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Abstract: Ellagic acid (EA), a polyphenolic constituent of plant origin, has been thoroughly investi-
gated for its hypothesised pharmacological properties among which antioxidant and neuroprotective
activities are included. The present study was designed to explore whether EA could attenuate heavy
metal (cadmium, mercury, and lead)-induced neurotoxicity in SH-SY5Y cells, which were utilized as
a model system for brain cells. MTT and LDH assays were performed to examine the viability of the
SH-SY5Y cells after exposure to Cd, Hg, and Pb (either individually or in combination with EA) as
well as the effects of necrotic cell death, respectively. Furthermore, 2′,7′-dichlorodihydrofluorescein
diacetate (DCFH-DA), a cell-based assay, was performed to determine whether EA could protect
SH-SY5Y from heavy metal-induced oxidative stress. Results allowed us to assess the capability of EA
to enhance the number of viable SH-SY5Y cells after exposure to heavy metal toxicity. Pre-treatment
with EA showed a considerable, concentration-dependent, cytoprotective effect, particularly against
Cd2+-induced toxicity. This effect was confirmed through the reduction of LDH release after the
simultaneous cell treatment with Cd2+ and EA compared with Cd2+-treated cells. Furthermore, a
significant, concentration-dependent decrease in reactive oxygen species (ROS) production, induced
by H2O2 or heavy metals, was observed in the same model. Overall, the obtained results provide
further insight into the protective role of EA against heavy metal-induced neurotoxicity and oxidative
stress, thus indicating the potential beneficial effects of the consumption of EA-rich foods. However,
to confirm its effects, well-designed human randomized controlled trials are needed to fill the existing
gap between experimental and clinical research.

Keywords: antioxidants; heavy metals; neurotoxicity; SH-SY5Y; polyphenols

1. Introduction

Oxidative stress occurs when free radicals and other reactive species overwhelm the
availability of antioxidants. Reactive oxygen species (ROS), reactive nitrogen species (RNS),
and their counterpart antioxidant agents are essential for physiological signalling and host
defence, as well as for the evolution and persistence of inflammation. However, when the
intracellular sources of reactive species rise, alterations of several physiological processes
occur. Among them, the increase in the blood–brain barrier’s permeability, tubulin alter-
ations, and the perturbation in synaptic transmission are all included [1]. Oxidative stress
has been linked to the aetiology of many diseases, including neurodegenerative diseases
such as Alzheimer’s disease, amyotrophic lateral sclerosis, Friedreich’s ataxia, Huntington’s
disease, multiple sclerosis, and Parkinson’s disease [2]. Among the substances that lead to
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ROS overproduction, a crucial role is played by heavy metals, which are also known to be
associated with neurotoxicity and cognitive dysfunctions. These comprise cadmium (Cd),
mercury (Hg), and lead (Pd) [3,4].

Cd, an environmental contaminant, is a toxic transition metal, which can induce sev-
eral toxic effects depending on the concentration and the exposure time. The molecular
mechanism for the toxic effects of Cd involves the alteration in thiol proteins [5], inhibition
of energy metabolism [6], alteration in DNA structure [7], and an impact on some enzyme
activities (succinate dehydrogenase, cyclic nucleotide phosphodiesterase, and antioxidant
enzymes which include catalase, Mn-superoxide dismutase, Cu, and Zn-superoxide dis-
mutase) [8–10]. Furthermore, increased levels of Cd are associated with very high toxicity
of the kidneys, liver, lungs, testes, bones, blood system, and central nervous system [11].
Cd is reported to affect a number of cellular activities, such as cell proliferation, differenti-
ation, and apoptosis, and is responsible for the development of several different tumour
types [12,13]. Hg is a widespread environmental and industrial pollutant, which may
cause severe tissue damage in different body districts [14]. Hg neurotoxic effects are well
known [15]. Over the last decade, evidence has accumulated for the role of reactive oxygen
metabolites as a mediator of tissue injury in several animal models [16]. The pro-oxidant
properties of Hg have been documented over time [17]. Concerning the mechanism, re-
search supports the view that Hg (II) ions both compromise the antioxidant potential of
glutathione and promote the formation of reactive species through thiol complexation.
Moreover, Hg induces lipid peroxidation [18]. Hg neurotoxicity seems to be linked to
the induction of ROS and the depletion of antioxidant enzymes [19]. Pb is a well-known
industrial and environmental toxin that can cause numerous acute and chronic toxicities.
Indeed, its effects on the human body are devastating, and there is almost no function in
the human body that is not affected by Pb toxicity. Particularly, long-term exposure in
adults can result in anaemia along with an increase in blood pressure, severe damage to the
brain and kidneys, miscarriage in pregnant women, and the reduction of male fertility [20].
Exposure to Pb appears to cause severe effects in cognitive function in both adults and
children, among which intellectual and learning disabilities and behavioural disorders
are included [21]. These deleterious effects are linked to several molecular and cellular
mechanisms including alterations in DNA and chromosomal integrity [22]; Pb’s direct
interaction with proteins, especially with those presenting metal-binding sites due to its
high electronegativity; and the alteration to cellular redox status, considering that Pb can
generate ROS simultaneously with the depletion of antioxidant systems due to its high
affinity for thiol groups [23]. Indeed, Pb neurotoxicity is attributable to ROS generation
and endogenous antioxidant reduction [24].

Synthetic and natural antioxidants have been recognized in protecting against heavy
metal-induced oxidative stress [25]. Among them, ellagic acid (EA), a polyphenolic com-
pound (Figure 1), is a common metabolite found in several medicinal plants and vegetables
including green tea, pomegranates, strawberries, blackberries, raspberries, nuts, grapes,
and others [26]. It is present either in free-form or as part of more complex molecules
(ellagitannins), the metabolism of which results in the release of EA as well as of several
metabolites, including urolithins. EA has been reported to have anti-atherogenic, anti-
inflammatory, and neuroprotective effects. Indeed, the health benefits attributed to EA-rich
foods are thought to involve various protective mechanisms at the cellular level. Dietary
EA is converted by the intestinal microbiota to urolithins, which are better absorbed than
EA and may contribute significantly to the health effects attributed to EA-rich foods [27].
Among the mechanisms involved in EA pharmacological activities are its ability to reduce
the lipidemic profile and lipid metabolism, alter pro-inflammatory mediators (tumour
necrosis factor-α, interleukin-1β, interleukin-6), and decrease the activity of nuclear factor-
κB while increasing nuclear factor erythroid 2-related factor 2 expression [28]. In addition,
results from recent research have increased the interest in EA both as a potential protective
agent of the liver [29] and skin [30] as well as as a potential anticancer agent due to the
specific mechanisms affecting cell proliferation, apoptosis, DNA damage, and angiogen-



Foods 2024, 13, 419 3 of 16

esis and its anti-inflammatory properties [31]. Several in vitro and in vivo studies have
confirmed the protective role of EA in suppressing oxidative stress [32]. EA was found to
scavenge ROS and RNS, such as hydroxyl radicals, perxoyl radicals, NO2 radicals, and
peroxynitrite, with activities comparable to those of many well-known antioxidants such
as vitamin E and vitamin C [33]. Indeed, the four hydroxyl and two lactone functional
groups act, respectively, as hydrogen bond acceptors and donors, thus enabling EA to
scavenge O2·−, HO·, H2O2, and ONOO· [34]. It has been reported that EA exerts an-
tioxidant effects through Nrf2 and enhancing the expression of Heme oxygenase-1 and
superoxide dismutase, as well as through the down-regulation of Keap1 in keratinocytes
following UVA irradiation [35]. Numerous studies have reported the anti-oxidative ben-
efits of foods enriched with EA, such as pomegranates, berries, and walnuts, on various
metabolic diseases [36,37]. Moreover, it has been shown that EA increases the activity and
expression levels of catalase, glutathione peroxidase, and glutathione-S-transferase [38].
Furthermore, some research has highlighted the neuroprotective potential of EA against the
toxicity of certain agents, including rotenone and acrylamide, and the possible prevention
of Alzheimer’s disease. [39–41]. Results of a recent study have shown that EA can alleviate
the damaging effects of heavy metals, especially those of Pb, on the human body [42]. Oral
EA treatment in rats has been shown to provide protection against Pb-induced nephrotox-
icity by suppressing oxidative stress, inflammation, apoptosis, and autophagy [43]. EA
reduces Pb residue levels in the kidneys, suggesting a chelating activity of this antioxidant
against this metal. In addition, it has been demonstrated that the modulatory effect of EA
against the metal-induced aggregation of α-Synuclein, which is an intrinsically disordered
protein whose aggregation and deposition in Lewy bodies is involved in the progression
of Parkinson’s disease and other related disorders [44]. Considering the high potential of
EA in contributing to different aspects of health, in this study we aimed to investigate the
potential neuroprotective effect of EA against heavy metals (Cd, Hg, and Pb) by counteract-
ing both their cytotoxicity and the induction of oxidative stress in the SH-SY5Y cells used
as a neuronal model.
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Figure 1. Ellagic acid.

2. Results
2.1. Effect of Cd, Hg, Pb, and EA on Cell Viability

Cytotoxicity experiments were performed to determine the effect of Cd, Hg, and Pb
on human SH-SY5Y neuronal cells. Results obtained are shown in Figure 2. The MTT
findings demonstrated that metal concentration and time of exposure affect the cytotoxic
effect on neuroblastoma cells. After 24 h of exposure, Cd2+ induced the most marked
reduction in cell viability at the higher concentration used (250 µM) followed by Hg2+ and
then Pb2+, which exhibited the lowest toxicity. In particular, the cytotoxicity of Cd2+ rose in
a time-concentration manner. In fact, the cells’ survival rate dramatically decreased during
24 h at doses of 0.25, 2.5, 25, and 250 µM, decreasing from 86 to 75, 54, and 29%, respectively.
Compared with Cd2+, Hg2+ was less toxic to SH-SY5Y cells. After 24 h, the survival rate
dropped from 72% at 0.25 to 29% at 250 µM. Pb2+ cytotoxicity was the lowest among the
three heavy metals, being quite consistent in the concentration range from 0.01 to 2.5 µM
at all established times of treatment. Conversely, after 24 h, the survival rate decreased to
87% at 25 µM and 65% at 250 µM after Pb2+ exposure. Date obtained after 48 and 72 h of
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treatment confirmed what was observed in the 24 h experiment, i.e., Cd2+ was the metal
most likely to strongly affect cell viability in a dose-dependent manner. The results obtained
using the MTT assay were confirmed through observation of the cells under the inverted
phase-contrast microscopy (see Supplementary Material, Figure S1). Indeed, cells in the
control group, which were treated with the vehicle only, showed normal neuronal cell
morphology after 24 h. On the contrary, cells exposed to Cd2+ at a concentration of 25 µM
exhibited an irregular morphology, decreasing in number (about 50%) with respect to
control cells. A similar cellular distribution and morphology were observed for cells treated
with 25 µM Hg2+. Instead, after 24 h of treatment with Pb2+ cell morphology appeared
more similar to that of the control cells with a slight decrease in the number of cells.
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Figure 2. Effects of Cd2+, Hg2+, and Pb2+ (0.01–250 µM) on SH-SY5Y cell viability after 24 h (a), 48 h
(b), and 72 h (c) of exposure. Results are shown as mean ± SEM (n = 3). Significant differences versus
the control: non-significant differences (ns, p > 0.05), *** p < 0.001, **** p < 0.0001.

The results from the first experimental set showed that a 24 h exposure time was
sufficient to observe the harmful effects of the three metal ions, and that these effects
dramatically increased with a longer exposure (72 h). These results supported the following
toxicity scale for SH-SY5Y cells of Cd2+

, Hg2+, and then Pb2+. Additionally, the results
obtained allowed us to choose the concentration of heavy metals which significantly
decreased vitality for the evaluation of the potential protective action of the tested substance
of EA. Therefore, a concentration of 25 µM was chosen for the successive experiments
because, out of all the three metals, it was found to be the concentration capable of affecting
cell viability without totally compromising the EA’s potential cytoprotective activity since
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it did not induce total cell death. Additionally, to assess the effect of EA on SH-SY5Y cells,
the cellular line was exposed to 1, 5, and 10 µM concentrations of the compound for 24,
48, and 72 h. Cell viability was always higher at all concentrations with respect to the
control. In particular, the results revealed a significant dose-dependent increase in cell
viability compared with the control after 24, 48, and 72 h. In fact, after 24 h of exposure to
EA, cell viability increased from 98.8% to 114.2%. Even more pronounced was the effect at
the higher concentration (10 µM) which, at 72 h, produced an upturn in cell proliferation
of 124.2% (Figure 3). Cell morphology results indicated a normal and uniform SH-SY5Y
cell distribution along with an intact morphology after 24 h (see Supplementary Material,
Figure S2). Cells exposed to different concentrations of EA (1–10 µM) showed a similar
morphology at all the concentrations compared with the control cells (see Supplementary
material, Figure S2, panel a). However, an increased number of cells has been observed,
thus confirming the results obtained by means of the MTT assay.
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Figure 3. Effect of EA (1–10 µM) on SH-SY5Y cell viability after 24 h (a), 48 h (b), and 72 h (c) of
exposure (MTT assay). Data are expressed as a percentage of vehicle-treated cells (control). Results are
shown as mean ± SEM (n = 3). Significant differences versus the control: non-significant differences
(ns, p > 0.05), ** p < 0.01, **** p < 0.0001.

2.2. Effect of EA on Cd-, Hg-, and Pb-Induced Cytotoxicity

Once it had been established that the tested concentrations of EA were not toxic to the
SH-SY5Y cell line, we proceeded to assess the possible cytoprotective effects against cell
damage induced by exposure to Cd2+, Hg2+, and Pb2+ (25 µM) under various experimental
conditions. Cells were first pre-treated with EA (1, 5, 10 µM) for a 12 h incubation period
to test if it could protect cells from Cd2+, Hg2+, and Pb2+ toxicity (Figure 4). EA in pre-
treatment exerted a marked, dose-dependent, cytoprotective effect against cells exposed
to toxic concentrations of Cd2+. Indeed, the viability of cells pre-treated with various
concentrations of EA was greater than the viability of cells treated with heavy metals alone.
Particularly, cell viability values rise from a percentage of 46% (cells treated only with Cd2+)
to 75.9% (cells pre-treated with 10 µM of EA) after 24 h of exposure. After 48 h of treatment,
a significant increase was also noticed. In fact, the cell viability percentage improved
from 13.7% (cells treated only with Cd2+) to 34.5% (cells pre-treated with 10 µM of EA).
Regarding protection from Hg2+, slight improvements in cell viability compared with the
controls were detected, at the EA concentrations of 1 and 5 µM, for all the incubation times.
Conversely, no effect (after 24 h and 48 h of incubation) or even a slight reduction (after
72 h of incubation) of cell viability was observed at 10 µM. Unfortunately, pre-treatment
with EA was not advantageous in Pb2+-treated cells at all EA concentrations after 24 and
48 h of exposure, while a decrease in viability was observed after 72 h of exposure.
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Figure 4. Effect of pre-treatment with Cd2+, Hg2+, and Pb2+ (25 µM) and EA (1–10 µM) on SH-SY5Y
cell viability after 24 h (a), 48 h (b), and 72 h (c) of exposure (MTT assay). Data are expressed
as mean ± SEM (n = 3). Significant differences versus the control: non-significant differences
(ns, p > 0.05), * p < 0.05, **** p < 0.0001; # p < 0.05, ## p < 0.01, ### p < 0.001, #### p < 0.0001 as
compared with Cd2+, Hg2+, or Pb2+ alone.

Successively, the cytoprotective effect of the simultaneous treatment of EA with toxic
concentrations of Cd2+ on cells was evaluated (Figure 5). In particular, the cell viability
values increased from approximatively 46% (cells treated only with Cd2+) up to 53% (cells
co-treated with 10 µM of EA) after 24 h of incubation. No significant cytoprotective effect
was obtained for cells co-treated with EA and Hg2+. Encouraging results were instead
obtained for cells treated simultaneously with EA and Pb2+. In fact, cell viability increased
from 88.6% (Pb2+ only treated cells) to 104% in the case of co-treatment with EA 1 µM (24 h
of exposure). A similar effect can be observed at higher concentrations of EA (5 or 10 µM) in
the co-treatment. After 48 h of co-treatment, EA acid exhibited a pronounced cytoprotective
effect against Cd2+-treated cells. Indeed, cell viability rose from 13% (cells treated only with
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Cd2+) to 20%. No cytoprotective effect was observed for the co-treatment between EA and
Hg2+ or Pb2+. This trend of results was confirmed following 72 h of co-treatment.
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SH-SY5Y cell viability after 24 h (a), 48 h (b), and 72 h (c) of exposure (MTT assay). Data are expressed
as mean ± SEM (n = 3). Significant differences versus the control: non-significant differences
(ns, p > 0.05), ** p < 0.01, *** p < 0.001, **** p < 0.0001; # p < 0.05, ### p < 0.001, #### p < 0.0001 as
compared with Cd2+, Hg2+, or Pb2+ alone.

2.3. Effect of EA on Cd2+-, Hg2+-, and Pb2+-Induced LDH Release

To explore the potential protective effect of EA against the oxidative stress-induced
membrane damage trigged by heavy metals, a LDH assay was carried out on SH-SY5Y
cells. This assay measures the activity of the stable enzyme LDH (lactate dehydrogetase)
which is released into the medium because of apoptosis, necrosis, and other events of
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cell damage that cause membrane integrity decline [45] (Figure 6). Thus, the activity of
LDH can be estimated and connected to the proportion of dead cells through cell lysis.
Treatment with Cd2+, Hg2+, or Pb2+ alone significantly increased LDH release to 144%,
24%, and 47%, respectively, in SH-SY5Y after 24 h. When SH-SY5Y cells were exposed to
mixtures of Cd2+/EA, LDH release significantly decreased after 24 h of treatment compared
with Cd2+-treated cells at all tested EA concentrations. Regarding Hg2+/EA treatment, no
significant reduction in LDH release was observed, while in the case of Pb2+, an appreciable
decrease occurred during concomitant 5 and 10 µM of EA treatment after 24 h. Meanwhile,
after 48 h of heavy metal treatment, an increase in LDH release was only observed for Cd2+,
and the related decrease after Cd2+/EA co-treatment was obtained with 1 and 5 µM of
EA. Interestingly, 72 h of Cd2+ treatment increased LDH release by 96%, while Cd2+/EA
co-treatment significantly decreased LDH release in a clear-cut, dose-dependent manner
up to 140% at 10 µM EA.
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or Pb2+ alone.



Foods 2024, 13, 419 9 of 16

2.4. ROS Scavenging Effects of EA against Cd2+-, Hg2+-, Pb2+-, and H2O2-Induced
Oxidative Stress

Since oxidative stress is one of the mechanisms of Cd2+-, Hg2+-, or Pb2+-induced
neurodegeneration, we aimed at exploring the potential ability of EA to reduce oxidative
stress triggered by heavy metals in SH-SY5Y cells. The potential antioxidant activity was
evaluated in vitro using the 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) cell-
based assay on SH-SY5Y cells. The test was based on measuring the reducing effect of the
compound against oxidation of 2′,7′-dichlorodihydrofluorescein (DCFH) to the fluorescent
probe of 2′,7′-dichlorofluorescein (DCF). At first, we determined the potential EA ability
to protect our neuronal model from the ROS production induced by H2O2 (Figure 7),
which was used at a concentration of 50 µM. The results demonstrated that EA reduced
oxidative stress induced by H2O2 in a dose-dependent manner. In particular, at the higher
concentration tested of 25 µM, pre-treatment with EA reduced the ROS production induced
by H2O2 by 82.4%.
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Figure 7. DCFH oxidation in SH-SY5Y cells after 24 h of incubation with increasing concentrations
(1–25 µM) of EA in the presence of hydrogen peroxide (H2O2). Bars represent “medium ± standard
deviation” values obtained from three individual experiments. Significant differences versus H2O2:
non-significant differences (ns, p > 0.05), *** p < 0.001, **** p < 0.0001.

Once we demonstrated the protective power of EA against H2O2-induced oxidation,
we evaluated the same effect against Cd2+-, Hg2+-, and Pb2+-induced ROS production.
Metals were used at a concentration of 25 µM (Figure 8). Moreover, in this case, the
significant, concentration-dependent cytoprotective effect of EA could be observed against
all the three metals. Although no remarkable antioxidant effect was detected at the lowest
concentrations, pre-treatment with 10 and 25 µM of EA succeeded in decreasing Cd2+-
induced oxidative stress by 47.6% and 66.4%, respectively. The most encouraging result
was obtained against Hg2+-induced oxidation. Indeed, fluorescence intensity was reduced
by 86.2% compared with Hg2+ treatment at the highest concentration. Regarding Pb2+,
a slight protective effect has been detected at a concentration of 5 µM of EA, while EA
conversely generated a marked decrease in oxidative stress at the highest concentration
tested of 25 µM where the fluorescence intensity decreased by 70.4% with respect to cells
treated only with Pb2+.
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3. Discussion

Environmental exposure to toxic heavy metals represents a widespread problem and
poses a major risk to human health due to their long-lasting effects on the brain [46]. Ev-
idence in support of the neurotoxic effects of Cd, Hg, and Pb exposure are increasing.
Depending on the duration of the exposure, they may cause problems associated with
neurodevelopment, neurobehaviour, and cognitive function, or they may contribute to
the aetiology of age-related and neurodegenerative disorders such as Alzheimer’s (AD)
and Parkinson’s (PD) diseases. Recently, it has been reported that Cd and Hg could affect
the Aβ42 peptide, increasing its cytotoxicity, thus strengthening the hypothesis that they
may be cofactors of the risk for AD [47]. Mitochondrial dysfunction, redox system imbal-
ance, free radical-mediated generation of oxidative stress, decreasing antioxidative indices,
interactions with protein sulfhydryl groups (-SH), and competition for essential metal
binding sites (such as Fe, Cu, and Zn) are among the neurotoxic mechanisms of these heavy
metals [48]. Additionally, cellular apoptosis, necrosis, and other cellular damage events
can occur in response to Cd, Hg, and Pb toxicity [7,15,23]. Recently, the use of antioxidants
to prevent or delay the adverse reactions produced by heavy metals has received great
interest among researchers. Several reports indicate the possibility of using medicinal
plant extracts comprising polyphenols, flavones, flavonoids, tannins, alkaloids, and ter-
penes, which are known antioxidants, as alternatives to neurotoxicity therapy [49]. EA is a
polyphenolic compound that occurs naturally in numerous fruits, including strawberries,
cranberries, pomegranates, grapes, and the seeds of raspberries. EA’s major therapeutic
effects are linked to its anti-inflammatory, immunomodulatory, anti-diabetic, and anticancer
properties [50]. Furthermore, EA has been reported to decrease oxidative stress-induced
apoptosis by preventing caspase-3 activation through the mitochondrial apoptotic pathway
in SH-SY5Y cells [51]. In addition, EA has been shown to have neuroprotective effects in
Parkinson’s disease- and Alzheimer’s disease-affected experimental mice [52]. EA reduces
lipid peroxidation, serves as a ROS scavenger, and positively affects mediators that are
pro-oxidant and anti-inflammatory. Treatment with EA could inhibit Cd-induced oxidative
injury in rat primary astrocytes [42]. EA dramatically boosted the activity of antioxidant
enzymes, such as GPx, SOD, and CAT, in rats exposed to Hg. Additionally, in kidney
tissue, EA increased the antioxidant system while simultaneously reducing the oxidant
content [7]. In the present work, we attempt to demonstrate the cytoprotective ability of
EA on SH-SY5Y neuroblastoma cells against heavy metal (Cd, Hg, and Pb) toxicity.

3.1. Effect of Cd, Hg, Pb, and EA on Cell Viability

Cd2+, Hg2+, or Pb2+ were used to reproduce an in vitro model of heavy metal-induced
toxicity in SH-SY5Y cells that could mimic an vivo heavy metal chronic exposure in the
brain [53]. The MTT assay, a widely used test for cell viability determination, was performed
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on neuroblastoma cells in the presence of different concentrations of the single heavy
metal. This way, we demonstrated that Cd2+, Hg2+, and Pb2+ significantly challenge
cell viability in a dose- and time-dependent manner, with Cd being more toxic than Hg
and Pb being the least lethal. The various processes used by SH-SH5Y cells to absorb
heavy metals conceivably account for their different sensitivity to each heavy metal. Our
findings confirmed what was previously reported. Indeed, Cd exposure has been shown
to reduce cell viability in a dose-dependent manner and disrupts the cytoskeleton in
cultured neuroblastoma cells, affecting signal transmission, cell function, and causing
neurotoxicity [54]. Exposure to Pb significantly and concentration-dependently reduced the
growth of SH-SY5Y cell line. The effects of Pb exposure were shown to induce changes to
the Golgi apparatus, dysfunctional mitochondria, an increase in glial filaments in astrocytes,
and oxidative stress. Pb further reduced glutathione levels by inactivating glutathione-
S-transferase [55]. Extensive research showed the effect of methylmercury (MeHg) on
SH-SY5Y cells, demonstrating that MeHg is able to damage SH-SY5Y cells in a dose-
and time-dependent manner [56]. Our first experimental set allowed us to select the
concentration of 25 µM, which significantly decreased cell vitality, to carry out subsequent
experiments. Next, the investigation into the effect of EA on SH-SY5Y cells proved that
EA did not negatively affect cell vitality and otherwise slightly improved their viability.
Therefore, the concentrations of 1, 5, and 10 µM were selected to evaluate EA’s capability to
counteract Cd2+-, Hg2+0-, or Pb2+-induced toxicity in SH-SY5Y.

3.2. Effect of EA on Cd, Hg and Pb-Induced Cytotoxicity

Next, with the addition of EA to the cells treated with a toxic concentration of each
heavy metal, the viability of the cells generally increased and a cytoprotective effect was seen.
Pre-treatment with EA proved to be useful in protecting cells from Cd2+-induced toxicity, with
the effects being more evident after 24 h of treatment with respect to 48 or 72 h of exposure.
Whereas slight improvement or no effect in cell viability were detected when Hg2+ or Pb2+

induced the toxicity, respectively, simultaneous treatment with EA was shown to have a
strong protective dose-dependent impact against Cd2+, particularly after 72 of treatment,
while having a protective effect against Pb2+ at 24 h and no effect against Hg2+.

3.3. Effect of EA on Cd2+-, Hg2+-, and Pb2+-Induced LDH Release

One of the most common types of physiologically recognized cell death is necrosis.
To investigate the impact of neurotoxic substances on cell death, LDH leakage, a general
marker of cell membrane damage and necrotic cell death, can be measured [57]. Indeed,
cells treatment with Cd2+, Hg2+, or Pb2+ at concentrations that resulted in a considerable
decline in cell viability induced significant LDH leakage, thus showing that the induction
of necrosis was one of the main drivers of the reduction in cell viability. Therefore, in
our study, the LDH assay, which was performed on SH-SY5Y exposed to the heavy
metals and in the presence of EA, confirmed the same trend of results obtained using
the MTT assay. Indeed, when SH-SY5Y cells were exposed to mixtures of Cd2+/EA, a
significant decrease in enzyme release was observed after 24 h of treatment compared
with Cd2+-treated cells, thus demonstrating that EA significantly reduced the negative
effects caused by 25 µM the heavy metal. The most interesting results was observed after
72 h of treatment when a stronger dose-dependent reduction in the enzyme release was
observed. Conversely, no noteworthy effect of the simultaneous treatment with EA and
Hg2+ was possible to observe for LDH release because of the slight rise in LDH release
that was induced by Hg2+ only at 24 h. Finally, with regard to Pb2+, a good EA protective
effect was detected after 24 h of treatment. Our findings allow us to assess that Cd2+-,
Hg2+-, and Pb2+-induced toxicity causes cell death and, almost as observed with regard
to Cd2+, this occurs most likely through necrosis as suggested by the results of the LDH
assay. However, the treatment of cells with EA inhibits LDH release and particularly
shields SH-SY5Y cells from Cd2+ neurotoxicity.
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3.4. ROS Scavenging Effects of EA against Cd2+-, Hg2+-, Pb2+-, and H2O2-Induced
Oxidative Stress

Furthermore, we aimed at exploring the neuroprotective effects of EA demonstrating
its ability to reduce oxidative stress induced by heavy metals in SH-SY5Y cells, thus confirm-
ing that EA may act as a ROS scavenger and as a regulator of antioxidant systems. We firstly
assessed that EA was able to protect our neuronal model from ROS production induced
by stimulus with H2O2 in a dose-dependent manner. The same effect was demonstrated
against Cd2+-, Hg2+-, and Pb2+-induced ROS production. Indeed, EA was shown to be
effective in counteracting ROS production induced by these metals, since a significant and
concentration-dependent cytoprotective effect could be observed, the most encouraging
result being obtained for Hg2+-induced oxidative stress protection. The obtained outcomes
conceivably could be due to the already proven capabilities of EA to chelate metals, to act
as radical scavenger and to promote cellular antioxidant enzymes activity [58].

4. Materials and Methods
4.1. Chemicals and Reagents

EA powder was purchased from Farmalabor srl (Canosa di Puglia, Italy). CdCl2,
HgCl2, or Pb(NO3)2, high glucose (4.5 gL−1) Dulbecco’s modified Eagle medium (DMEM),
fetal bovine serum (FBS, PAN Biotech, Aidenbach, Germany), L-glutamine, trypsin, MTT,
LDH, and 2′,7′-dichlorofluorescein diacetate were purchased from Sigma-Aldrich S.p.a.
(Milan, Italy).

4.2. Culture Cells

The human SH-SY5Y neuroblastoma cells used in this study were purchased from the
American Type Culture Collection (ATCC, Manassas, VA, USA). The cells were normally
cultured in 25 cm2 flasks (Corning Inc., New York, NY, USA) and maintained in high
glucose (4.5 gL−1) Dulbecco’s modified Eagle medium (DMEM), supplemented with 10%
(v/v) fetal bovine serum (FBS, PAN Biotech), 4 mM of L-glutamine (Sigma-Aldrich S.p.a.
Milan, Italy)), and 1% (v/v) antibiotic solution penicillin-streptomycin (LONZA Bioscience,
Walkersville, MD, USA). The cells were maintained at 37 ◦C in an incubator (Thermo
Scientific Hera Cell 240i, Waltham, MA, USA) with 5% CO2 in the air atmosphere and
95% relative humidity. Complete growth medium (DMEM) was changed every two days.
After being 80% confluent, the cells were washed with phosphate-buffered saline solution
(PBS) to remove any unattached cells. The attached cells were harvested using a 1 mL of
0.25% trypsin and 0.53 mM of EDTA solution (SIGMA) and then seeded at a density of
5 × 103 cells/well in a 96-well plate and incubated for 24 h to allow for attachment.

4.3. Determination of Cell Viability

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) technique,
which relies on the ability of mitochondrial oxidoreductases to convert soluble MTT into
insoluble formazan in live cells, was used to determine the vitality of the cells. The amount
of formazan generated corresponds to the number of live cells [59]. In brief, SH-SY5Y cells
were seeded at the density of 5 × 104 in a 96-well plate (6 wells/concentration group plus
1 control group). To monitor the toxicity of Cd2+, Hg2+, or Pb2+ on SH-SY5Y neuroblastoma
cells, we prepared the following experimental sets: in the first experimental set, cells were
exposed to increasing concentrations of three heavy metals Cd2+, Hg2+, or Pb2+ (0.01. 0.05,
0.25, 2.5, 25, and 250 µM) in 6 wells per concentration group, and the cells were incubated
for 24, 48, and 72 h. In the second set of experiments, cells were pre- or co-treated with
increasing concentrations of EA (1, 5, and 10 µM) and incubated for 24, 48, and 72 h.
Control groups consisted of SH-SY5Y cells, which were processed in the same manner and
incubated simultaneously as the treated groups. Subsequently, cells were incubated with
20 µL of MTT stock solution (5 mg/mL in PBS 1X) in 180 µL of medium in the dark. After
an additional three hours at 37 ◦C, the medium was taken out, 150 µL of DMSO was added
to dissolve the formazan crystals, and the mixture was kept warm for five minutes while
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being stirred. The absorbance was recorded at 540 nm with a multilabel microplate reader
Victor 3 (PerkinElmer, Waltham, MA, USA). All MTT assays were performed in triplicate.
Cell viability is expressed as a percentage of the control group (% control) calculated from
the equation: % control = Absorbance treatment/Absorbance control × 100%. Data are the mean
percentages of viable cells vs. the respective controls. A DMSO medium was used for
control cells.

4.4. Lactate Dehydrogenase (LDH) Release

Lactate dehydrogenase (LDH) leakage into the culture medium was used to measure
cytotoxicity. To get a cell-free supernatant, media were sucked and centrifuged for 5 min. at
3000 rpm after being exposed to the Cd2+, Hg2+, or Pb2+ and EA. The supernatant was used
for the assay on LDH activity. Briefly, the reaction was initiated by mixing 0.1 mL of cell free
medium with 48 mM of potassium phosphate buffer (pH 7.5) containing 0.18 mM of NADH
and 0.6 mM of sodium pyruvate in a final volume of 3 mL. A microplate spectrophotometer
system (Bio-Rad-680, Bio-Rad, Redmond, WA, USA) was used to measure the change
in absorbance at 440 nm. The formula for calculating cell LDH release (% control) is as
follows: % control = (U LDH/mg cell protein) treatment/(U LDH/mg cell protein) control
100% [60,61]. A DMSO medium was used for control cells.

4.5. Measurement of Intracellular ROS Production

According to a slightly modified procedure already reported in the literature, the
generation of ROS was determined using an oxidation-sensitive fluorescent probe, 2′,7′-
dichlorodihydrofluorescein diacetate [62]. Briefly, the SHSY-5Y cells were seeded into a
96-black well plate for 24 h. After pretreatment with the indicated concentrations of EA (0,
1, 5, 10, and 25 µM) for 24 h, cells were treated with Cd2+, Pb2+, or Hg2+ (25 µM) for 6 h or
H2O2 (50 µM) for 30 min. Then, they were tested using a fluorescent probe (DCFH-DA)
and added in the dark and incubated at 37◦ for 30 min. The formation of fluorescent
dichlorofluorescein (DCF) due to oxidation of DCFH in the presence of ROS was read at
530 nm using a microplate reader Tecan Infinite M1000 Pro (Tecan, Cernusco S.N., Italy)
and a DMSO medium was used for control cells.

4.6. Statistical Analysis

All the results are expressed as mean ± standard deviation (SD). The reported values
are the results of at least three experiments. All assays were performed in triplicate to
ensure reproducibility. Data were analysed for statistical significance (p < 0.0001) using
one-way ANOVA followed by Dunnett’s test performed through GraphPad Prism 9.0. A
p value ≤ 0.05 was considered significant.

5. Conclusions

The findings of this work demonstrate that exposure to heavy metals such as Cd, Hg,
and Pb damages SH-SY5Y cells causing a concentration- and time-dependent reduction i
their viability, with cells death conceivably occurring through necrosis. Despite acting in
varying concentrations, EA showed to have high protective activity against SH-SY5Y
cells exposed to Cd, Hg, or Pb toxicity, counteracting the cytotoxic effects of these metals
in the proposed cellular model. The toxicity that was identified through the MTT assay
and the measurement of LDH release was reversed through treatment with EA, which
offers further evidence that EA can have a positive impact on neuronal cells protection.
This cytoprotective activity was particularly evident against the highly toxic heavy metal
Cd, whose neurotoxicity has been widely documented over the years. Additionally,
our study showed how effective EA is at reducing oxidative stress provoked through
stimulus with both H2O2 and heavy metals, with this effect being more pronounced
against Hg-induced oxidative stress. Although further investigation will be needed to
clarify the precise mechanism behind these effects of EA, these results could contribute
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to drawing attention on EA as a promising candidate to be employed as a natural food
resource for neuroprotection.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/foods13030419/s1, Figure S1: Inverted phase-contrast images of SH-SY5Y
cells (20×magnification) treated with only-vehicle, control cells (a), Cd2+ (b), Hg2+ (c), and Pb2+ (d) at a
concentration of 25 µM; Figure S2: Inverted phase-contrast images of SH-SY5Y cells (20×magnification)
treated with only-vehicle, control cells (a), EA 1 µM (b), EA 5 µM (c), and EA 10 µM (d)
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