 2013, 18, 157–163. [Google Scholar] [CrossRef]
- Yuan, X.K.; Yang, Z.Q.; Li, Y.X.; Liu, Q.; Han, W. Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photosynthetica 2016, 54, 28–39. [Google Scholar] [CrossRef]
- Xu, Q.; Ma, X.; Lv, T.; Bai, M.; Wang, Z.; Niu, J. Effects of water stress on fluorescence parameters and photosynthetic characteristics of drip irrigation in rice. Water 2020, 12, 289. [Google Scholar] [CrossRef]
- Sakya, A.T.; Sulistyaningsih, E.; Indradewa, D.; Purwanto, B.H. Physiological characters and tomato yield under drought stress. IOP Conf. Ser. Earth Environ. 2018, 200, 12043. [Google Scholar] [CrossRef]
- O’Connell, M.G.; Goodwin, I. Responses of ‘Pink Lady’ apple to deficit irrigation and partial rootzone drying: Physiology, growth, yield, and fruit quality. Aust. J. Agric. Res. 2007, 58, 1068–1076. [Google Scholar] [CrossRef]
- Tao, H.; Sun, H.; Wang, Y.; Wang, X.; Guo, Y. Effects of water stress on quality and sugar metabolism in ‘Gala’ apple fruit. Hortic. Plant J. 2023, 9, 60–72. [Google Scholar] [CrossRef]
- Galindo, A.; Calín-Sánchez, Á.; Griñán, I.; Rodríguez, P.; Cruz, Z.N.; Girón, I.F.; Corell, M.; Martínez-Font, R.; Moriana, A.; Carbonell-Barrachina, A.A.; et al. Water stress at the end of the pomegranate fruit ripening stage produces earlier harvest and improves fruit quality. Sci. Hortic. 2017, 226, 68–74. [Google Scholar] [CrossRef]
- Barbagallo, R.N.; Di Silvestro, I.; Patanè, C. Yield, physicochemical traits, antioxidant pattern, polyphenol oxidase activity and total visual quality of field-grown processing tomato cv. Brigade as affected by water stress in Mediterranean climate. J. Sci. Food. Agric. 2013, 93, 1449–1457. [Google Scholar] [CrossRef]
- Lu, J.; Shao, G.; Gao, Y.; Zhang, K.; Wei, Q.; Cheng, J. Effects of water deficit combined with soil texture, soil bulk density and tomato variety on tomato fruit quality: A meta-analysis. Agric. Water Manag. 2021, 243, 106427. [Google Scholar] [CrossRef]
- Rosas-Saavedra, C.; Stange, C. Biosynthesis of carotenoids in plants: Enzymes and color. In Carotenoids in Nature: Biosynthesis, Regulation and Function; Springer: Cham, Switzerland, 2016; pp. 35–69. [Google Scholar]
- Krinsky, N.I.; Johnson, E.J. Carotenoid actions and their relation to health and disease. Mol. Aspects. Med. 2005, 26, 459–516. [Google Scholar] [CrossRef]
- Ghobadi, M.; Taherabadi, S.; Ghobadi, M.; Mohammadi, G.; Jalali-Honarmand, S. Antioxidant capacity, photosynthetic characteristics and water relations of sunflower (Helianthus annuus L.) cultivars in response to drought stress. Ind. Crop. Prod. 2013, 50, 29–38. [Google Scholar] [CrossRef]
- Klunklin, W.; Savage, G. Effect on Quality Characteristics of Tomatoes Grown Under Well-Watered and Drought Stress Conditions. Foods 2017, 6, 56. [Google Scholar] [CrossRef]
- Jin, N.; Jin, L.; Wang, S.; Meng, X.; Ma, X.; He, X.; Zhang, G.; Luo, S.; Lyu, J.; Yu, J. A Comprehensive Evaluation of Effects on Water-Level Deficits on Tomato Polyphenol Composition, Nutritional Quality and Antioxidant Capacity. Antioxidants 2022, 11, 1585. [Google Scholar] [CrossRef]
- Beckles, D.M. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 2012, 63, 129–140. [Google Scholar] [CrossRef]
- Miller, S.A.; Smith, G.S.; Boldingh, H.L.; Johansson, A. Effects of Water Stress on Fruit Quality Attributes of Kiwifruit. Ann. Bot. 1998, 81, 73–81. [Google Scholar] [CrossRef]
- Bendich, A.; Machlin, L.J.; Scandurra, O.; Burton, G.W.; Wayner, D.D.M. The antioxidant role of vitamin C. Adv. Free. Radic. Biol. Med. 1986, 2, 419–444. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable. BMC Plant Biol. 2018, 18, 258. [Google Scholar] [CrossRef]
- Massot, C.; Génard, M.; Stevens, R.; Gautier, H. Fluctuations in sugar content are not determinant in explaining variations in vitamin C in tomato fruit. Plant Physiol. Biochem. 2010, 48, 751–757. [Google Scholar] [CrossRef]
- Salunkhe, D.K.; Jadhav, S.J.; Yu, M.H. Quality and nutritional composition of tomato fruit as influenced by certain biochemical and physiological changes. Plant Foods Hum. Nutr. 1974, 24, 85–113. [Google Scholar] [CrossRef]
- Yang, B.; Yao, H.; Zhang, J.; Li, Y.; Ju, Y.; Zhao, X.; Sun, X.; Fang, Y. Effect of regulated deficit irrigation on the content of soluble sugars, organic acids and endogenous hormones in Cabernet Sauvignon in the Ningxia region of China. Food Chem. 2020, 312, 126020. [Google Scholar] [CrossRef]
- Terry, L.A.; Chope, G.A.; Bordonaba, J.G. Effect of water deficit irrigation and inoculation with Botrytis cinerea on strawberry (Fragaria x ananassa) fruit quality. J. Agric. Food. Chem. 2007, 55, 10812–10819. [Google Scholar] [CrossRef]
- Ripoll, J.; Urban, L.; Brunel, B.; Bertin, N. Water deficit effects on tomato quality depend on fruit developmental stage and genotype. J. Plant Physiol. 2016, 190, 26–35. [Google Scholar] [CrossRef]
- Davies, J.N. The non-volatile organic acids of the differently coloured areas of the walls of ‘blotchy’ ripened tomatoes. J. Sci. Food. Agric. 1966, 17, 400–403. [Google Scholar] [CrossRef]
- Davies, J.N.; Hobson, G.E.; McGlasson, W.B. The constituents of tomato fruit—the influence of environment, nutrition, and genotype. Crit. Rev. Food. Sci. Nutr. 1981, 15, 205–280. [Google Scholar] [CrossRef]
- Wei, L.; Wei, S.; Hu, D.; Feng, L.; Liu, Y.; Liu, H.; Liao, W. Comprehensive flavor analysis of volatile components during the vase period of cut lily (Lilium spp. ‘Manissa’) flowers by HS-SPME/GC–MS combined with E-nose technology. Front. Plant Sci. 2022, 13, 822956. [Google Scholar] [CrossRef] [PubMed]
- Vanoli, M.; Bianchi, G.; Rizzolo, A.; Lurie, S.; Spinelli, L.; Torricelli, A. Electronic nose pattern, sensory profile and flavor components of cold stored ‘Spring Belle’ peaches: Influence of storage temperatures and fruit maturity assessed at harvest by time-resolved reflectance spectroscopy. Acta Hortic. 2015, 1084, 687–696. [Google Scholar] [CrossRef]
- Jin, N.; Zhang, D.; Jin, L.; Wang, S.; Yang, X.; Lei, Y.; Meng, X.; Xu, Z.; Sun, J.; Lyu, J.; et al. Controlling water deficiency as an abiotic stress factor to improve tomato nutritional and flavour quality. Food Chem. X 2023, 19, 100756. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Jin, N.; Jin, L.; Xiao, X.; Hu, L.; Liu, Z.; Wu, Y.; Xie, Y.; Zhu, W.; Lyu, J. Response of tomato fruit quality depends on period of LED supplementary light. Front. Nutr. 2022, 9, 833723. [Google Scholar] [CrossRef]
Number in Array | Sensor Name | Object Substances for Sensing | Threshold Value (mL·m−3) |
---|---|---|---|
R1 | W1C | Aromatics | 10 |
R2 | W5S | Nitrogen oxides | 1 |
R3 | W3C | Ammonia and aromatic molecules | 10 |
R4 | W6S | Hydrogen | 100 |
R5 | W5C | Methane, propane, and aliphatic nonpolar molecules | 1 |
R6 | W1S | Broad methane | 100 |
R7 | W1W | Sulfur-containing organics | 1 |
R8 | W2S | Broad alcohols | 100 |
R9 | W2W | Aromatics, sulfur- and chlorine-containing organics | 1 |
R10 | W3S | Methane and aliphatics | 10 |
Treatments | Plant Height (cm) | Stem Diameter (mm) | Leaf Area (cm2) | Number of Leaves | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
10 D | 20 D | 30 D | 10 D | 20 D | 30 D | 10 D | 20 D | 30 D | 10 D | 20 D | 30 D | |
CK | 9.83 ± 0.30 a | 10.06 ± 0.33 a | 10.28 ± 0.33 a | 5.15 ± 0.12 a | 5.3 ± 0.12 a | 5.64 ± 0.11 a | 194.94 ± 2.90 a | 213.10 ± 6.96 a | 232.36 ± 3.17 a | 9.53 ± 0.36 a | 9.6 ± 0.35 a | 10.13 ± 0.32 a |
T1 | 9.57 ± 0.26 ab | 9.74 ± 0.28 ab | 9.9 ± 0.28 ab | 5.02 ± 0.09 ab | 5.21 ± 0.08 ab | 5.34 ± 0.08 b | 189.44 ± 5.34 a | 197.69 ± 9.97 a | 224.73 ± 4.66 ab | 9.47 ± 0.26 a | 9.53 ± 0.27 a | 10.06 ± 0.26 a |
T2 | 9.37 ± 0.18 abc | 9.52 ± 0.17 abc | 9.68 ± 0.18 abc | 4.94 ± 0.08 ab | 5.04 ± 0.09 abc | 5.12 ± 0.09 bc | 178.90 ± 3.51 a | 191.23 ± 4.38 a | 201.39 ± 7.70 bc | 8.93 ± 0.21 a | 9.33 ± 0.33 ab | 9.47 ± 0.24 ab |
T3 | 8.89 ± 0.29 bc | 9.08 ± 0.29 bc | 9.23 ± 0.29 bc | 4.76 ± 0.08 bc | 4.95 ± 0.07 bc | 5.09 ± 0.09 bc | 175.32 ± 11.10 a | 187.93 ± 8.89 ab | 181.09 ± 2.93 c | 8.87 ± 0.26 a | 9.06 ± 0.18 ab | 8.73 ± 0.37 bc |
T4 | 8.8 ± 0.31 bc | 9.02 ± 0.31 bc | 9.15 ± 0.31 bc | 4.73 ± 0.11 bc | 4.88 ± 0.12 c | 4.98 ± 0.12 c | 168.97 ± 3.18 a | 155.35 ± 9.12 bc | 140.37 ± 9.12 d | 8.87 ± 0.27 a | 8.6 ± 0.21 ab | 8.53 ± 0.22 bc |
T5 | 8.63 ± 0.23 c | 8.82 ± 0.212 c | 8.94 ± 0.21 c | 4.61 ± 0.11 c | 4.77 ± 0.11 c | 4.89 ± 0.12 c | 133.39 ± 2.31 b | 120.04 ± 2.40 d | 120.65 ± 4.02 c | 8.86 ± 0.25 a | 8.2 ± 0.33 c | 8.07 ± 0.30 c |
Treatments | Equatorial Diameter (mm) | Longitudinal Diameter (mm) | Fruit Shape Index | Fresh Weight of Single Fruit (g) | Single Fruit Dry Weight (g) | Water Content (%) |
---|---|---|---|---|---|---|
CK | 24.15 ± 0.73 a | 19.86 ± 0.88 a | 0.82 ± 0.05 ab | 4.66 ± 0.26 a | 0.61 ± 0.01 a | 87 ± 0. 4 a |
T1 | 24.27 ± 1.52 a | 19.55 ± 0.17 a | 0.81 ± 0.05 b | 4.17 ± 0.34 a | 0.54 ± 0.03 abc | 87 ± 0. 9 a |
T2 | 24.37 ± 0.21 a | 19.46 ± 0.32 a | 0.80 ± 0.01 b | 3.82 ± 0.37 ab | 0.50 ± 0.01 abc | 86 ± 1.1 a |
T3 | 23.09 ± 0.44 a | 19.73 ± 0.25 a | 0.85 ± 0.01 ab | 3.75 ± 0.20 ab | 0.57 ± 0.04 ab | 85 ± 0.4 ab |
T4 | 20.46 ± 0.63 b | 19.02 ± 0.53 ab | 0.93 ± 0.04 a | 2.82 ± 0.27 bc | 0.47 ± 0.03 bc | 83 ± 1.2 b |
T5 | 19.86 ± 0.94 b | 17.45 ± 0.63 b | 0.88 ± 0.01 ab | 2.51 ± 0.44 c | 0.43 ± 0.03 c | 82 ± 1.3 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Wang, J.; Yang, J.; Bai, P.; Feng, J.; Wu, Y.; Yu, J.; Hu, L.; Liao, W. Enhancement of Tomato Fruit Quality Through Moderate Water Deficit. Foods 2024, 13, 3540. https://doi.org/10.3390/foods13223540
He Y, Wang J, Yang J, Bai P, Feng J, Wu Y, Yu J, Hu L, Liao W. Enhancement of Tomato Fruit Quality Through Moderate Water Deficit. Foods. 2024; 13(22):3540. https://doi.org/10.3390/foods13223540
Chicago/Turabian StyleHe, Yongmei, Junwen Wang, Jiaojiao Yang, Peng Bai, Junfang Feng, Yue Wu, Jihua Yu, Linli Hu, and Weibiao Liao. 2024. "Enhancement of Tomato Fruit Quality Through Moderate Water Deficit" Foods 13, no. 22: 3540. https://doi.org/10.3390/foods13223540
APA StyleHe, Y., Wang, J., Yang, J., Bai, P., Feng, J., Wu, Y., Yu, J., Hu, L., & Liao, W. (2024). Enhancement of Tomato Fruit Quality Through Moderate Water Deficit. Foods, 13(22), 3540. https://doi.org/10.3390/foods13223540